1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
|
#include "uvimager.h"
#include "../structures/image2d.h"
#include "../structures/mask2d.h"
#include "../structures/msmetadata.h"
#include "../structures/spatialmatrixmetadata.h"
#include "../structures/timefrequencydata.h"
#include "../util/integerdomain.h"
#include "../util/stopwatch.h"
#include "../util/ffttools.h"
#include <casacore/ms/MeasurementSets/MeasurementSet.h>
#include <casacore/tables/Tables/ArrayColumn.h>
#include <casacore/tables/Tables/ScalarColumn.h>
UVImager::UVImager(unsigned long xRes, unsigned long yRes, ImageKind imageKind)
: _xRes(xRes),
_yRes(yRes),
_xResFT(xRes),
_yResFT(yRes),
_uvReal(),
_uvImaginary(),
_uvWeights(),
_uvFTReal(),
_uvFTImaginary(),
_antennas(nullptr),
_fields(nullptr),
_imageKind(imageKind),
_invertFlagging(false),
_directFT(false),
_ignoreBoundWarnings(false) {
_uvScaling = 0.0001L; // testing
Empty();
}
UVImager::~UVImager() { Clear(); }
void UVImager::Clear() {
if (_antennas != nullptr) {
delete[] _antennas;
_antennas = nullptr;
}
if (_fields != nullptr) {
delete[] _fields;
_fields = nullptr;
}
}
void UVImager::Empty() {
Clear();
_uvReal = Image2D::MakeZeroImage(_xRes, _yRes);
_uvImaginary = Image2D::MakeZeroImage(_xRes, _yRes);
_uvWeights = Image2D::MakeZeroImage(_xRes, _yRes);
_uvFTReal = Image2D::MakeZeroImage(_xRes, _yRes);
_uvFTImaginary = Image2D::MakeZeroImage(_xRes, _yRes);
}
void UVImager::Image(MSMetaData& msMetaData, unsigned band) {
const unsigned frequencyCount = msMetaData.FrequencyCount(band);
const IntegerDomain frequencies(0, frequencyCount);
_msMetaData = &msMetaData;
_band = _msMetaData->GetBandInfo(band);
Image(frequencies);
}
void UVImager::Image(class MSMetaData& msMetaData, unsigned band,
const IntegerDomain& frequencies) {
_msMetaData = &msMetaData;
_band = _msMetaData->GetBandInfo(band);
Image(frequencies);
}
void UVImager::Image(const IntegerDomain& frequencies) {
Empty();
_antennaCount = _msMetaData->AntennaCount();
_antennas = new AntennaInfo[_antennaCount];
for (unsigned i = 0; i < _antennaCount; ++i)
_antennas[i] = _msMetaData->GetAntennaInfo(i);
_fieldCount = _msMetaData->FieldCount();
_fields = new FieldInfo[_fieldCount];
for (unsigned i = 0; i < _fieldCount; ++i)
_fields[i] = _msMetaData->GetFieldInfo(i);
const unsigned parts = (frequencies.ValueCount() - 1) / 48 + 1;
for (unsigned i = 0; i < parts; ++i) {
std::cout << "Imaging " << i << "/" << parts << ":"
<< frequencies.Split(parts, i).ValueCount() << " frequencies..."
<< std::endl;
Image(frequencies.Split(parts, i), IntegerDomain(0, _antennaCount),
IntegerDomain(0, _antennaCount));
}
}
/**
* Add several frequency channels to the uv plane for several combinations
* of antenna pairs.
