1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
#include "rayleighfitter.h"
#include <iostream>
#include <limits>
#include <boost/numeric/conversion/bounds.hpp>
#ifdef HAVE_GSL
#include <gsl/gsl_vector.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_multifit_nlin.h>
static int fit_f(const gsl_vector* xvec, void* data, gsl_vector* f) {
const double sigma = gsl_vector_get(xvec, 0);
const double n = gsl_vector_get(xvec, 1);
size_t t = 0;
const RayleighFitter& fitter = *static_cast<RayleighFitter*>(data);
const LogHistogram& hist = *fitter._hist;
const double minVal = fitter._minVal;
const double maxVal = fitter._maxVal;
for (LogHistogram::const_iterator i = hist.begin(); i != hist.end(); ++i) {
const double x = i.value();
if (x >= minVal && x < maxVal && std::isfinite(x)) {
const double val = i.normalizedCount();
// const double logval = log(val);
// const double weight = logval;
const double sigmaP2 = sigma * sigma;
const double Yi = x * exp(-(x * x) / (2 * sigmaP2)) * n / sigmaP2;
if (fitter.FitLogarithmic())
gsl_vector_set(f, t, log(Yi) - log(val));
else
gsl_vector_set(f, t, (Yi - val));
++t;
}
}
return GSL_SUCCESS;
}
int fit_df(const gsl_vector* xvec, void* data, gsl_matrix* J) {
const double sigma = gsl_vector_get(xvec, 0);
const double n = gsl_vector_get(xvec, 1);
size_t t = 0;
const RayleighFitter& fitter = *static_cast<RayleighFitter*>(data);
const LogHistogram& hist = *fitter._hist;
const double minVal = fitter._minVal;
const double maxVal = fitter._maxVal;
const double sigmaP2 = sigma * sigma;
const double sigmaP3 = sigma * sigma * sigma;
for (LogHistogram::const_iterator i = hist.begin(); i != hist.end(); ++i) {
const double x = i.value();
if (x >= minVal && x < maxVal && std::isfinite(x)) {
// const double val = i.normalizedCount();
// const double weight = log(val);
double dfdsigma, dfdn;
if (fitter.FitLogarithmic()) {
dfdsigma = (x * x - 2.0 * sigmaP2) / sigmaP3;
dfdn = 1.0 / n;
} else {
dfdsigma = -n * 2.0 * x * x * x / (sigmaP3 * sigmaP3) *
exp(-x * x / (2.0 * sigmaP2));
dfdn = x * exp(-(x * x) / (2 * sigmaP2)) / sigmaP2;
}
// diff to sigma
gsl_matrix_set(J, t, 0, dfdsigma);
// diff to n
gsl_matrix_set(J, t, 1, dfdn);
++t;
}
}
return GSL_SUCCESS;
}
int fit_fdf(const gsl_vector* x, void* data, gsl_vector* f, gsl_matrix* J) {
fit_f(x, data, f);
fit_df(x, data, J);
return GSL_SUCCESS;
}
void print_state(size_t iter, gsl_multifit_fdfsolver* s) {
const double sigma = gsl_vector_get(s->x, 0);
const double N = gsl_vector_get(s->x, 1);
std::cout << "iteration " << iter << ", sigma=" << sigma << ", N=" << N
<< "\n";
}
void RayleighFitter::Fit(double minVal, double maxVal, const LogHistogram& hist,
double& sigma, double& n) {
unsigned int iter = 0;
const size_t nVars = 2;
_hist = &hist;
if (minVal > 0)
_minVal = minVal;
else
_minVal = hist.MinPositiveAmplitude();
_maxVal = maxVal;
if (sigma < minVal) sigma = minVal;
size_t nData = 0;
for (LogHistogram::iterator i = hist.begin(); i != hist.end(); ++i) {
const double val = i.value();
if (val >= minVal && val < maxVal && std::isfinite(val)) ++nData;
