1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
#include "baselineselector.h"
#include "../util/logger.h"
#include "../util/plot.h"
#include "../quality/defaultstatistics.h"
#include "thresholdtools.h"
#include <algorithm>
#include <map>
#include <memory>
namespace algorithms {
void BaselineSelector::Add(Mask2DCPtr mask,
TimeFrequencyMetaDataCPtr metaData) {
BaselineSelector::SingleBaselineInfo baseline;
baseline.length = metaData->Baseline().Distance();
if (baseline.length > 0) {
baseline.antenna1 = metaData->Antenna1().id;
baseline.antenna2 = metaData->Antenna2().id;
baseline.antenna1Name = metaData->Antenna1().name;
baseline.antenna2Name = metaData->Antenna2().name;
baseline.band = metaData->Band().windowIndex;
baseline.sequenceId = metaData->SequenceId();
baseline.rfiCount = mask->GetCount<true>();
baseline.totalCount = mask->Width() * mask->Height();
_baselines.push_back(baseline);
}
}
void BaselineSelector::Add(DefaultStatistics& baselineStat,
AntennaInfo& antenna1, AntennaInfo& antenna2) {
if (antenna1.id != antenna2.id) {
BaselineSelector::SingleBaselineInfo baseline;
baseline.length = Baseline(antenna1, antenna2).Distance();
baseline.antenna1 = antenna1.id;
baseline.antenna2 = antenna2.id;
baseline.antenna1Name = antenna1.name;
baseline.antenna2Name = antenna2.name;
baseline.band = 0;
baseline.sequenceId = 0;
const DefaultStatistics singleStat = baselineStat.ToSinglePolarization();
baseline.rfiCount = singleStat.rfiCount[0];
baseline.totalCount = singleStat.count[0] + singleStat.rfiCount[0];
_baselines.push_back(baseline);
}
}
void BaselineSelector::Search(
std::vector<BaselineSelector::SingleBaselineInfo>& markedBaselines) {
// Perform a first quick threshold to remove baselines which deviate a lot
// (e.g. 100% flagged baselines). Sometimes, there are a lot of them, causing
// instability if this would not be done.
for (int i = _baselines.size() - 1; i >= 0; --i) {
const double currentValue =
(double)_baselines[i].rfiCount / (double)_baselines[i].totalCount;
if (currentValue > _absThreshold ||
(_baselines[i].rfiCount == 0 && _baselines[i].totalCount >= 2500)) {
if (_useLog)
Logger::Info << "Baseline " << _baselines[i].antenna1Name << " x "
<< _baselines[i].antenna2Name
<< " looks bad: " << round(currentValue * 10000.0) / 100.0
<< "% rfi (zero or above " << (_absThreshold * 100.0)
<< "% abs threshold)\n";
_baselines[i].marked = true;
markedBaselines.push_back(_baselines[i]);
_baselines.erase(_baselines.begin() + i);
}
}
bool foundMoreBaselines;
do {
std::sort(_baselines.begin(), _baselines.end());
std::unique_ptr<Plot> plot;
if (_makePlot) {
plot.reset(new Plot("baselineSelection.pdf"));
plot->SetXAxisText("Baseline length (meters)");
plot->SetYAxisText("Percentage RFI");
}
const size_t unmarkedBaselineCount = _baselines.size();
std::vector<double> values(unmarkedBaselineCount);
// Calculate the smoothed values
if (_makePlot) plot->StartLine("Smoothed values");
size_t valueIndex = 0;
for (BaselineVector::const_iterator i = _baselines.begin();
i != _baselines.end(); ++i) {
const double smoothedVal = smoothedValue(*i);
if (_makePlot) plot->PushDataPoint(i->length, 100.0 * smoothedVal);
values[valueIndex] =
smoothedVal - (double)i->rfiCount / (double)i->totalCount;
++valueIndex;
}
// Calculate the std dev
double mean, stddev;
std::vector<double> valuesCopy;
for (size_t i = 0; i < unmarkedBaselineCount; ++i)
valuesCopy.push_back(values[i]);
ThresholdTools::TrimmedMeanAndStdDev(valuesCopy, mean, stddev);
if (_makePlot && _useLog)
Logger::Debug
<< "Estimated std dev for thresholding, in percentage of RFI: "
<< round(10000.0 * stddev) / 100.0 << "%\n";
// unselect already marked baselines
