File: model.cpp

package info (click to toggle)
aoflagger 3.4.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 8,688 kB
  • sloc: cpp: 83,116; python: 10,187; sh: 260; makefile: 178
file content (272 lines) | stat: -rw-r--r-- 11,464 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
#include "model.h"

#include "../structures/image2d.h"
#include "../structures/timefrequencydata.h"

#include "observatorium.h"
#include "../util/rng.h"
#include "../util/logger.h"

#include <iostream>

Model::Model() : _noiseSigma(1.0), _sourceSigma(0.0), _integrationTime(15.0) {}

template <typename T>
void Model::SimulateObservation(struct OutputReceiver<T>& receiver,
                                Observatorium& observatorium,
                                num_t delayDirectionDEC,
                                num_t delayDirectionRA) {
  const size_t channelCount = observatorium.BandInfo().channels.size();
  const double frequency = observatorium.BandInfo().channels[0].frequencyHz;

  for (size_t f = 0; f < channelCount; ++f) {
    const double channelFrequency =
        frequency + observatorium.ChannelWidthHz() * f;
    receiver.SetY(f);
    for (size_t i = 0; i < observatorium.AntennaCount(); ++i) {
      for (size_t j = i + 1; j < observatorium.AntennaCount(); ++j) {
        const AntennaInfo &antenna1 = observatorium.GetAntenna(i),
                          &antenna2 = observatorium.GetAntenna(j);
        double dx = antenna1.position.x - antenna2.position.x,
               dy = antenna1.position.y - antenna2.position.y,
               dz = antenna1.position.z - antenna2.position.z;

        SimulateCorrelation(receiver, delayDirectionDEC, delayDirectionRA, dx,
                            dy, dz, channelFrequency,
                            observatorium.ChannelWidthHz(), 12 * 60 * 60,
                            _integrationTime);
      }
    }
  }
}

template void Model::SimulateObservation(
    struct OutputReceiver<UVImager>& receiver, Observatorium& observatorium,
    num_t delayDirectionDEC, num_t delayDirectionRA);
template void Model::SimulateObservation(
    struct OutputReceiver<TimeFrequencyData>& receiver,
    Observatorium& observatorium, num_t delayDirectionDEC,
    num_t delayDirectionRA);

std::pair<TimeFrequencyData, TimeFrequencyMetaDataPtr>
Model::SimulateObservation(size_t nTimes, class Observatorium& observatorium,
                           num_t delayDirectionDEC, num_t delayDirectionRA,
                           size_t a1, size_t a2) {
  const size_t channelCount = observatorium.BandInfo().channels.size();
  const double frequency = observatorium.BandInfo().channels[0].frequencyHz;

  OutputReceiver<TimeFrequencyData> tfOutputter;
  tfOutputter._real = Image2D::CreateZeroImagePtr(nTimes, channelCount);
  tfOutputter._imaginary = Image2D::CreateZeroImagePtr(nTimes, channelCount);

  const TimeFrequencyMetaDataPtr metaData(new TimeFrequencyMetaData());
  metaData->SetAntenna1(observatorium.GetAntenna(a1));
  metaData->SetAntenna2(observatorium.GetAntenna(a2));
  metaData->SetBand(observatorium.BandInfo());
  double dx = metaData->Antenna1().position.x - metaData->Antenna2().position.x,
         dy = metaData->Antenna1().position.y - metaData->Antenna2().position.y,
         dz = metaData->Antenna1().position.z - metaData->Antenna2().position.z;

  for (size_t f = 0; f < channelCount; ++f) {
    const double channelFrequency =
        frequency + observatorium.ChannelWidthHz() * f;
    tfOutputter.SetY(f);
    SimulateCorrelation(tfOutputter, delayDirectionDEC, delayDirectionRA, dx,
                        dy, dz, channelFrequency,
                        observatorium.ChannelWidthHz(), nTimes,
                        _integrationTime);
  }

