1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
#include <AOFlagger/strategy/algorithms/polfitmethod.h>
PolFitMethod::PolFitMethod() : _background(0), _previousCoefficients(0) {}
PolFitMethod::~PolFitMethod() {
if (_background != 0) delete _background;
}
void PolFitMethod::Initialize(const TimeFrequencyData& input) {
_original = input.GetSingleImage();
_background2D =
Image2D::CreateEmptyImagePtr(_original->Width(), _original->Height());
if (_background != 0) delete _background;
_background = new TimeFrequencyData(input.PhaseRepresentation(),
input.Polarisation(), _background2D);
_mask = input.GetSingleMask();
if (_hSquareSize * 2 > _original->Width())
_hSquareSize = _original->Width() / 2;
if (_vSquareSize * 2 > _original->Height())
_vSquareSize = _original->Height() / 2;
}
unsigned PolFitMethod::TaskCount() { return _original->Height(); }
void PolFitMethod::PerformFit(unsigned taskNumber) {
if (_mask == 0) throw BadUsageException("Mask has not been set!");
unsigned y = taskNumber;
for (unsigned x = 0; x < _original->Width(); ++x)
_background2D->SetValue(x, y, CalculateBackgroundValue(x, y));
}
long double PolFitMethod::CalculateBackgroundValue(unsigned x, unsigned y) {
ThreadLocal local;
local.image = this;
local.currentX = x;
local.currentY = y;
if (local.currentY >= _vSquareSize)
local.startY = local.currentY - _vSquareSize;
else
local.startY = 0;
local.endY = local.currentY + _vSquareSize;
if (local.endY >= _original->Height()) local.endY = _original->Height() - 1;
if (local.currentX >= _hSquareSize)
local.startX = local.currentX - _hSquareSize;
else
local.startX = 0;
local.endX = local.currentX + _hSquareSize;
if (local.endX >= _original->Width()) local.endX = _original->Width() - 1;
local.emptyWindows = 0;
switch (_method) {
case None:
return 0.0;
case LeastSquare:
case LeastAbs:
case FastGaussianWeightedAverage:
return FitBackground(x, y, local);
default:
throw ConfigurationException(
"The PolFitMethod was not initialized before a fit was executed.");
}
}
int PolFitMethod::SquareError(const gsl_vector* coefs, void* data,
gsl_vector* f) {
// f(x,y) = ( a * x^2 + b * xy + c * y^2 + d x + e y + l - image[x,y] )^2
ThreadLocal& local = *(ThreadLocal*)data;
double a = gsl_vector_get(coefs, 0);
double b = gsl_vector_get(coefs, 1);
double c = gsl_vector_get(coefs, 2);
double d = gsl_vector_get(coefs, 3);
double e = gsl_vector_get(coefs, 4);
double l = gsl_vector_get(coefs, 5);
unsigned index = 0;
for (unsigned y = local.startY; y <= local.endY; ++y) {
double yf = y;
for (unsigned x = local.startX; x <= local.endX; ++x) {
if (!local.image->_mask->Value(x, y)) {
double xf = x;
double g_xy = a * xf * xf + b * xf * yf + c * yf * yf + d * xf +
e * yf + l - local.image->_original->Value(x, y);
gsl_vector_set(f, index, (g_xy * g_xy));
} else {
gsl_vector_set(f, index, 0.0);
}
index++;
}
}
return GSL_SUCCESS;
}
int PolFitMethod::SquareErrorDiff(const gsl_vector* coefs, void* data,
gsl_matrix* J) {
ThreadLocal& local = *(ThreadLocal*)data;
double a = gsl_vector_get(coefs, 0);
double b = gsl_vector_get(coefs, 1);