*/
void UVImager::Image(const IntegerDomain& frequencies,
const IntegerDomain& antenna1Domain,
const IntegerDomain& antenna2Domain) {
_scanCount = _msMetaData->TimestepCount();
std::cout << "Requesting " << frequencies.ValueCount() << " x "
<< antenna1Domain.ValueCount() << " x "
<< antenna2Domain.ValueCount() << " x " << _scanCount << " x "
<< sizeof(SingleFrequencySingleBaselineData) << " = "
<< (frequencies.ValueCount() * antenna1Domain.ValueCount() *
antenna2Domain.ValueCount() * _scanCount *
sizeof(SingleFrequencySingleBaselineData) / (1024 * 1024))
<< "MB of memory..." << std::endl;
SingleFrequencySingleBaselineData**** data =
new SingleFrequencySingleBaselineData***[frequencies.ValueCount()];
for (unsigned f = 0; f < frequencies.ValueCount(); ++f) {
data[f] =
new SingleFrequencySingleBaselineData**[antenna1Domain.ValueCount()];
for (unsigned a1 = 0; a1 < antenna1Domain.ValueCount(); ++a1) {
data[f][a1] =
new SingleFrequencySingleBaselineData*[antenna2Domain.ValueCount()];
for (unsigned a2 = 0; a2 < antenna2Domain.ValueCount(); ++a2) {
data[f][a1][a2] = new SingleFrequencySingleBaselineData[_scanCount];
for (unsigned scan = 0; scan < _scanCount; ++scan) {
data[f][a1][a2][scan].flag = true;
data[f][a1][a2][scan].available = false;
}
}
}
}
std::cout << "Reading all data for " << frequencies.ValueCount()
<< " frequencies..." << std::flush;
Stopwatch stopwatch(true);
const casacore::MeasurementSet ms(_msMetaData->Path());
const casacore::ScalarColumn<int> antenna1Col(
ms,
casacore::MeasurementSet::columnName(casacore::MeasurementSet::ANTENNA1));
const casacore::ScalarColumn<int> antenna2Col(
ms,
casacore::MeasurementSet::columnName(casacore::MeasurementSet::ANTENNA2));
const casacore::ScalarColumn<int> fieldIdCol(
ms,
casacore::MeasurementSet::columnName(casacore::MeasurementSet::FIELD_ID));
const casacore::ScalarColumn<int> dataDescIdCol(
ms, casacore::MeasurementSet::columnName(
casacore::MeasurementSet::DATA_DESC_ID));
const casacore::ScalarColumn<double> timeCol(
ms, casacore::MeasurementSet::columnName(casacore::MeasurementSet::TIME));
const casacore::ScalarColumn<double> scanNumberCol(
ms, casacore::MeasurementSet::columnName(
casacore::MeasurementSet::SCAN_NUMBER));
const casacore::ArrayColumn<casacore::Complex> correctedDataCol(
ms, casacore::MeasurementSet::columnName(
casacore::MeasurementSet::CORRECTED_DATA));
const casacore::ArrayColumn<bool> flagCol(
ms, casacore::MeasurementSet::columnName(casacore::MeasurementSet::FLAG));
const size_t rows = ms.nrow();
for (unsigned row = 0; row != rows; ++row) {
const unsigned a1 = antenna1Col(row);
const unsigned a2 = antenna2Col(row);
if (antenna1Domain.IsIn(a1) && antenna2Domain.IsIn(a2)) {
const unsigned scan = scanNumberCol(row);
const unsigned index1 = antenna1Domain.Index(a1);
const unsigned index2 = antenna1Domain.Index(a2);
const int field = fieldIdCol(row);
const double time = timeCol(row);
casacore::Array<casacore::Complex> dataArr = correctedDataCol(row);
casacore::Array<bool> flagArr = flagCol(row);
casacore::Array<casacore::Complex>::const_iterator cdI = dataArr.begin();
casacore::Array<bool>::const_iterator fI = flagArr.begin();
for (int f = 0; f < frequencies.GetValue(0); ++f) {
++fI;
++fI;
++fI;
++fI;
++cdI;
++cdI;
++cdI;
++cdI;
}
for (unsigned f = 0; f < frequencies.ValueCount(); ++f) {
SingleFrequencySingleBaselineData& curData =
data[f][index1][index2][scan];
const casacore::Complex xxData = *cdI;
++cdI;
++cdI;
++cdI;
