1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
#include "memorybaselinereader.h"
#include "msselection.h"
#include "../util/logger.h"
#include "../util/progress/dummyprogresslistener.h"
#include "../util/stopwatch.h"
#include <aocommon/system.h>
#include <casacore/ms/MeasurementSets/MeasurementSet.h>
#include <casacore/tables/Tables/ArrayColumn.h>
#include <casacore/tables/Tables/ScalarColumn.h>
#include <vector>
void MemoryBaselineReader::PrepareReadWrite(ProgressListener& progress) {
if (!_isRead) {
progress.OnStartTask("Reading measurement set into memory");
readSet(progress);
_isRead = true;
}
}
void MemoryBaselineReader::PerformReadRequests(ProgressListener& progress) {
PrepareReadWrite(progress);
for (size_t i = 0; i != _readRequests.size(); ++i) {
const ReadRequest& request = _readRequests[i];
const BaselineID id(request.antenna1, request.antenna2,
request.spectralWindow, request.sequenceId);
const std::map<BaselineID, std::unique_ptr<Result>>::const_iterator
requestedBaselineIter = _baselines.find(id);
if (requestedBaselineIter == _baselines.end()) {
std::ostringstream errorStr;
errorStr << "Exception in PerformReadRequests(): requested baseline is "
"not available in measurement set "
"(antenna1="
<< request.antenna1 << ", antenna2=" << request.antenna2
<< ", "
"spw="
<< request.spectralWindow
<< ", sequenceId=" << request.sequenceId << ")";
throw std::runtime_error(errorStr.str());
} else {
_results.push_back(*requestedBaselineIter->second);
}
}
_readRequests.clear();
progress.OnFinish();
}
void MemoryBaselineReader::readSet(ProgressListener& progress) {
const Stopwatch watch(true);
initializeMeta();
const casacore::MeasurementSet table(OpenMS());
casacore::ScalarColumn<int> ant1Column(
table,
casacore::MeasurementSet::columnName(casacore::MSMainEnums::ANTENNA1)),
ant2Column(table, casacore::MeasurementSet::columnName(
casacore::MSMainEnums::ANTENNA2)),
dataDescIdColumn(table, casacore::MeasurementSet::columnName(
casacore::MSMainEnums::DATA_DESC_ID));
casacore::ArrayColumn<casacore::Complex> dataColumn(table, DataColumnName());
casacore::ArrayColumn<bool> flagColumn(
table, casacore::MeasurementSet::columnName(casacore::MSMainEnums::FLAG));
casacore::ArrayColumn<double> uvwColumn(
table, casacore::MeasurementSet::columnName(casacore::MSMainEnums::UVW));
size_t antennaCount = MetaData().AntennaCount(),
polarizationCount = Polarizations().size(),
bandCount = MetaData().BandCount(),
sequenceCount = MetaData().SequenceCount(), intStart = IntervalStart(),
intEnd = IntervalEnd();
std::vector<size_t> dataDescIdToSpw;
MetaData().GetDataDescToBandVector(dataDescIdToSpw);
std::vector<BandInfo> bandInfos(bandCount);
for (size_t b = 0; b != bandCount; ++b)
bandInfos[b] = MetaData().GetBandInfo(b);
// Initialize the look-up matrix
// to quickly access the elements (without the map-lookup)
typedef std::unique_ptr<Result> MatrixElement;
typedef std::vector<MatrixElement> MatrixRow;
typedef std::vector<MatrixRow> BaselineMatrix;
typedef std::vector<BaselineMatrix> BaselineCube;
