1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
|
#include "functions.h"
#include "scriptdata.h"
#include "../algorithms/applybandpass.h"
#include "../algorithms/highpassfilter.h"
#include "../algorithms/medianwindow.h"
#include "../algorithms/resampling.h"
#include "../algorithms/siroperator.h"
#include "../algorithms/thresholdconfig.h"
#include "../structures/image2d.h"
#include "../structures/samplerow.h"
#include "../structures/timefrequencydata.h"
#ifdef HAVE_GTKMM
#include "../rfigui/maskedheatmap.h"
#endif
#include "../algorithms/polarizationstatistics.h"
#include "../algorithms/thresholdtools.h"
#include "../quality/statisticscollection.h"
#include <complex>
#include <iostream>
using algorithms::ApplyBandpass;
using algorithms::HighPassFilter;
using algorithms::MedianWindow;
using algorithms::PolarizationStatistics;
using algorithms::SIROperator;
using algorithms::ThresholdConfig;
using algorithms::ThresholdTools;
namespace aoflagger_lua {
void apply_bandpass(Data& data, const std::string& filename,
ScriptData& scriptData) {
std::unique_ptr<BandpassFile>& bpFile = scriptData.GetBandpassFile();
{
const std::lock_guard<std::mutex> lock(scriptData.BandpassMutex());
if (bpFile == nullptr) {
bpFile.reset(new BandpassFile(filename));
}
}
ApplyBandpass::Apply(data.TFData(), *bpFile, data.MetaData()->Antenna1().name,
data.MetaData()->Antenna2().name);
}
void collect_statistics(const Data& dataAfter, const Data& dataBefore,
ScriptData& scriptData) {
std::unique_ptr<StatisticsCollection>& statistics(scriptData.GetStatistics());
const size_t polarizationCount = dataAfter.TFData().PolarizationCount();
if (dataBefore.TFData().PolarizationCount() != polarizationCount)
throw std::runtime_error(
"Before and after have different nr of polarizations in call to "
"collect_statistics()");
if (dataAfter.TFData().ComplexRepresentation() !=
TimeFrequencyData::ComplexParts)
throw std::runtime_error(
"collect_statistics(): statistics can only be collected for complex "
"data, first parameter is not complex");
if (dataBefore.TFData().ComplexRepresentation() !=
TimeFrequencyData::ComplexParts)
throw std::runtime_error(
"collect_statistics(): statistics can only be collected for complex "
"data, second parameter is not complex");
if (!dataBefore.MetaData())
throw std::runtime_error("collect_statistics(): missing metadata");
if (!dataBefore.MetaData()->HasBand())
throw std::runtime_error("collect_statistics(): missing band metadata");
if (!statistics)
statistics.reset(new StatisticsCollection(polarizationCount));
const size_t bandIndex = dataBefore.MetaData()->Band().windowIndex;
if (!statistics->HasBand(bandIndex)) {
std::vector<double> channels(dataBefore.MetaData()->Band().channels.size());
for (size_t i = 0; i != channels.size(); ++i)
channels[i] = dataBefore.MetaData()->Band().channels[i].frequencyHz;
statistics->InitializeBand(bandIndex, channels.data(), channels.size());
}
const bool useEmpty = (dataBefore.TFData().MaskCount() == 0 ||
dataAfter.TFData().MaskCount() == 0);
Mask2DPtr emptyMask;
if (useEmpty) {
// TODO we can avoid this allocation when StatisticsCollection::AddImage()
// would support a call without a 2nd mask
emptyMask = Mask2D::CreateSetMaskPtr<false>(
dataBefore.TFData().ImageWidth(), dataBefore.TFData().ImageHeight());
}
if (!dataAfter.MetaData()->HasAntenna1() ||
!dataAfter.MetaData()->HasAntenna2() ||
!dataAfter.MetaData()->HasObservationTimes())
throw std::runtime_error(
"collect_statistics(): can't collect statistics for sets without "
"metadata (antenna info, time info)");
size_t antenna1 = dataAfter.MetaData()->Antenna1().id,
antenna2 = dataAfter.MetaData()->Antenna2().id;
const std::vector<double>& times = dataAfter.MetaData()->ObservationTimes();
for (size_t polarization = 0; polarization != polarizationCount;
++polarization) {
TimeFrequencyData polDataBefore =
dataBefore.TFData().MakeFromPolarizationIndex(
polarization),
polDataAfter =
dataAfter.TFData().MakeFromPolarizationIndex(
polarization);