const casacore::Complex yyData = *cdI;
++cdI;
curData.data = xxData + yyData;
bool flagging = *fI;
++fI;
++fI;
++fI;
flagging = flagging || *fI;
++fI;
curData.flag = flagging;
curData.field = field;
curData.time = time;
curData.available = true;
}
}
}
stopwatch.Pause();
std::cout << "DONE in " << stopwatch.ToString() << " ("
<< (stopwatch.Seconds() /
(antenna1Domain.ValueCount() * antenna1Domain.ValueCount()))
<< "s/antenna)" << std::endl;
std::cout << "Imaging..." << std::flush;
stopwatch.Reset();
stopwatch.Start();
for (unsigned f = 0; f < frequencies.ValueCount(); ++f) {
for (unsigned a1 = 0; a1 < antenna1Domain.ValueCount(); ++a1) {
for (unsigned a2 = 0; a2 < antenna2Domain.ValueCount(); ++a2) {
Image(frequencies.GetValue(f), _antennas[antenna1Domain.GetValue(a1)],
_antennas[antenna2Domain.GetValue(a2)], data[f][a1][a2]);
}
}
}
stopwatch.Pause();
std::cout << "DONE in " << stopwatch.ToString() << " ("
<< (stopwatch.Seconds() /
(antenna1Domain.ValueCount() * antenna1Domain.ValueCount()))
<< "s/antenna)" << std::endl;
// free data
for (unsigned f = 0; f < frequencies.ValueCount(); ++f) {
for (unsigned a1 = 0; a1 < antenna1Domain.ValueCount(); ++a1) {
for (unsigned a2 = 0; a2 < antenna2Domain.ValueCount(); ++a2) {
delete[] data[f][a1][a2];
}
delete[] data[f][a1];
}
delete[] data[f];
}
delete[] data;
}
void UVImager::Image(unsigned frequencyIndex, AntennaInfo& antenna1,
AntennaInfo& antenna2,
SingleFrequencySingleBaselineData* data) {
const num_t frequency = _band.channels[frequencyIndex].frequencyHz;
const num_t speedOfLight = 299792458.0L;
AntennaCache cache;
cache.wavelength = speedOfLight / frequency;
// dx, dy, dz is the baseline
cache.dx = antenna1.position.x - antenna2.position.x;
cache.dy = antenna1.position.y - antenna2.position.y;
cache.dz = antenna1.position.z - antenna2.position.z;
for (unsigned i = 0; i < _scanCount; ++i) {
if (data[i].available) {
switch (_imageKind) {
case Homogeneous:
if (!data[i].flag) {
num_t u, v;
GetUVPosition(u, v, data[i], cache);
SetUVValue(u, v, data[i].data.real(), data[i].data.imag(), 1.0);
SetUVValue(-u, -v, data[i].data.real(), -data[i].data.imag(), 1.0);
// calcTimer.Pause();
}
break;
case Flagging:
if ((data[i].flag && !_invertFlagging) ||
(!data[i].flag && _invertFlagging)) {
num_t u, v;
GetUVPosition(u, v, data[i], cache);
SetUVValue(u, v, 1, 0, 1.0);
SetUVValue(-u, -v, 1, 0, 1.0);
}
break;
}
}
}
}
void UVImager::Image(const class TimeFrequencyData& data,
class SpatialMatrixMetaData* metaData) {
if (!_uvReal.Empty()) Empty();
Image2DCPtr real = data.GetRealPart(), imaginary = data.GetImaginaryPart();
const Mask2DCPtr flags = data.GetSingleMask();
for (unsigned a2 = 0; a2 < data.ImageHeight(); ++a2) {
for (unsigned a1 = a2 + 1; a1 < data.ImageWidth(); ++a1) {
num_t vr = real->Value(a1, a2), vi = imaginary->Value(a1, a2);
if (std::isfinite(vr) && std::isfinite(vi)) {
const UVW uvw = metaData->UVW(a1, a2);
SetUVValue(uvw.u, uvw.v, vr, vi, 1.0);
SetUVValue(-uvw.u, -uvw.v, vr, -vi, 1.0);
}
}
}
}
void UVImager::Image(const TimeFrequencyData& data,
TimeFrequencyMetaDataCPtr metaData,
unsigned frequencyIndex) {
if (!_uvReal.Empty()) Empty();
Image2DCPtr real = data.GetRealPart(), imaginary = data.GetImaginaryPart();
const Mask2DCPtr flags = data.GetSingleMask();
for (unsigned i = 0; i < data.ImageWidth(); ++i) {
switch (_imageKind) {
case Homogeneous:
if (flags->Value(i, frequencyIndex) == 0.0L) {
num_t vr = real->Value(i, frequencyIndex),
vi = imaginary->Value(i, frequencyIndex);