BaselineCube baselineCube(sequenceCount * bandCount);
for (size_t s = 0; s != sequenceCount; ++s) {
for (size_t b = 0; b != bandCount; ++b) {
BaselineMatrix& matrix = baselineCube[s * bandCount + b];
matrix.resize(antennaCount);
for (size_t a1 = 0; a1 != antennaCount; ++a1) {
matrix[a1].resize(antennaCount);
for (size_t a2 = 0; a2 != antennaCount; ++a2) matrix[a1][a2] = nullptr;
}
}
}
// The actual reading of the data
Logger::Debug << "Reading the data (interval={" << intStart << "..." << intEnd
<< "})...\n";
casacore::Array<casacore::Complex> dataArray;
casacore::Array<bool> flagArray;
casacore::MeasurementSet ms(OpenMS());
MSSelection msSelection(ms, ObservationTimesPerSequence(), progress);
msSelection.Process([&](size_t rowIndex, size_t sequenceId,
size_t timeIndexInSequence) {
size_t ant1 = ant1Column(rowIndex);
size_t ant2 = ant2Column(rowIndex);
const size_t spw = dataDescIdToSpw[dataDescIdColumn(rowIndex)];
const size_t spwFieldIndex = spw + sequenceId * bandCount;
if (ant1 > ant2) std::swap(ant1, ant2);
std::unique_ptr<Result>& result = baselineCube[spwFieldIndex][ant1][ant2];
if (result == nullptr) {
const size_t timeStepCount = ObservationTimes(sequenceId).size();
const size_t nFreq = MetaData().FrequencyCount(spw);
result.reset(new Result());
for (size_t p = 0; p != polarizationCount; ++p) {
result->_realImages.emplace_back(
Image2D::CreateZeroImagePtr(timeStepCount, nFreq));
result->_imaginaryImages.emplace_back(
Image2D::CreateZeroImagePtr(timeStepCount, nFreq));
result->_flags.emplace_back(
Mask2D::CreateSetMaskPtr<true>(timeStepCount, nFreq));
}
result->_bandInfo = bandInfos[spw];
result->_uvw.resize(timeStepCount);
}
dataArray = dataColumn.get(rowIndex);
flagArray = flagColumn.get(rowIndex);
casacore::Array<double> uvwArray = uvwColumn.get(rowIndex);
casacore::Array<double>::const_contiter uvwPtr = uvwArray.cbegin();
UVW uvw;
uvw.u = *uvwPtr;
++uvwPtr;
uvw.v = *uvwPtr;
++uvwPtr;
uvw.w = *uvwPtr;
result->_uvw[timeIndexInSequence] = uvw;
for (size_t p = 0; p != polarizationCount; ++p) {
casacore::Array<casacore::Complex>::const_contiter dataPtr =
dataArray.cbegin();
casacore::Array<bool>::const_contiter flagPtr = flagArray.cbegin();
Image2D& real = *result->_realImages[p];
Image2D& imag = *result->_imaginaryImages[p];
Mask2D& mask = *result->_flags[p];
const size_t imgStride = real.Stride();
const size_t mskStride = mask.Stride();
num_t* realOutPtr = real.ValuePtr(timeIndexInSequence, 0);
num_t* imagOutPtr = imag.ValuePtr(timeIndexInSequence, 0);
bool* flagOutPtr = mask.ValuePtr(timeIndexInSequence, 0);
for (size_t i = 0; i != p; ++i) {
++dataPtr;
++flagPtr;
}
const size_t frequencyCount = bandInfos[spw].channels.size();
for (size_t ch = 0; ch != frequencyCount; ++ch) {
*realOutPtr = dataPtr->real();
*imagOutPtr = dataPtr->imag();
*flagOutPtr = *flagPtr;
realOutPtr += imgStride;
imagOutPtr += imgStride;
flagOutPtr += mskStride;
for (size_t i = 0; i != polarizationCount; ++i) {
++dataPtr;
++flagPtr;
}
}
}
});
// Move elements from matrix into the baseline map.
