1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
#include "model.h"
#include "../structures/image2d.h"
#include "../structures/timefrequencydata.h"
#include "observatorium.h"
#include "../util/rng.h"
#include "../util/logger.h"
#include <iostream>
Model::Model() : _noiseSigma(1.0), _sourceSigma(0.0), _integrationTime(15.0) {}
template <typename T>
void Model::SimulateObservation(struct OutputReceiver<T>& receiver,
Observatorium& observatorium,
num_t delayDirectionDEC,
num_t delayDirectionRA) {
const size_t channelCount = observatorium.BandInfo().channels.size();
const double frequency = observatorium.BandInfo().channels[0].frequencyHz;
for (size_t f = 0; f < channelCount; ++f) {
const double channelFrequency =
frequency + observatorium.ChannelWidthHz() * f;
receiver.SetY(f);
for (size_t i = 0; i < observatorium.AntennaCount(); ++i) {
for (size_t j = i + 1; j < observatorium.AntennaCount(); ++j) {
const AntennaInfo &antenna1 = observatorium.GetAntenna(i),
&antenna2 = observatorium.GetAntenna(j);
double dx = antenna1.position.x - antenna2.position.x,
dy = antenna1.position.y - antenna2.position.y,
dz = antenna1.position.z - antenna2.position.z;
SimulateCorrelation(receiver, delayDirectionDEC, delayDirectionRA, dx,
dy, dz, channelFrequency,
observatorium.ChannelWidthHz(), 12 * 60 * 60,
_integrationTime);
}
}
}
}
template void Model::SimulateObservation(
struct OutputReceiver<UVImager>& receiver, Observatorium& observatorium,
num_t delayDirectionDEC, num_t delayDirectionRA);
template void Model::SimulateObservation(
struct OutputReceiver<TimeFrequencyData>& receiver,
Observatorium& observatorium, num_t delayDirectionDEC,
num_t delayDirectionRA);
std::pair<TimeFrequencyData, TimeFrequencyMetaDataPtr>
Model::SimulateObservation(size_t nTimes, class Observatorium& observatorium,
num_t delayDirectionDEC, num_t delayDirectionRA,
size_t a1, size_t a2) {
const size_t channelCount = observatorium.BandInfo().channels.size();
const double frequency = observatorium.BandInfo().channels[0].frequencyHz;
OutputReceiver<TimeFrequencyData> tfOutputter;
tfOutputter._real = Image2D::CreateZeroImagePtr(nTimes, channelCount);
tfOutputter._imaginary = Image2D::CreateZeroImagePtr(nTimes, channelCount);
const TimeFrequencyMetaDataPtr metaData(new TimeFrequencyMetaData());
metaData->SetAntenna1(observatorium.GetAntenna(a1));
metaData->SetAntenna2(observatorium.GetAntenna(a2));
metaData->SetBand(observatorium.BandInfo());
double dx = metaData->Antenna1().position.x - metaData->Antenna2().position.x,
dy = metaData->Antenna1().position.y - metaData->Antenna2().position.y,
dz = metaData->Antenna1().position.z - metaData->Antenna2().position.z;
for (size_t f = 0; f < channelCount; ++f) {
const double channelFrequency =
frequency + observatorium.ChannelWidthHz() * f;
tfOutputter.SetY(f);
SimulateCorrelation(tfOutputter, delayDirectionDEC, delayDirectionRA, dx,
dy, dz, channelFrequency,
observatorium.ChannelWidthHz(), nTimes,
_integrationTime);
}
std::vector<double> times;
std::vector<UVW> uvws;
const num_t wavelength = 1.0L / frequency;
for (size_t i = 0; i != nTimes; ++i) {
const double t = _integrationTime * i;
times.push_back(t);
const num_t earthLattitudeApprox = t * M_PIn / (12.0 * 60.0 * 60.0);