if (std::isfinite(vr) && std::isfinite(vi)) {
num_t u, v;
GetUVPosition(u, v, i, frequencyIndex, metaData);
SetUVValue(u, v, vr, vi, 1.0);
SetUVValue(-u, -v, vr, -vi, 1.0);
}
}
break;
case Flagging:
if ((flags->Value(i, frequencyIndex) != 0.0L && !_invertFlagging) ||
(flags->Value(i, frequencyIndex) == 0.0L && _invertFlagging)) {
num_t u, v;
GetUVPosition(u, v, i, frequencyIndex, metaData);
SetUVValue(u, v, 1, 0, 1.0);
SetUVValue(-u, -v, 1, 0, 1.0);
}
break;
}
}
}
void UVImager::ApplyWeightsToUV() {
const double normFactor =
_uvWeights.Sum() / ((num_t)_uvReal.Height() * _uvReal.Width());
for (size_t y = 0; y < _uvReal.Height(); ++y) {
for (size_t x = 0; x < _uvReal.Width(); ++x) {
const num_t weight = _uvWeights.Value(x, y);
if (weight != 0.0) {
_uvReal.SetValue(x, y, _uvReal.Value(x, y) * normFactor / weight);
_uvImaginary.SetValue(x, y,
_uvImaginary.Value(x, y) * normFactor / weight);
_uvWeights.SetValue(x, y, 1.0);
}
}
}
_uvFTReal = Image2D();
_uvFTImaginary = Image2D();
}
void UVImager::SetUVValue(num_t u, num_t v, num_t r, num_t i, num_t weight) {
// Nearest neighbour interpolation
const long uPos =
(long)std::floor(u * _uvScaling * _xRes + 0.5) + (_xRes / 2);
const long vPos =
(long)std::floor(v * _uvScaling * _yRes + 0.5) + (_yRes / 2);
if (uPos >= 0 && uPos < (long)_xRes && vPos >= 0 && vPos < (long)_yRes) {
_uvReal.AddValue(uPos, vPos, r);
_uvImaginary.AddValue(uPos, vPos, i);
_uvWeights.AddValue(uPos, vPos, weight);
} else {
if (!_ignoreBoundWarnings) {
std::cout << "Warning! Baseline outside uv window (" << uPos << ","
<< vPos << ")."
<< "(subsequent out of bounds warnings will not be noted)"
<< std::endl;
_ignoreBoundWarnings = true;
}
}
// Linear interpolation
/*long uPos = (long) floor(u*_uvScaling*_xRes+0.5L) + _xRes/2;
long vPos = (long) floor(v*_uvScaling*_yRes+0.5L) + _yRes/2;
if(uPos>=0 && uPos<(long) _xRes && vPos>=0 && vPos<(long) _yRes) {
long double dx = (long double) uPos - (_xRes/2) -
(u*_uvScaling*_xRes+0.5L); long double dy = (long double) vPos - (_yRes/2) -
(v*_uvScaling*_yRes+0.5L); long double distance = sqrtn(dx*dx + dy*dy);
if(distance > 1.0) distance = 1.0;
weight *= distance;
_uvReal.AddValue(uPos, vPos, r*weight);
_uvImaginary.AddValue(uPos, vPos, i*weight);
_uvWeights.AddValue(uPos, vPos, weight);
} else {
std::cout << "Warning! Baseline outside uv window (" << uPos << "," <<
vPos << ")." << std::endl;
}*/
}
void UVImager::SetUVFTValue(num_t u, num_t v, num_t r, num_t i, num_t weight) {
for (size_t iy = 0; iy < _yResFT; ++iy) {
for (size_t ix = 0; ix < _xResFT; ++ix) {
const num_t x =
((num_t)ix - (_xResFT / 2)) / _uvScaling * _uvFTReal.Width();
const num_t y =
((num_t)iy - (_yResFT / 2)) / _uvScaling * _uvFTReal.Height();
// Calculate F(x,y) += f(u, v) e ^ {i 2 pi (x u + y v) }
const num_t fftRotation = (u * x + v * y) * -2.0L * M_PIn;
num_t fftCos = std::cos(fftRotation), fftSin = std::sin(fftRotation);
_uvFTReal.AddValue(ix, iy, (fftCos * r - fftSin * i) * weight);
_uvFTImaginary.AddValue(ix, iy, (fftSin * r + fftCos * i) * weight);
}
}
}
void UVImager::PerformFFT() {
if (!_uvFTReal.Empty()) {
_uvFTReal = Image2D::MakeZeroImage(_xRes, _yRes);
_uvFTImaginary = Image2D::MakeZeroImage(_xRes, _yRes);
}
FFTTools::CreateFFTImage(_uvReal, _uvImaginary, _uvFTReal, _uvFTImaginary);
}
void UVImager::GetUVPosition(num_t& u, num_t& v, size_t timeIndex,
size_t frequencyIndex,
TimeFrequencyMetaDataCPtr metaData) {
const num_t frequency = metaData->Band().channels[frequencyIndex].frequencyHz;