}
std::cout << "ndata=" << nData << "\n";
double x_init[nVars] = {sigma, n};
const gsl_vector_view x = gsl_vector_view_array(x_init, nVars);
gsl_multifit_function_fdf f;
f.f = &fit_f;
f.df = &fit_df;
f.fdf = &fit_fdf;
f.n = nData;
f.p = nVars;
f.params = this;
const gsl_multifit_fdfsolver_type* T = gsl_multifit_fdfsolver_lmsder;
gsl_multifit_fdfsolver* s = gsl_multifit_fdfsolver_alloc(T, nData, nVars);
gsl_multifit_fdfsolver_set(s, &f, &x.vector);
print_state(iter, s);
int status;
do {
iter++;
status = gsl_multifit_fdfsolver_iterate(s);
std::cout << "status = " << gsl_strerror(status) << "\n";
print_state(iter, s);
if (status) break;
status = gsl_multifit_test_delta(s->dx, s->x, 1e-7, 1e-3);
} while (status == GSL_CONTINUE && iter < 500);
std::cout << "status = " << gsl_strerror(status) << "\n";
print_state(iter, s);
sigma = fabs(gsl_vector_get(s->x, 0));
n = fabs(gsl_vector_get(s->x, 1));
gsl_multifit_fdfsolver_free(s);
}
#else // No gsl...
void RayleighFitter::Fit(double minVal, double maxVal, const LogHistogram& hist,
double& sigma, double& n) {
sigma = 1.0;
n = 1.0;
}
#endif
double RayleighFitter::SigmaEstimate(const LogHistogram& hist) {
return hist.AmplitudeWithMaxNormalizedCount();
}
double RayleighFitter::SigmaEstimate(const LogHistogram& hist,
double rangeStart, double rangeEnd) {
double maxAmplitude = 0.0,
maxNormalizedCount = boost::numeric::bounds<double>::lowest();
for (LogHistogram::const_iterator i = hist.begin(); i != hist.end(); ++i) {
if (i.value() > rangeStart && i.value() < rangeEnd &&
std::isfinite(i.value())) {
if (std::isfinite(i.normalizedCount())) {
if (i.normalizedCount() > maxNormalizedCount) {
maxAmplitude = i.value();
maxNormalizedCount = i.normalizedCount();
}
}
}
}
return maxAmplitude;
}
void RayleighFitter::FindFitRangeUnderRFIContamination(
double minPositiveAmplitude, double sigmaEstimate, double& minValue,
double& maxValue) {
minValue = minPositiveAmplitude;
maxValue = sigmaEstimate * 1.5;
std::cout << "Found range " << minValue << " -- " << maxValue << "\n";
}
double RayleighFitter::ErrorOfFit(const LogHistogram& histogram,
double rangeStart, double rangeEnd,
double sigma, double n) {
double sum = 0.0;
size_t count = 0;
for (LogHistogram::const_iterator i = histogram.begin(); i != histogram.end();
++i) {
const double x = i.value();
if (x >= rangeStart && x < rangeEnd && std::isfinite(x)) {
const double val = i.normalizedCount();
const double sigmaP2 = sigma * sigma;
const double Yi = x * exp(-(x * x) / (2 * sigmaP2)) * n / sigmaP2;
const double error = (Yi - val) * (Yi - val);
sum += error;
++count;
}
}
return sum / (double)count;
}
double RayleighFitter::NEstimate(const LogHistogram& hist, double rangeStart,
double rangeEnd) {
double rangeSum = 0.0;
size_t count = 0;
for (LogHistogram::const_iterator i = hist.begin(); i != hist.end(); ++i) {
if (i.value() > rangeStart && i.value() < rangeEnd &&
std::isfinite(i.value())) {
if (std::isfinite(i.normalizedCount())) {
rangeSum += i.normalizedCount();
++count;
}
}
}
return rangeSum / (count * 10.0);
}
|