Mask2DCPtr beforeMask, afterMask;
if (dataBefore.TFData().MaskCount() == 0)
beforeMask = emptyMask;
else
beforeMask = polDataBefore.GetSingleMask();
if (dataAfter.TFData().MaskCount() == 0)
afterMask = emptyMask;
else
afterMask = polDataAfter.GetSingleMask();
statistics->AddImage(antenna1, antenna2, ×[0], bandIndex, polarization,
polDataBefore.GetRealPart(),
polDataBefore.GetImaginaryPart(), afterMask,
beforeMask);
}
}
void copy_to_channel(Data& destination, const Data& source, size_t channel) {
if (channel >= destination.TFData().ImageHeight())
throw std::runtime_error(
"copy_to_channel(): channel parameter is outside the band");
destination.TFData().CopyFrom(source.TFData(), 0, channel);
}
void copy_to_frequency(Data& destination, const Data& source,
double frequencyHz) {
if (destination.MetaData() == nullptr || !destination.MetaData()->HasBand())
throw std::runtime_error(
"copy_to_frequency(): no frequency meta data available in data object");
const BandInfo& band = destination.MetaData()->Band();
ChannelInfo channel;
channel.frequencyHz = frequencyHz;
std::vector<ChannelInfo>::const_iterator iter;
if (band.channels.begin() > band.channels.end()) {
iter = std::lower_bound(
band.channels.begin(), band.channels.end(), channel,
[](const ChannelInfo& lhs, const ChannelInfo& rhs) -> bool {
return lhs.frequencyHz > rhs.frequencyHz;
});
} else {
iter = std::lower_bound(
band.channels.begin(), band.channels.end(), channel,
[](const ChannelInfo& lhs, const ChannelInfo& rhs) -> bool {
return lhs.frequencyHz < rhs.frequencyHz;
});
}
const size_t channelIndex = iter - band.channels.begin();
copy_to_channel(destination, source, channelIndex);
}
void upsample_image(const Data& input, Data& destination,
size_t horizontalFactor, size_t verticalFactor) {
algorithms::upsample_image(input.TFData(), destination.TFData(),
horizontalFactor, verticalFactor);
}
void upsample_mask(const Data& input, Data& destination,
size_t horizontalFactor, size_t verticalFactor) {
algorithms::upsample_mask(input.TFData(), destination.TFData(),
horizontalFactor, verticalFactor);
}
void low_pass_filter(Data& data, size_t kernelWidth, size_t kernelHeight,
double horizontalSigmaSquared,
double verticalSigmaSquared) {
if (data.TFData().PolarizationCount() != 1)
throw std::runtime_error("High-pass filtering needs single polarization");
HighPassFilter filter;
filter.SetHWindowSize(kernelWidth);
filter.SetVWindowSize(kernelHeight);
filter.SetHKernelSigmaSq(horizontalSigmaSquared);
filter.SetVKernelSigmaSq(verticalSigmaSquared);
const Mask2DCPtr mask = data.TFData().GetSingleMask();
const size_t imageCount = data.TFData().ImageCount();
for (size_t i = 0; i < imageCount; ++i)
data.TFData().SetImage(
i, filter.ApplyLowPass(data.TFData().GetImage(i), mask));
}
void high_pass_filter(Data& data, size_t kernelWidth, size_t kernelHeight,
double horizontalSigmaSquared,
double verticalSigmaSquared) {
if (data.TFData().PolarizationCount() != 1)
throw std::runtime_error("High-pass filtering needs single polarization");
HighPassFilter filter;
filter.SetHWindowSize(kernelWidth);
filter.SetVWindowSize(kernelHeight);
filter.SetHKernelSigmaSq(horizontalSigmaSquared);
filter.SetVKernelSigmaSq(verticalSigmaSquared);
const Mask2DCPtr mask = data.TFData().GetSingleMask();
const size_t imageCount = data.TFData().ImageCount();
for (size_t i = 0; i < imageCount; ++i)
data.TFData().SetImage(
i, filter.ApplyHighPass(data.TFData().GetImage(i), mask));
}
Data norm(const Data& data) {
return Data(ElementWiseNorm(data.TFData()), data.MetaData(),
data.GetContext());
}
void save_heat_map(const char* filename, const Data& data) {
#ifdef HAVE_GTKMM
const TimeFrequencyData tfData = data.TFData();
MaskedHeatMap plot;
plot.SetImage(
std::unique_ptr<PlotImage>(new PlotImage(tfData.GetSingleImage())));
plot.SetAlternativeMask(tfData.GetSingleMask());
plot.SaveByExtension(filename, 800, 500);
#else
throw std::runtime_error("Compiled without GTKMM -- can not save heat map");
#endif
}
void print_polarization_statistics(const Data& data) {