for (int i = markedBaselines.size() - 1; i >= 0; --i) {
const BaselineSelector::SingleBaselineInfo baseline = markedBaselines[i];
const double currentValue =
(double)baseline.rfiCount / (double)baseline.totalCount;
const double baselineValue =
smoothedValue(baseline.length) - currentValue;
if (baselineValue >= mean - _threshold * stddev &&
baselineValue <= mean + _threshold * stddev &&
currentValue < _absThreshold &&
(baseline.rfiCount != 0 || baseline.totalCount < 2500)) {
markedBaselines.erase(markedBaselines.begin() + i);
_baselines.push_back(baseline);
if (_useLog)
Logger::Info << "Baseline " << baseline.antenna1Name << " x "
<< baseline.antenna2Name
<< " is now within baseline curve\n";
}
}
// (re)select baselines to be thrown away
foundMoreBaselines = false;
if (_makePlot) plot->StartScatter("Threshold");
double maxPlotY = 0.0;
for (int i = unmarkedBaselineCount - 1; i >= 0; --i) {
const double currentValue =
(double)_baselines[i].rfiCount / (double)_baselines[i].totalCount;
if (_makePlot) {
const double plotY =
100.0 * (values[i] + currentValue + mean + _threshold * stddev);
plot->PushDataPoint(_baselines[i].length, plotY);
plot->PushDataPoint(
_baselines[i].length,
100.0 * (values[i] + currentValue + mean - _threshold * stddev));
if (plotY > maxPlotY) maxPlotY = plotY;
}
if (values[i] < mean - _threshold * stddev ||
values[i] > mean + _threshold * stddev ||
currentValue > _absThreshold ||
(_baselines[i].rfiCount == 0 && _baselines[i].totalCount >= 2500)) {
if (_useLog)
Logger::Info << "Baseline " << _baselines[i].antenna1Name << " x "
<< _baselines[i].antenna2Name << " looks bad: "
<< round(currentValue * 10000.0) / 100.0 << "% rfi, "
<< round(10.0 * fabs((values[i] - mean) / stddev)) / 10.0
<< "*sigma away from est baseline curve\n";
if (!_baselines[i].marked) {
foundMoreBaselines = true;
_baselines[i].marked = true;
}
markedBaselines.push_back(_baselines[i]);
_baselines.erase(_baselines.begin() + i);
}
}
if (_makePlot) {
plot->SetYRange(0.0, maxPlotY * 1.5);
plot->StartScatter("Accepted baselines");
for (BaselineVector::const_iterator i = _baselines.begin();
i != _baselines.end(); ++i) {
plot->PushDataPoint(
i->length, 100.0 * (double)i->rfiCount / (double)i->totalCount);
}
plot->StartScatter("Rejected baselines");
for (BaselineVector::const_iterator i = markedBaselines.begin();
i != markedBaselines.end(); ++i) {
plot->PushDataPoint(
i->length, 100.0 * (double)i->rfiCount / (double)i->totalCount);
}
plot->Close();
}
} while (foundMoreBaselines);
}
void BaselineSelector::ImplyStations(
const std::vector<BaselineSelector::SingleBaselineInfo>& markedBaselines,
double maxRatio, std::set<unsigned>& badStations) const {
std::map<unsigned, unsigned> stations;
for (std::vector<BaselineSelector::SingleBaselineInfo>::const_iterator i =
markedBaselines.begin();
i != markedBaselines.end(); ++i) {
stations[i->antenna1]++;
stations[i->antenna2]++;
}
for (std::map<unsigned, unsigned>::const_iterator i = stations.begin();
i != stations.end(); ++i) {
const double ratio = (double)i->second / (double)stations.size();
if (ratio > maxRatio) {
badStations.insert(i->first);
}
}
}
double BaselineSelector::smoothedValue(double length) const {
const double logLength = log(length);
double sum = 0.0;
double weight = 0.0;
for (BaselineSelector::BaselineVector::const_iterator i = _baselines.begin();
i != _baselines.end(); ++i) {
const double otherLogLength = log(i->length);
const double otherValue = (double)i->rfiCount / (double)i->totalCount;
const double x = otherLogLength - logLength;
const double curWeight =
exp(-x * x / (2.0 * _smoothingSigma * _smoothingSigma));
sum += curWeight * otherValue;
weight += curWeight;
}
return sum / weight;
}
} // namespace algorithms
|