File: memorybaselinereader.cpp

package info (click to toggle)
aoflagger 3.4.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 8,960 kB
  • sloc: cpp: 83,076; python: 10,187; sh: 260; makefile: 178
file content (301 lines) | stat: -rw-r--r-- 11,012 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
#include "memorybaselinereader.h"

#include "msselection.h"

#include "../util/logger.h"
#include "../util/progress/dummyprogresslistener.h"
#include "../util/stopwatch.h"

#include <aocommon/system.h>

#include <casacore/ms/MeasurementSets/MeasurementSet.h>
#include <casacore/tables/Tables/ArrayColumn.h>
#include <casacore/tables/Tables/ScalarColumn.h>

#include <vector>

void MemoryBaselineReader::PrepareReadWrite(ProgressListener& progress) {
  if (!_isRead) {
    progress.OnStartTask("Reading measurement set into memory");
    readSet(progress);
    _isRead = true;
  }
}

void MemoryBaselineReader::PerformReadRequests(ProgressListener& progress) {
  PrepareReadWrite(progress);

  for (size_t i = 0; i != _readRequests.size(); ++i) {
    const ReadRequest& request = _readRequests[i];
    const BaselineID id(request.antenna1, request.antenna2,
                        request.spectralWindow, request.sequenceId);
    const std::map<BaselineID, std::unique_ptr<Result>>::const_iterator
        requestedBaselineIter = _baselines.find(id);
    if (requestedBaselineIter == _baselines.end()) {
      std::ostringstream errorStr;
      errorStr << "Exception in PerformReadRequests(): requested baseline is "
                  "not available in measurement set "
                  "(antenna1="
               << request.antenna1 << ", antenna2=" << request.antenna2
               << ", "
                  "spw="
               << request.spectralWindow
               << ", sequenceId=" << request.sequenceId << ")";
      throw std::runtime_error(errorStr.str());
    } else {
      _results.push_back(*requestedBaselineIter->second);
    }
  }

  _readRequests.clear();
  progress.OnFinish();
}

void MemoryBaselineReader::readSet(ProgressListener& progress) {
  const Stopwatch watch(true);

  initializeMeta();

  const casacore::MeasurementSet table(OpenMS());

  casacore::ScalarColumn<int> ant1Column(
      table,
      casacore::MeasurementSet::columnName(casacore::MSMainEnums::ANTENNA1)),
      ant2Column(table, casacore::MeasurementSet::columnName(
                            casacore::MSMainEnums::ANTENNA2)),
      dataDescIdColumn(table, casacore::MeasurementSet::columnName(
                                  casacore::MSMainEnums::DATA_DESC_ID));
  casacore::ArrayColumn<casacore::Complex> dataColumn(table, DataColumnName());
  casacore::ArrayColumn<bool> flagColumn(
      table, casacore::MeasurementSet::columnName(casacore::MSMainEnums::FLAG));
  casacore::ArrayColumn<double> uvwColumn(
      table, casacore::MeasurementSet::columnName(casacore::MSMainEnums::UVW));

  size_t antennaCount = MetaData().AntennaCount(),
         polarizationCount = Polarizations().size(),
         bandCount = MetaData().BandCount(),
         sequenceCount = MetaData().SequenceCount(), intStart = IntervalStart(),
         intEnd = IntervalEnd();

  std::vector<size_t> dataDescIdToSpw;
  MetaData().GetDataDescToBandVector(dataDescIdToSpw);

  std::vector<BandInfo> bandInfos(bandCount);
  for (size_t b = 0; b != bandCount; ++b)
    bandInfos[b] = MetaData().GetBandInfo(b);

  // Initialize the look-up matrix
  // to quickly access the elements (without the map-lookup)
  typedef std::unique_ptr<Result> MatrixElement;
  typedef std::vector<MatrixElement> MatrixRow;
  typedef std::vector<MatrixRow> BaselineMatrix;
  typedef std::vector<BaselineMatrix> BaselineCube;

  BaselineCube baselineCube(sequenceCount * bandCount);

  for (size_t s = 0; s != sequenceCount; ++s) {
    for (size_t b = 0; b != bandCount; ++b) {
      BaselineMatrix& matrix = baselineCube[s * bandCount + b];
      matrix.resize(antennaCount);

      for (size_t a1 = 0; a1 != antennaCount; ++a1) {
        matrix[a1].resize(antennaCount);
        for (size_t a2 = 0; a2 != antennaCount; ++a2) matrix[a1][a2] = nullptr;
      }
    }
  }