  std::vector<double> times;
  std::vector<UVW> uvws;
  const num_t wavelength = 1.0L / frequency;
  for (size_t i = 0; i != nTimes; ++i) {
    const double t = _integrationTime * i;
    times.push_back(t);
    const num_t earthLattitudeApprox = t * M_PIn / (12.0 * 60.0 * 60.0);
    UVW uvw;
    GetUVPosition(uvw.u, uvw.v, earthLattitudeApprox, delayDirectionDEC,
                  delayDirectionRA, dx, dy, dz, wavelength);
    uvw.u = uvw.u * (299792458.0L / frequency);
    uvw.v = uvw.v * (299792458.0L / frequency);
    uvw.w = GetWPosition(delayDirectionDEC, delayDirectionRA, frequency,
                         earthLattitudeApprox, dx, dy) *
            (299792458.0L / frequency);
    uvws.push_back(uvw);
  }
  metaData->SetUVW(uvws);
  metaData->SetObservationTimes(times);
  FieldInfo field;
  field.fieldId = 0;
  field.delayDirectionDec = delayDirectionDEC;
  // field.delayDirectionDecNegCos = -cos(delayDirectionDEC);
  // field.delayDirectionDecNegSin = -sin(delayDirectionDEC);
  field.delayDirectionRA = delayDirectionRA;
  metaData->SetField(field);

  const TimeFrequencyData tfData(aocommon::Polarization::StokesI,
                                 tfOutputter._real, tfOutputter._imaginary);
  return std::pair<TimeFrequencyData, TimeFrequencyMetaDataPtr>(tfData,
                                                                metaData);
}

template <typename T>
void Model::SimulateCorrelation(struct OutputReceiver<T>& receiver,
                                num_t delayDirectionDEC, num_t delayDirectionRA,
                                num_t dx, num_t dy, num_t dz, num_t frequency,
                                num_t channelWidth, size_t nTimes,
                                double integrationTime) {
  const double sampleGain =
      integrationTime / (12.0 * 60.0 * 60.0) * channelWidth;
  const num_t wavelength = 1.0L / frequency;
  size_t index = 0;
  for (size_t ti = 0; ti != nTimes; ++ti) {
    const double t = ti * integrationTime;
    const double timeInDays = t / (12.0 * 60.0 * 60.0);
    const num_t earthLattitudeApprox = timeInDays * M_PIn;
    num_t u, v, r1, i1, r2, i2;
    GetUVPosition(u, v, earthLattitudeApprox, delayDirectionDEC,
                  delayDirectionRA, dx, dy, dz, wavelength);
    SimulateAntenna(timeInDays, delayDirectionDEC, delayDirectionRA, 0, 0,
                    frequency, earthLattitudeApprox, r1, i1);
    SimulateAntenna(timeInDays, delayDirectionDEC, delayDirectionRA, dx, dy,
                    frequency, earthLattitudeApprox, r2, i2);
    num_t r = r1 * r2 - (i1 * -i2), i = r1 * -i2 + r2 * i1;
    receiver.SetUVValue(index, u, v, r * sampleGain, i * sampleGain, 1.0);
    ++index;
  }
}

template void Model::SimulateCorrelation(
    struct OutputReceiver<UVImager>& receiver, num_t delayDirectionDEC,
    num_t delayDirectionRA, num_t dx, num_t dy, num_t dz, num_t frequency,
    num_t channelWidth, size_t nTimes, double integrationTime);

void Model::SimulateAntenna(double time, num_t delayDirectionDEC,
                            num_t delayDirectionRA, num_t dx, num_t dy,
                            num_t frequency, num_t earthLattitude, num_t& r,
                            num_t& i) {
  r = 0.0;
  i = 0.0;
  const num_t delayW = GetWPosition(delayDirectionDEC, delayDirectionRA,
                                    frequency, earthLattitude, dx, dy);
  for (std::vector<Source*>::const_iterator iter = _sources.begin();
       iter != _sources.end(); ++iter) {
    const Source& source = **iter;
    const num_t w = GetWPosition(source.Dec(time), source.Ra(time), frequency,
                                 earthLattitude, dx, dy);
    const num_t fieldStrength =
        source.SqrtFluxIntensity(time) + RNG::Gaussian() * _sourceSigma;
    num_t noiser, noisei;
    RNG::ComplexGaussianAmplitude(noiser, noisei);
    r +=
        fieldStrength * cosn((w - delayW) * M_PIn * 2.0) + noiser * _noiseSigma;
    i +=
        fieldStrength * sinn((w - delayW) * M_PIn * 2.0) + noisei * _noiseSigma;
  }
}

void Model::SimulateUncoherentAntenna(double time, num_t delayDirectionDEC,
                                      num_t delayDirectionRA, num_t dx,
                                      num_t dy, num_t frequency,
                                      num_t earthLattitude, num_t& r, num_t& i,
                                      size_t index) {
  const num_t delayW = GetWPosition(delayDirectionDEC, delayDirectionRA,
                                    frequency, earthLattitude, dx, dy);