u = metaData->UVW()[timeIndex].u * frequency / SpeedOfLight();
v = metaData->UVW()[timeIndex].v * frequency / SpeedOfLight();
}
void UVImager::GetUVPosition(num_t& u, num_t& v,
const SingleFrequencySingleBaselineData& data,
const AntennaCache& cache) {
const unsigned field = data.field;
const num_t pointingLattitude = _fields[field].delayDirectionRA;
const num_t pointingLongitude = _fields[field].delayDirectionDec;
// calcTimer.Start();
const num_t earthLattitudeAngle =
Date::JDToHourOfDay(Date::AipsMJDToJD(data.time)) * M_PIn / 12.0L;
// long double pointingLongitude = _fields[field].delayDirectionDec; //not
// used
// Rotate baseline plane towards source, first rotate around z axis, then
// around x axis
const num_t raRotation =
earthLattitudeAngle - pointingLattitude + M_PIn * 0.5L;
num_t tmpCos = std::cos(raRotation);
num_t tmpSin = std::sin(raRotation);
const num_t dxProjected = tmpCos * cache.dx - tmpSin * cache.dy;
const num_t tmpdy = tmpSin * cache.dx + tmpCos * cache.dy;
tmpCos = std::cos(-pointingLongitude);
tmpSin = std::sin(-pointingLongitude);
const num_t dyProjected = tmpCos * tmpdy - tmpSin * cache.dz;
// long double dzProjected = tmpSin*tmpdy + tmpCos*dzAnt; // we don't need it
// Now, the newly projected positive z axis of the baseline points to the
// field
num_t baselineLength =
std::sqrt(dxProjected * dxProjected + dyProjected * dyProjected);
num_t baselineAngle;
if (baselineLength == 0.0L) {
baselineAngle = 0.0L;
} else {
baselineLength /= cache.wavelength;
if (dxProjected > 0.0L)
baselineAngle = std::atan(dyProjected / dxProjected);
else
baselineAngle = M_PIn - std::atan(dyProjected / -dxProjected);
}
u = std::cos(baselineAngle) * baselineLength;
v = -std::sin(baselineAngle) * baselineLength;
}
num_t UVImager::GetFringeStopFrequency(size_t timeIndex,
const Baseline& /*baseline*/,
num_t /*delayDirectionRA*/,
num_t delayDirectionDec,
num_t /*frequency*/,
TimeFrequencyMetaDataCPtr metaData) {
// earthspeed = rad / sec
const num_t earthSpeed = 2.0L * M_PIn / (24.0L * 60.0L * 60.0L);
// num_t earthLattitudeAngle =
// Date::JDToHourOfDay(Date::AipsMJDToJD(metaData->ObservationTimes()[timeIndex]))*M_PIn/12.0L;
// num_t raSin = sinn(-delayDirectionRA - earthLattitudeAngle);
// num_t raCos = cosn(-delayDirectionRA - earthLattitudeAngle);
// num_t dx = baseline.antenna2.x - baseline.antenna1.x;
// num_t dy = baseline.antenna2.y - baseline.antenna1.y;
// num_t wavelength = 299792458.0L / frequency;
return -earthSpeed * metaData->UVW()[timeIndex].u *
std::cos(delayDirectionDec);
}
num_t UVImager::GetFringeCount(size_t timeIndexStart, size_t timeIndexEnd,
unsigned channelIndex,
const TimeFrequencyMetaDataCPtr metaData) {
// For now, I've made this return the negative fringe count, because it does
// not match with the fringe stop frequency returned above otherwise; probably
// because of a mismatch in the signs of u,v,w somewhere...
return -(metaData->UVW()[timeIndexEnd].w -
metaData->UVW()[timeIndexStart].w) *
metaData->Band().channels[channelIndex].frequencyHz / 299792458.0L;
}
void UVImager::InverseImage(MSMetaData& prototype, unsigned band,
const Image2D& /*uvReal*/,
const Image2D& /*uvImaginary*/,
unsigned antenna1Index, unsigned antenna2Index) {
_timeFreq = Image2D::MakeZeroImage(prototype.TimestepCount(),
prototype.FrequencyCount(band));
AntennaInfo antenna1, antenna2;
antenna1 = prototype.GetAntennaInfo(antenna1Index);
antenna2 = prototype.GetAntennaInfo(antenna2Index);
}
|