  // The actual reading of the data
  Logger::Debug << "Reading the data (interval={" << intStart << "..." << intEnd
                << "})...\n";

  casacore::Array<casacore::Complex> dataArray;
  casacore::Array<bool> flagArray;

  casacore::MeasurementSet ms(OpenMS());
  MSSelection msSelection(ms, ObservationTimesPerSequence(), progress);
  msSelection.Process([&](size_t rowIndex, size_t sequenceId,
                          size_t timeIndexInSequence) {
    size_t ant1 = ant1Column(rowIndex);
    size_t ant2 = ant2Column(rowIndex);
    const size_t spw = dataDescIdToSpw[dataDescIdColumn(rowIndex)];
    const size_t spwFieldIndex = spw + sequenceId * bandCount;
    if (ant1 > ant2) std::swap(ant1, ant2);
    std::unique_ptr<Result>& result = baselineCube[spwFieldIndex][ant1][ant2];
    if (result == nullptr) {
      const size_t timeStepCount = ObservationTimes(sequenceId).size();
      const size_t nFreq = MetaData().FrequencyCount(spw);
      result.reset(new Result());
      for (size_t p = 0; p != polarizationCount; ++p) {
        result->_realImages.emplace_back(
            Image2D::CreateZeroImagePtr(timeStepCount, nFreq));
        result->_imaginaryImages.emplace_back(
            Image2D::CreateZeroImagePtr(timeStepCount, nFreq));
        result->_flags.emplace_back(
            Mask2D::CreateSetMaskPtr<true>(timeStepCount, nFreq));
      }
      result->_bandInfo = bandInfos[spw];
      result->_uvw.resize(timeStepCount);
    }

    dataArray = dataColumn.get(rowIndex);
    flagArray = flagColumn.get(rowIndex);

    casacore::Array<double> uvwArray = uvwColumn.get(rowIndex);
    casacore::Array<double>::const_contiter uvwPtr = uvwArray.cbegin();
    UVW uvw;
    uvw.u = *uvwPtr;
    ++uvwPtr;
    uvw.v = *uvwPtr;
    ++uvwPtr;
    uvw.w = *uvwPtr;
    result->_uvw[timeIndexInSequence] = uvw;

    for (size_t p = 0; p != polarizationCount; ++p) {
      casacore::Array<casacore::Complex>::const_contiter dataPtr =
          dataArray.cbegin();
      casacore::Array<bool>::const_contiter flagPtr = flagArray.cbegin();

      Image2D& real = *result->_realImages[p];
      Image2D& imag = *result->_imaginaryImages[p];
      Mask2D& mask = *result->_flags[p];
      const size_t imgStride = real.Stride();
      const size_t mskStride = mask.Stride();
      num_t* realOutPtr = real.ValuePtr(timeIndexInSequence, 0);
      num_t* imagOutPtr = imag.ValuePtr(timeIndexInSequence, 0);
      bool* flagOutPtr = mask.ValuePtr(timeIndexInSequence, 0);

      for (size_t i = 0; i != p; ++i) {
        ++dataPtr;
        ++flagPtr;
      }
      const size_t frequencyCount = bandInfos[spw].channels.size();
      for (size_t ch = 0; ch != frequencyCount; ++ch) {
        *realOutPtr = dataPtr->real();
        *imagOutPtr = dataPtr->imag();
        *flagOutPtr = *flagPtr;

        realOutPtr += imgStride;
        imagOutPtr += imgStride;
        flagOutPtr += mskStride;

        for (size_t i = 0; i != polarizationCount; ++i) {
          ++dataPtr;
          ++flagPtr;
        }
      }
    }
  });

  // Move elements from matrix into the baseline map.
  for (size_t s = 0; s != sequenceCount; ++s) {
    for (size_t b = 0; b != bandCount; ++b) {
      const size_t fbIndex = s * bandCount + b;
      for (size_t a1 = 0; a1 != antennaCount; ++a1) {
        for (size_t a2 = a1; a2 != antennaCount; ++a2) {
          std::unique_ptr<Result>& result = baselineCube[fbIndex][a1][a2];
          if (result) {
            _baselines.emplace(BaselineID(a1, a2, b, s), std::move(result));
          }
        }
      }
    }
  }
  _areFlagsChanged = false;