double c = gsl_vector_get(coefs, 2);
double d = gsl_vector_get(coefs, 3);
double e = gsl_vector_get(coefs, 4);
double f = gsl_vector_get(coefs, 5);
unsigned index = 0;
for (unsigned y = local.startY; y <= local.endY; ++y) {
double yf = y;
for (unsigned x = local.startX; x <= local.endX; ++x) {
if (!local.image->_mask->Value(x, y)) {
// f(x,y) = ( a * x^2 + b * xy + c * y^2 + d x + e y + f - image[x,y]
// )^2 f(x,y) = g^2(x,y) df(x,y)/dz = 2 * g(x,y) * dg(x,y)/dz We now
// need to calculate df(x,y)/da, df(x,y)/db, ..... for each x and y
double xf = x;
double g_xy = 2.0 * (a * xf * xf + b * xf * yf + c * yf * yf + d * xf +
e * yf + f - local.image->_original->Value(x, y));
gsl_matrix_set(J, index, 0, g_xy * xf * xf); // df/da
gsl_matrix_set(J, index, 1, g_xy * xf * yf); // df/db
gsl_matrix_set(J, index, 2, g_xy * yf * yf); // df/dc
gsl_matrix_set(J, index, 3, g_xy * xf); // df/dd
gsl_matrix_set(J, index, 4, g_xy * yf); // df/de
gsl_matrix_set(J, index, 5, g_xy); // df/df
} else {
for (unsigned ci = 0; ci < 6; ++ci) gsl_matrix_set(J, index, ci, 0.0);
}
index++;
}
}
return GSL_SUCCESS;
}
int PolFitMethod::LinError(const gsl_vector* coefs, void* data, gsl_vector* f) {
// f(x,y) = | a * x^2 + b * xy + c * y^2 + d x + e y + l - image[x,y] |
ThreadLocal& local = *(ThreadLocal*)data;
double a = gsl_vector_get(coefs, 0);
double b = gsl_vector_get(coefs, 1);
double c = gsl_vector_get(coefs, 2);
double d = gsl_vector_get(coefs, 3);
double e = gsl_vector_get(coefs, 4);
double l = gsl_vector_get(coefs, 5);
unsigned index = 0;
for (unsigned y = local.startY; y <= local.endY; ++y) {
double yf = y;
for (unsigned x = local.startX; x <= local.endX; ++x) {
if (!local.image->_mask->Value(x, y)) {
double xf = x;
double g_xy = a * xf * xf + b * xf * yf + c * yf * yf + d * xf +
e * yf + l - local.image->_original->Value(x, y);
gsl_vector_set(f, index, fabs(g_xy));
} else {
gsl_vector_set(f, index, 0.0);
}
index++;
}
}
return GSL_SUCCESS;
}
int PolFitMethod::LinErrorDiff(const gsl_vector* coefs, void* data,
gsl_matrix* J) {
ThreadLocal& local = *(ThreadLocal*)data;
double a = gsl_vector_get(coefs, 0);
double b = gsl_vector_get(coefs, 1);
double c = gsl_vector_get(coefs, 2);
double d = gsl_vector_get(coefs, 3);
double e = gsl_vector_get(coefs, 4);
double f = gsl_vector_get(coefs, 5);
unsigned index = 0;
for (unsigned y = local.startY; y <= local.endY; ++y) {
double yf = y;
for (unsigned x = local.startX; x <= local.endX; ++x) {
if (!local.image->_mask->Value(x, y)) {
// f(x,y) = | a * x^2 + b * xy + c * y^2 + d x + e y + f - image[x,y]
// | f(x,y) = | g(x,y) | df(x,y)/dz = dg(x,y)/dz * g(x,y) / | g(x,y) |
// We now need to calculate df(x,y)/da, df(x,y)/db, ..... for each x and
// y
double xf = x;
double g_xy = a * xf * xf + b * xf * yf + c * yf * yf + d * xf +
e * yf + f - local.image->_original->Value(x, y);
double h_xy = g_xy / fabs(g_xy);
gsl_matrix_set(J, index, 0, h_xy * xf * xf); // df/da
gsl_matrix_set(J, index, 1, h_xy * xf * yf); // df/db
gsl_matrix_set(J, index, 2, h_xy * yf * yf); // df/dc
gsl_matrix_set(J, index, 3, h_xy * xf); // df/dd