  // if(index%(_sources.size()+1) == _sources.size())
  //{
  num_t noiser, noisei;
  RNG::ComplexGaussianAmplitude(noiser, noisei);
  noiser *= _noiseSigma;
  noisei *= _noiseSigma;
  //}
  // else {
  const Source& source = *_sources[index % _sources.size()];
  const num_t w = GetWPosition(source.Dec(time), source.Ra(time), frequency,
                               earthLattitude, dx, dy);
  const num_t fieldStrength =
      source.SqrtFluxIntensity(time) + RNG::Gaussian() * _sourceSigma;
  r = fieldStrength * cosn((w - delayW) * M_PIn * 2.0) + noiser;
  i = fieldStrength * sinn((w - delayW) * M_PIn * 2.0) + noisei;
  //}
}

void Model::GetUVPosition(num_t& u, num_t& v, num_t earthLattitudeAngle,
                          num_t delayDirectionDEC, num_t delayDirectionRA,
                          num_t dx, num_t dy, num_t dz, num_t wavelength) {
  // Rotate baseline plane towards phase center, first rotate around z axis,
  // then around x axis
  const long double raRotation =
      -earthLattitudeAngle + delayDirectionRA + M_PIn * 0.5L;
  long double tmpCos = cosn(raRotation);
  long double tmpSin = sinn(raRotation);

  const long double dxProjected = tmpCos * dx - tmpSin * dy;
  const long double tmpdy = tmpSin * dx + tmpCos * dy;

  tmpCos = cosn(-delayDirectionDEC);
  tmpSin = sinn(-delayDirectionDEC);
  const long double dyProjected = tmpCos * tmpdy - tmpSin * dz;

  // Now, the newly projected positive z axis of the baseline points to the
  // phase center
  long double baselineLength =
      sqrtn(dxProjected * dxProjected + dyProjected * dyProjected);

  long double baselineAngle;
  if (baselineLength == 0.0) {
    baselineAngle = 0.0;
  } else {
    baselineLength /= 299792458.0L * wavelength;
    if (dxProjected > 0.0L)
      baselineAngle = atann(dyProjected / dxProjected);
    else
      baselineAngle = M_PIn - atann(dyProjected / -dxProjected);
  }

  u = cosn(baselineAngle) * baselineLength;
  v = -sinn(baselineAngle) * baselineLength;
}

void Model::loadUrsaMajor(double ra, double dec, double factor) {
  double s = 0.00005 * factor,  // scale
      rs = 6.0 + 2.0 * factor;  // stretch in dec
  const double fluxoffset = 0.0;

  AddSource(dec + s * rs * 40, ra + s * 72, 8.0 / 8.0 + fluxoffset);   // Dubhe
  AddSource(dec + s * rs * -16, ra + s * 81, 4.0 / 8.0 + fluxoffset);  // Beta
  AddSource(dec + s * rs * -45, ra + s * 2, 3.0 / 8.0 + fluxoffset);   // Gamma
  AddSource(dec + s * rs * -6, ra + s * -27, 2.0 / 8.0 + fluxoffset);  // Delta
  AddSource(dec + s * rs * -4, ra + s * -85, 6.0 / 8.0 + fluxoffset);  // Alioth
  AddSource(dec + s * rs * 2, ra + s * -131, 5.0 / 8.0 + fluxoffset);  // Zeta
  AddSource(dec + s * rs * -36, ra + s * -192,
            7.0 / 8.0 + fluxoffset);  // Alkaid

  // AddSource(cd, cr - M_PI, 4.0);
}

void Model::loadUrsaMajorDistortingSource(double ra, double dec, double factor,
                                          bool slightlyMiss) {
  if (slightlyMiss) {
    dec += 0.005;
    ra += 0.002;
  }
  AddSource(dec - 0.12800 * factor, ra + 0.015 + 0.015 * factor, 4.0);
}

void Model::loadUrsaMajorDistortingVariableSource(double ra, double dec,
                                                  double factor, bool weak,
                                                  bool slightlyMiss) {
  double flux = 4.0;
  dec = dec - 0.12800 * factor;
  ra = ra + 0.015 + 0.015 * factor;
  if (slightlyMiss) {
    dec += 0.005;
    ra += 0.002;
  }
  if (weak) {
    flux /= 100.0;
  }
  AddVariableSource(dec, ra, flux);
}