UVW uvw;
GetUVPosition(uvw.u, uvw.v, earthLattitudeApprox, delayDirectionDEC,
delayDirectionRA, dx, dy, dz, wavelength);
uvw.u = uvw.u * (299792458.0L / frequency);
uvw.v = uvw.v * (299792458.0L / frequency);
uvw.w = GetWPosition(delayDirectionDEC, delayDirectionRA, frequency,
earthLattitudeApprox, dx, dy) *
(299792458.0L / frequency);
uvws.push_back(uvw);
}
metaData->SetUVW(uvws);
metaData->SetObservationTimes(times);
FieldInfo field;
field.fieldId = 0;
field.delayDirectionDec = delayDirectionDEC;
// field.delayDirectionDecNegCos = -cos(delayDirectionDEC);
// field.delayDirectionDecNegSin = -sin(delayDirectionDEC);
field.delayDirectionRA = delayDirectionRA;
metaData->SetField(field);
const TimeFrequencyData tfData(aocommon::Polarization::StokesI,
tfOutputter._real, tfOutputter._imaginary);
return std::pair<TimeFrequencyData, TimeFrequencyMetaDataPtr>(tfData,
metaData);
}
template <typename T>
void Model::SimulateCorrelation(struct OutputReceiver<T>& receiver,
num_t delayDirectionDEC, num_t delayDirectionRA,
num_t dx, num_t dy, num_t dz, num_t frequency,
num_t channelWidth, size_t nTimes,
double integrationTime) {
const double sampleGain =
integrationTime / (12.0 * 60.0 * 60.0) * channelWidth;
const num_t wavelength = 1.0L / frequency;
size_t index = 0;
for (size_t ti = 0; ti != nTimes; ++ti) {
const double t = ti * integrationTime;
const double timeInDays = t / (12.0 * 60.0 * 60.0);
const num_t earthLattitudeApprox = timeInDays * M_PIn;
num_t u, v, r1, i1, r2, i2;
GetUVPosition(u, v, earthLattitudeApprox, delayDirectionDEC,
delayDirectionRA, dx, dy, dz, wavelength);
SimulateAntenna(timeInDays, delayDirectionDEC, delayDirectionRA, 0, 0,
frequency, earthLattitudeApprox, r1, i1);
SimulateAntenna(timeInDays, delayDirectionDEC, delayDirectionRA, dx, dy,
frequency, earthLattitudeApprox, r2, i2);
num_t r = r1 * r2 - (i1 * -i2), i = r1 * -i2 + r2 * i1;
receiver.SetUVValue(index, u, v, r * sampleGain, i * sampleGain, 1.0);
++index;
}
}
template void Model::SimulateCorrelation(
struct OutputReceiver<UVImager>& receiver, num_t delayDirectionDEC,
num_t delayDirectionRA, num_t dx, num_t dy, num_t dz, num_t frequency,
num_t channelWidth, size_t nTimes, double integrationTime);
void Model::SimulateAntenna(double time, num_t delayDirectionDEC,
num_t delayDirectionRA, num_t dx, num_t dy,
num_t frequency, num_t earthLattitude, num_t& r,
num_t& i) {
r = 0.0;
i = 0.0;
const num_t delayW = GetWPosition(delayDirectionDEC, delayDirectionRA,
frequency, earthLattitude, dx, dy);
for (std::vector<Source*>::const_iterator iter = _sources.begin();
iter != _sources.end(); ++iter) {
const Source& source = **iter;
const num_t w = GetWPosition(source.Dec(time), source.Ra(time), frequency,
earthLattitude, dx, dy);
const num_t fieldStrength =
source.SqrtFluxIntensity(time) + RNG::Gaussian() * _sourceSigma;
num_t noiser, noisei;
RNG::ComplexGaussianAmplitude(noiser, noisei);
r +=
fieldStrength * cosn((w - delayW) * M_PIn * 2.0) + noiser * _noiseSigma;
i +=
fieldStrength * sinn((w - delayW) * M_PIn * 2.0) + noisei * _noiseSigma;
}
}
void Model::SimulateUncoherentAntenna(double time, num_t delayDirectionDEC,
num_t delayDirectionRA, num_t dx,
num_t dy, num_t frequency,
num_t earthLattitude, num_t& r, num_t& i,