PolarizationStatistics statistics;
statistics.Add(data.TFData());
statistics.Report();
}
void scale_invariant_rank_operator(Data& data, double level_horizontal,
double level_vertical) {
if (!data.TFData().IsEmpty()) {
const Mask2DPtr mask(new Mask2D(*data.TFData().GetSingleMask()));
SIROperator::OperateHorizontally(*mask, level_horizontal);
SIROperator::OperateVertically(*mask, level_vertical);
data.TFData().SetGlobalMask(mask);
}
}
void scale_invariant_rank_operator_masked(Data& data, const Data& missing,
double level_horizontal,
double level_vertical,
double penalty) {
if (!data.TFData().IsEmpty()) {
const Mask2DPtr mask(new Mask2D(*data.TFData().GetSingleMask()));
const Mask2DCPtr missingMask = missing.TFData().GetSingleMask();
SIROperator::OperateHorizontallyMissing(*mask, *missingMask,
level_horizontal, penalty);
SIROperator::OperateVerticallyMissing(*mask, *missingMask, level_vertical,
penalty);
data.TFData().SetGlobalMask(mask);
}
}
Data sqrt(const Data& data) {
return Data(ElementWiseSqrt(data.TFData()), data.MetaData(),
data.GetContext());
}
Data downsample(const Data& data, size_t horizontalFactor,
size_t verticalFactor) {
TimeFrequencyData timeFrequencyData = data.TFData();
const size_t imageCount = timeFrequencyData.ImageCount();
const size_t maskCount = timeFrequencyData.MaskCount();
if (horizontalFactor > 1) {
for (size_t i = 0; i < imageCount; ++i) {
const Image2DPtr newImage(new Image2D(
timeFrequencyData.GetImage(i)->ShrinkHorizontally(horizontalFactor)));
timeFrequencyData.SetImage(i, newImage);
}
for (size_t i = 0; i < maskCount; ++i) {
const Mask2DPtr newMask(new Mask2D(
timeFrequencyData.GetMask(i)->ShrinkHorizontally(horizontalFactor)));
timeFrequencyData.SetMask(i, newMask);
}
}
if (verticalFactor > 1) {
for (size_t i = 0; i < imageCount; ++i) {
const Image2DPtr newImage(new Image2D(
timeFrequencyData.GetImage(i)->ShrinkVertically(verticalFactor)));
timeFrequencyData.SetImage(i, newImage);
}
for (size_t i = 0; i < maskCount; ++i) {
const Mask2DPtr newMask(new Mask2D(
timeFrequencyData.GetMask(i)->ShrinkVertically(verticalFactor)));
timeFrequencyData.SetMask(i, newMask);
}
}
return Data(timeFrequencyData, data.MetaData(), data.GetContext());
}
Data downsample_masked(const Data& data, size_t horizontalFactor,
size_t verticalFactor) {
TimeFrequencyData timeFrequencyData = data.TFData();
TimeFrequencyMetaDataPtr metaData;
if (data.MetaData()) {
metaData.reset(new TimeFrequencyMetaData(*data.MetaData()));
algorithms::downsample_masked(timeFrequencyData, metaData.get(),
horizontalFactor, verticalFactor);
} else {
algorithms::downsample_masked(timeFrequencyData, nullptr, horizontalFactor,
verticalFactor);
}
return Data(timeFrequencyData, metaData, data.GetContext());
}
static void sumthreshold_generic(Data& data, const Data* missing,
double hThresholdFactor,
double vThresholdFactor, bool horizontal,
bool vertical) {
ThresholdConfig thresholdConfig;
thresholdConfig.InitializeLengthsDefault();
thresholdConfig.InitializeThresholdsFromFirstThreshold(
6.0L, ThresholdConfig::Rayleigh);
if (!horizontal) thresholdConfig.RemoveHorizontalOperations();
if (!vertical) thresholdConfig.RemoveVerticalOperations();
if (data.TFData().PolarizationCount() != 1)
throw std::runtime_error("Input data in sum_threshold has wrong format");
const Mask2DPtr mask(new Mask2D(*data.TFData().GetSingleMask()));
const Image2DCPtr image = data.TFData().GetSingleImage();
if (missing != nullptr) {
const Mask2DCPtr missingMask = missing->TFData().GetSingleMask();
thresholdConfig.ExecuteWithMissing(image.get(), mask.get(),
missingMask.get(), false,
hThresholdFactor, vThresholdFactor);
} else {
thresholdConfig.Execute(image.get(), mask.get(), false, hThresholdFactor,
vThresholdFactor);
}
data.TFData().SetGlobalMask(mask);
}
void sumthreshold(Data& data, double hThresholdFactor, double vThresholdFactor,
bool horizontal, bool vertical) {
sumthreshold_generic(data, nullptr, hThresholdFactor, vThresholdFactor,
horizontal, vertical);
}