  Logger::Debug << "Reading took " << watch.ToString() << ".\n";
}

void MemoryBaselineReader::PerformFlagWriteRequests() {
  PrepareReadWrite(dummy_progress_);

  for (size_t i = 0; i != _writeRequests.size(); ++i) {
    const FlagWriteRequest& request = _writeRequests[i];
    const BaselineID id(request.antenna1, request.antenna2,
                        request.spectralWindow, request.sequenceId);
    std::unique_ptr<Result>& result = _baselines[id];
    if (result->_flags.size() != request.flags.size())
      throw std::runtime_error("Polarizations do not match");
    for (size_t p = 0; p != result->_flags.size(); ++p)
      result->_flags[p].reset(new Mask2D(*request.flags[p]));
  }
  _areFlagsChanged = true;

  _writeRequests.clear();
}

void MemoryBaselineReader::WriteToMs() {
  casacore::MeasurementSet ms(OpenMS(true));

  casacore::ScalarColumn<int> ant1Column(
      ms,
      casacore::MeasurementSet::columnName(casacore::MSMainEnums::ANTENNA1)),
      ant2Column(ms, casacore::MeasurementSet::columnName(
                         casacore::MSMainEnums::ANTENNA2)),
      dataDescIdColumn(ms, casacore::MeasurementSet::columnName(
                               casacore::MSMainEnums::DATA_DESC_ID));
  casacore::ArrayColumn<bool> flagColumn(
      ms, casacore::MeasurementSet::columnName(casacore::MSMainEnums::FLAG));
  std::vector<size_t> dataIdToSpw;
  MetaData().GetDataDescToBandVector(dataIdToSpw);

  const size_t polarizationCount = Polarizations().size();

  Logger::Debug << "Flags have changed, writing them back to the set...\n";

  DummyProgressListener dummy;
  MSSelection msSelection(ms, ObservationTimesPerSequence(), dummy);
  msSelection.Process([&](size_t rowIndex, size_t sequenceId,
                          size_t timeIndexInSequence) {
    size_t ant1 = ant1Column(rowIndex);
    size_t ant2 = ant2Column(rowIndex);
    const size_t spw = dataIdToSpw[dataDescIdColumn(rowIndex)];
    if (ant1 > ant2) std::swap(ant1, ant2);

    const size_t frequencyCount = MetaData().FrequencyCount(spw);
    casacore::IPosition flagShape = casacore::IPosition(2);
    flagShape[0] = polarizationCount;
    flagShape[1] = frequencyCount;
    casacore::Array<bool> flagArray(flagShape);

    const BaselineID baselineID(ant1, ant2, spw, sequenceId);
    const std::map<BaselineID, std::unique_ptr<Result>>::iterator resultIter =
        _baselines.find(baselineID);
    std::unique_ptr<Result>& result = resultIter->second;

    casacore::Array<bool>::contiter flagPtr = flagArray.cbegin();

    std::vector<Mask2D*> masks(polarizationCount);
    for (size_t p = 0; p != polarizationCount; ++p)
      masks[p] = result->_flags[p].get();

    for (size_t ch = 0; ch != frequencyCount; ++ch) {
      for (size_t p = 0; p != polarizationCount; ++p) {
        *flagPtr = masks[p]->Value(timeIndexInSequence, ch);
        ++flagPtr;
      }
    }

    flagColumn.put(rowIndex, flagArray);
  });

  _areFlagsChanged = false;
}

bool MemoryBaselineReader::IsEnoughMemoryAvailable(uint64_t size) {
  const uint64_t totalMem = aocommon::system::TotalMemory();

  if (size * 2 >= totalMem) {
    Logger::Warn
        << (size / 1000000) << " MB required, but " << (totalMem / 1000000)
        << " MB available.\n"
           "Because this is not at least twice as much, the reordering "
           "mode (slower!) will be used.\n";
    return false;
  } else {
    Logger::Debug << (size / 1000000) << " MB required, "
                  << (totalMem / 1000000)
                  << " MB available: will use memory read mode.\n";
    return true;
  }
}