File: falsepositives.py

package info (click to toggle)
aoflagger 3.4.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 8,960 kB
  • sloc: cpp: 83,076; python: 10,187; sh: 260; makefile: 178
file content (42 lines) | stat: -rw-r--r-- 1,056 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import aoflagger
import numpy
import sys

nch = 256
ntimes = 1000
count = 50  # number of trials in the false-positives test

flagger = aoflagger.AOFlagger()
path = flagger.find_strategy_file(aoflagger.TelescopeId.Generic)
strategy = flagger.load_strategy_file(path)
data = flagger.make_image_set(ntimes, nch, 8)

ratiosum = 0.0
ratiosumsq = 0.0
for repeat in range(count):
    for imgindex in range(8):
        # Initialize data with random numbers
        values = numpy.random.normal(0, 1, [nch, ntimes])
        data.set_image_buffer(imgindex, values)

    flags = strategy.run(data)
    flagvalues = flags.get_buffer()
    ratio = float(sum(sum(flagvalues))) / (nch * ntimes)
    ratiosum += ratio
    ratiosumsq += ratio * ratio
    sys.stdout.write(".")
    sys.stdout.flush()

print("")

print(
    "Percentage flags (false-positive rate) on Gaussian data: "
    + str(ratiosum * 100.0 / count)
    + "% +/- "
    + str(
        numpy.sqrt(
            (ratiosumsq / count - ratiosum * ratiosum / (count * count))
        )
        * 100.0
    )
)