void sumthreshold_masked(Data& data, const Data& missing,
double hThresholdFactor, double vThresholdFactor,
bool horizontal, bool vertical) {
sumthreshold_generic(data, &missing, hThresholdFactor, vThresholdFactor,
horizontal, vertical);
}
void threshold_channel_rms(Data& data, double threshold,
bool thresholdLowValues) {
const Image2DCPtr image(data.TFData().GetSingleImage());
SampleRow channels = SampleRow::MakeEmpty(image->Height());
Mask2DPtr mask(new Mask2D(*data.TFData().GetSingleMask()));
for (size_t y = 0; y < image->Height(); ++y) {
const SampleRow row =
SampleRow::MakeFromRowWithMissings(image.get(), mask.get(), y);
channels.SetValue(y, row.RMSWithMissings());
}
bool change;
do {
const num_t median = channels.MedianWithMissings();
const num_t stddev = channels.StdDevWithMissings(median);
change = false;
const double effectiveThreshold = threshold * stddev;
for (size_t y = 0; y < channels.Size(); ++y) {
if (!channels.ValueIsMissing(y) &&
(channels.Value(y) - median > effectiveThreshold ||
(thresholdLowValues &&
median - channels.Value(y) > effectiveThreshold))) {
mask->SetAllHorizontally<true>(y);
channels.SetValueMissing(y);
change = true;
}
}
} while (change);
data.TFData().SetGlobalMask(std::move(mask));
}
void threshold_timestep_rms(Data& data, double threshold) {
if (!data.TFData().IsEmpty()) {
const Image2DCPtr image = data.TFData().GetSingleImage();
SampleRow timesteps = SampleRow::MakeEmpty(image->Width());
Mask2DPtr mask(new Mask2D(*data.TFData().GetSingleMask()));
for (size_t x = 0; x < image->Width(); ++x) {
const SampleRow row =
SampleRow::MakeFromColumnWithMissings(image.get(), mask.get(), x);
timesteps.SetValue(x, row.RMSWithMissings());
}
bool change;
MedianWindow<num_t>::SubtractMedian(timesteps, 511);
do {
const num_t median = 0.0;
const num_t stddev = timesteps.StdDevWithMissings(0.0);
change = false;
for (size_t x = 0; x < timesteps.Size(); ++x) {
if (!timesteps.ValueIsMissing(x) &&
(timesteps.Value(x) - median > stddev * threshold ||
median - timesteps.Value(x) > stddev * threshold)) {
mask->SetAllVertically<true>(x);
timesteps.SetValueMissing(x);
change = true;
}
}
} while (change);
data.TFData().SetGlobalMask(std::move(mask));
}
}
Data trim_channels(const Data& data, size_t start_channel, size_t end_channel) {
if (start_channel > data.TFData().ImageHeight())
throw std::runtime_error("trim_channels(): Invalid start channel");
if (end_channel > data.TFData().ImageHeight())
throw std::runtime_error("trim_channels(): Invalid end channel");
if (start_channel >= end_channel)
throw std::runtime_error("trim_channels(): Invalid range (start >= end)");
TimeFrequencyData trimmedData = data.TFData();
trimmedData.Trim(0, start_channel, trimmedData.ImageWidth(), end_channel);
if (data.MetaData()) {
const TimeFrequencyMetaDataPtr metaData(
new TimeFrequencyMetaData(*data.MetaData()));
if (metaData->HasBand()) {
// Correct the band data
BandInfo band = metaData->Band();
band.channels.assign(
data.MetaData()->Band().channels.begin() + start_channel,
data.MetaData()->Band().channels.begin() + end_channel);
metaData->SetBand(band);
}
return Data(std::move(trimmedData), metaData, data.GetContext());
} else {
return Data(std::move(trimmedData), nullptr, data.GetContext());
}
}
Data trim_frequencies(const Data& data, double start_frequency,
double end_frequency) {
if (start_frequency >= end_frequency)
throw std::runtime_error(
"trim_frequencies(): Invalid range (start >= end)");
if (data.MetaData() != nullptr && data.MetaData()->HasBand()) {
const std::pair<size_t, size_t> channelRange =
data.MetaData()->Band().GetChannelRange(start_frequency, end_frequency);
return trim_channels(data, channelRange.first, channelRange.second);
} else {
throw std::runtime_error(
"trim_frequency(): No spectral band information available!");
}
}
void visualize(Data& data, const std::string& label, size_t sortingIndex,
ScriptData& scriptData) {
scriptData.AddVisualization(data.TFData(), label, sortingIndex);
}
} // namespace aoflagger_lua
|