gsl_matrix_set(J, index, 4, h_xy * yf); // df/de
gsl_matrix_set(J, index, 5, h_xy); // df/df
} else {
for (unsigned ci = 0; ci < 6; ++ci) gsl_matrix_set(J, index, ci, 0.0);
}
index++;
}
}
return GSL_SUCCESS;
}
long double PolFitMethod::FitBackground(unsigned x, unsigned y,
ThreadLocal& local) {
std::vector<long double> coefficients(6);
boost::mutex::scoped_lock lock(_mutex);
if (_previousCoefficients) {
for (unsigned i = 0; i < 6; ++i) coefficients[i] = _previousCoefficients[i];
} else {
for (unsigned i = 0; i < 6; ++i) coefficients[i] = 1e-4 * (i * i * i);
}
lock.unlock();
// Chose to use the Levenberg-Marquardt solver with scaling
const gsl_multifit_fdfsolver_type* T = gsl_multifit_fdfsolver_lmsder;
// Construct solver
unsigned functionCount =
(local.endY - local.startY + 1) * (local.endX - local.startX + 1);
unsigned coefficientCount = 6;
gsl_multifit_fdfsolver* solver =
gsl_multifit_fdfsolver_alloc(T, functionCount, coefficientCount);
if (solver == 0) throw BadUsageException("No solver.");
// Initialize function information structure
gsl_multifit_function_fdf functionInfo;
switch (_method) {
case LeastSquare:
default:
functionInfo.f = &SquareError;
functionInfo.df = &SquareErrorDiff;
functionInfo.fdf = &SquareErrorComb;
break;
case LeastAbs:
functionInfo.f = &LinError;
functionInfo.df = &LinErrorDiff;
functionInfo.fdf = &LinErrorComb;
break;
}
functionInfo.n = functionCount;
functionInfo.p = coefficientCount;
functionInfo.params = &local;
// Initialize initial value of parameters
// gsl_vector vec;
double vec_init[coefficientCount];
for (unsigned i = 0; i < coefficientCount; ++i) vec_init[i] = coefficients[i];
gsl_vector_view vec_view = gsl_vector_view_array(vec_init, coefficientCount);
int status =
gsl_multifit_fdfsolver_set(solver, &functionInfo, &vec_view.vector);
if (status && status != GSL_CONTINUE) {
std::cout << "Error: status = " << gsl_strerror(status) << std::endl;
}
// Start iterating
int iter = 0;
do {
iter++;
status = gsl_multifit_fdfsolver_iterate(solver);
// PrintState(iter, solver);
if (status && status != GSL_CONTINUE) {
// std::cout << "Error: status = " << gsl_strerror (status) << std::endl;
break;
}
status =
gsl_multifit_test_delta(solver->dx, solver->x, _precision, _precision);
} while (status == GSL_CONTINUE && iter < 250);
// Save coefficients
for (unsigned i = 0; i < coefficientCount; ++i)
coefficients[i] = gsl_vector_get(solver->x, i);
lock.lock();
if (_previousCoefficients == 0) _previousCoefficients = new long double[6];
for (unsigned i = 0; i < coefficientCount; ++i)
_previousCoefficients[i] = coefficients[i];
lock.unlock();
// Clean up
gsl_multifit_fdfsolver_free(solver);
long double evaluation = Evaluate(x, y, coefficients);
return evaluation;
}
long double PolFitMethod::Evaluate(unsigned x, unsigned y,
long double* coefficients) {
// f(x,y) = a * x^2 + b * xy + c * y^2 + d x + e y + f
double xf = x, yf = y;
return coefficients[0] * xf * xf + coefficients[1] * xf * yf +
coefficients[2] * yf * yf + coefficients[3] * xf +
coefficients[4] * yf + coefficients[5];
}
|