for (size_t s = 0; s != sequenceCount; ++s) {
for (size_t b = 0; b != bandCount; ++b) {
const size_t fbIndex = s * bandCount + b;
for (size_t a1 = 0; a1 != antennaCount; ++a1) {
for (size_t a2 = a1; a2 != antennaCount; ++a2) {
std::unique_ptr<Result>& result = baselineCube[fbIndex][a1][a2];
if (result) {
_baselines.emplace(BaselineID(a1, a2, b, s), std::move(result));
}
}
}
}
}
_areFlagsChanged = false;
Logger::Debug << "Reading took " << watch.ToString() << ".\n";
}
void MemoryBaselineReader::PerformFlagWriteRequests() {
PrepareReadWrite(dummy_progress_);
for (size_t i = 0; i != _writeRequests.size(); ++i) {
const FlagWriteRequest& request = _writeRequests[i];
const BaselineID id(request.antenna1, request.antenna2,
request.spectralWindow, request.sequenceId);
std::unique_ptr<Result>& result = _baselines[id];
if (result->_flags.size() != request.flags.size())
throw std::runtime_error("Polarizations do not match");
for (size_t p = 0; p != result->_flags.size(); ++p)
result->_flags[p].reset(new Mask2D(*request.flags[p]));
}
_areFlagsChanged = true;
_writeRequests.clear();
}
void MemoryBaselineReader::WriteToMs() {
casacore::MeasurementSet ms(OpenMS(true));
casacore::ScalarColumn<int> ant1Column(
ms,
casacore::MeasurementSet::columnName(casacore::MSMainEnums::ANTENNA1)),
ant2Column(ms, casacore::MeasurementSet::columnName(
casacore::MSMainEnums::ANTENNA2)),
dataDescIdColumn(ms, casacore::MeasurementSet::columnName(
casacore::MSMainEnums::DATA_DESC_ID));
casacore::ArrayColumn<bool> flagColumn(
ms, casacore::MeasurementSet::columnName(casacore::MSMainEnums::FLAG));
std::vector<size_t> dataIdToSpw;
MetaData().GetDataDescToBandVector(dataIdToSpw);
const size_t polarizationCount = Polarizations().size();
Logger::Debug << "Flags have changed, writing them back to the set...\n";
DummyProgressListener dummy;
MSSelection msSelection(ms, ObservationTimesPerSequence(), dummy);
msSelection.Process([&](size_t rowIndex, size_t sequenceId,
size_t timeIndexInSequence) {
size_t ant1 = ant1Column(rowIndex);
size_t ant2 = ant2Column(rowIndex);
const size_t spw = dataIdToSpw[dataDescIdColumn(rowIndex)];
if (ant1 > ant2) std::swap(ant1, ant2);
const size_t frequencyCount = MetaData().FrequencyCount(spw);
casacore::IPosition flagShape = casacore::IPosition(2);
flagShape[0] = polarizationCount;
flagShape[1] = frequencyCount;
casacore::Array<bool> flagArray(flagShape);
const BaselineID baselineID(ant1, ant2, spw, sequenceId);
const std::map<BaselineID, std::unique_ptr<Result>>::iterator resultIter =
_baselines.find(baselineID);
std::unique_ptr<Result>& result = resultIter->second;
casacore::Array<bool>::contiter flagPtr = flagArray.cbegin();
std::vector<Mask2D*> masks(polarizationCount);
for (size_t p = 0; p != polarizationCount; ++p)
masks[p] = result->_flags[p].get();
for (size_t ch = 0; ch != frequencyCount; ++ch) {
for (size_t p = 0; p != polarizationCount; ++p) {
*flagPtr = masks[p]->Value(timeIndexInSequence, ch);
++flagPtr;
}
}
flagColumn.put(rowIndex, flagArray);
});
_areFlagsChanged = false;
}
bool MemoryBaselineReader::IsEnoughMemoryAvailable(uint64_t size) {
const uint64_t totalMem = aocommon::system::TotalMemory();
if (size * 2 >= totalMem) {
Logger::Warn
<< (size / 1000000) << " MB required, but " << (totalMem / 1000000)
<< " MB available.\n"
"Because this is not at least twice as much, the reordering "
"mode (slower!) will be used.\n";
return false;
} else {
Logger::Debug << (size / 1000000) << " MB required, "
<< (totalMem / 1000000)
<< " MB available: will use memory read mode.\n";
return true;
}
}
|