size_t index) {
const num_t delayW = GetWPosition(delayDirectionDEC, delayDirectionRA,
frequency, earthLattitude, dx, dy);
// if(index%(_sources.size()+1) == _sources.size())
//{
num_t noiser, noisei;
RNG::ComplexGaussianAmplitude(noiser, noisei);
noiser *= _noiseSigma;
noisei *= _noiseSigma;
//}
// else {
const Source& source = *_sources[index % _sources.size()];
const num_t w = GetWPosition(source.Dec(time), source.Ra(time), frequency,
earthLattitude, dx, dy);
const num_t fieldStrength =
source.SqrtFluxIntensity(time) + RNG::Gaussian() * _sourceSigma;
r = fieldStrength * cosn((w - delayW) * M_PIn * 2.0) + noiser;
i = fieldStrength * sinn((w - delayW) * M_PIn * 2.0) + noisei;
//}
}
void Model::GetUVPosition(num_t& u, num_t& v, num_t earthLattitudeAngle,
num_t delayDirectionDEC, num_t delayDirectionRA,
num_t dx, num_t dy, num_t dz, num_t wavelength) {
// Rotate baseline plane towards phase center, first rotate around z axis,
// then around x axis
const long double raRotation =
-earthLattitudeAngle + delayDirectionRA + M_PIn * 0.5L;
long double tmpCos = cosn(raRotation);
long double tmpSin = sinn(raRotation);
const long double dxProjected = tmpCos * dx - tmpSin * dy;
const long double tmpdy = tmpSin * dx + tmpCos * dy;
tmpCos = cosn(-delayDirectionDEC);
tmpSin = sinn(-delayDirectionDEC);
const long double dyProjected = tmpCos * tmpdy - tmpSin * dz;
// Now, the newly projected positive z axis of the baseline points to the
// phase center
long double baselineLength =
sqrtn(dxProjected * dxProjected + dyProjected * dyProjected);
long double baselineAngle;
if (baselineLength == 0.0) {
baselineAngle = 0.0;
} else {
baselineLength /= 299792458.0L * wavelength;
if (dxProjected > 0.0L)
baselineAngle = atann(dyProjected / dxProjected);
else
baselineAngle = M_PIn - atann(dyProjected / -dxProjected);
}
u = cosn(baselineAngle) * baselineLength;
v = -sinn(baselineAngle) * baselineLength;
}
void Model::loadUrsaMajor(double ra, double dec, double factor) {
double s = 0.00005 * factor, // scale
rs = 6.0 + 2.0 * factor; // stretch in dec
const double fluxoffset = 0.0;
AddSource(dec + s * rs * 40, ra + s * 72, 8.0 / 8.0 + fluxoffset); // Dubhe
AddSource(dec + s * rs * -16, ra + s * 81, 4.0 / 8.0 + fluxoffset); // Beta
AddSource(dec + s * rs * -45, ra + s * 2, 3.0 / 8.0 + fluxoffset); // Gamma
AddSource(dec + s * rs * -6, ra + s * -27, 2.0 / 8.0 + fluxoffset); // Delta
AddSource(dec + s * rs * -4, ra + s * -85, 6.0 / 8.0 + fluxoffset); // Alioth
AddSource(dec + s * rs * 2, ra + s * -131, 5.0 / 8.0 + fluxoffset); // Zeta
AddSource(dec + s * rs * -36, ra + s * -192,
7.0 / 8.0 + fluxoffset); // Alkaid
// AddSource(cd, cr - M_PI, 4.0);
}
void Model::loadUrsaMajorDistortingSource(double ra, double dec, double factor,
bool slightlyMiss) {
if (slightlyMiss) {
dec += 0.005;
ra += 0.002;
}
AddSource(dec - 0.12800 * factor, ra + 0.015 + 0.015 * factor, 4.0);
}
void Model::loadUrsaMajorDistortingVariableSource(double ra, double dec,
double factor, bool weak,
bool slightlyMiss) {
double flux = 4.0;
dec = dec - 0.12800 * factor;
ra = ra + 0.015 + 0.015 * factor;
if (slightlyMiss) {
dec += 0.005;
ra += 0.002;
}
if (weak) {
flux /= 100.0;
}
AddVariableSource(dec, ra, flux);
}
|