1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
#ifndef SAMPLEROW_H
#define SAMPLEROW_H
#include <algorithm>
#include <limits>
#include <cmath>
#include <memory>
#include <vector>
#include "image2d.h"
#include "mask2d.h"
#include "../algorithms/convolutions.h"
class SampleRow {
public:
explicit SampleRow(size_t size) : _values(size) {}
static SampleRow MakeEmpty(size_t size) { return SampleRow(size); }
static SampleRow MakeZero(size_t size) {
SampleRow row(size);
std::fill(row._values.begin(), row._values.end(), 0.0);
return row;
}
static SampleRow MakeFromRow(const Image2D* image, size_t y) {
SampleRow row(image->Width());
std::copy(image->ValuePtr(0, y), image->ValuePtr(0, y) + image->Width(),
row._values.data());
return row;
}
static SampleRow MakeFromRow(const Image2D* image, size_t xStart,
size_t length, size_t y) {
SampleRow row(length);
std::copy(image->ValuePtr(xStart, y), image->ValuePtr(xStart, y) + length,
row._values.data());
return row;
}
static SampleRow MakeFromRowWithMissings(const Image2D* image,
const Mask2D* mask, size_t y) {
SampleRow row(image->Width());
for (size_t x = 0; x < image->Width(); ++x) {
if (mask->Value(x, y))
row._values[x] = std::numeric_limits<num_t>::quiet_NaN();
else
row._values[x] = image->Value(x, y);
}
return row;
}
static SampleRow MakeAmplitudeFromRow(const Image2D* real,
const Image2D* imaginary, size_t y) {
SampleRow row(real->Width());
for (size_t x = 0; x < real->Width(); ++x) {
row._values[x] =
std::sqrt(real->Value(x, y) * real->Value(x, y) +
imaginary->Value(x, y) * imaginary->Value(x, y));
}
return row;
}
static SampleRow MakeFromColumn(const Image2D* image, size_t x) {
SampleRow row(image->Height());
for (size_t y = 0; y < image->Height(); ++y)
row._values[y] = image->Value(x, y);
return row;
}
static SampleRow MakeFromColumnWithMissings(const Image2D* image,
const Mask2D* mask, size_t x) {
SampleRow row(image->Height());
for (size_t y = 0; y < image->Height(); ++y) {
if (mask->Value(x, y))
row._values[y] = std::numeric_limits<num_t>::quiet_NaN();
else
row._values[y] = image->Value(x, y);
}
return row;
}
static SampleRow MakeFromRowSum(const Image2D* image, size_t yStart,
size_t yEnd) {
if (yEnd > yStart) {
SampleRow row = MakeFromRow(image, yStart);
for (size_t y = yStart + 1; y < yEnd; ++y) {
for (size_t x = 0; x < image->Width(); ++x)
row._values[x] += image->Value(x, y);
}
return row;
} else {
return MakeZero(image->Width());
}
}
static SampleRow MakeFromColumnSum(const Image2D* image, size_t xStart,
size_t xEnd) {
if (xEnd > xStart) {
SampleRow row = MakeFromColumn(image, xStart);
for (size_t x = xStart + 1; x < xEnd; ++x) {
for (size_t y = 0; y < image->Width(); ++y)
row._values[y] += image->Value(x, y);
}
return row;
} else {
return MakeZero(image->Width());
}
}
void SetHorizontalImageValues(Image2D* image, unsigned y) const noexcept {
for (size_t i = 0; i < _values.size(); ++i) {
image->SetValue(i, y, _values[i]);
}
}
void SetHorizontalImageValues(Image2D* image, unsigned xStart,
unsigned y) const noexcept {
for (size_t i = 0; i < _values.size(); ++i) {
image->SetValue(i + xStart, y, _values[i]);
}
}
void SetVerticalImageValues(Image2D* image, unsigned x) const noexcept {
for (size_t i = 0; i < _values.size(); ++i) {
image->SetValue(x, i, _values[i]);
}
}
void SetVerticalImageValues(Image2D* image, unsigned x,
unsigned yStart) const noexcept {
for (size_t i = 0; i < _values.size(); ++i) {
image->SetValue(x, i + yStart, _values[i]);
}
}
num_t Value(size_t i) const noexcept { return _values[i]; }
void SetValue(size_t i, num_t newValue) noexcept { _values[i] = newValue; }
size_t Size() const noexcept { return _values.size(); }
size_t IndexOfMax() const noexcept {
size_t maxIndex = 0;
num_t maxValue = _values[0];
for (size_t i = 1; i < _values.size(); ++i) {
if (_values[i] > maxValue) {
maxIndex = i;
maxValue = _values[i];
}
}
return maxIndex;
}
numl_t RMS() const noexcept {
if (_values.empty()) return std::numeric_limits<numl_t>::quiet_NaN();
numl_t sum = 0.0;
for (num_t v : _values) sum += v * v;
return std::sqrt(sum / _values.size());
}
num_t Median() const noexcept {
if (_values.empty()) return std::numeric_limits<num_t>::quiet_NaN();
std::vector<num_t> copy(_values);
if (_values.size() % 2 == 0) {
size_t m = _values.size() / 2 - 1;
std::nth_element(copy.begin(), copy.begin() + m, copy.end());
num_t leftMid = *(copy.begin() + m);
std::nth_element(copy.begin(), copy.begin() + m + 1, copy.end());
num_t rightMid = *(copy.begin() + m + 1);
return (leftMid + rightMid) / 2;
} else {
size_t m = _values.size() / 2;
std::nth_element(copy.begin(), copy.begin() + m, copy.end());
num_t mid = *(copy.begin() + m);
return mid;
}
}
numl_t Mean() const noexcept {
numl_t mean = 0.0;
for (num_t v : _values) mean += v;
return mean / _values.size();
}
numl_t MeanWithMissings() const noexcept {
numl_t mean = 0.0;
size_t count = 0;
for (num_t v : _values) {
if (std::isfinite(v)) {
mean += v;
++count;
}
}
return mean / count;
}
numl_t StdDev(double mean) const noexcept {
numl_t stddev = 0.0;
for (num_t v : _values) stddev += (v - mean) * (v - mean);
return std::sqrt(stddev / _values.size());
}
num_t RMSWithMissings() const { return MakeWithoutMissings().RMS(); }
num_t MedianWithMissings() const { return MakeWithoutMissings().Median(); }
num_t StdDevWithMissings(double mean) const {
return MakeWithoutMissings().StdDev(mean);
}
SampleRow MakeWithoutMissings() const;
bool ValueIsMissing(size_t i) const { return !std::isfinite(Value(i)); }
void SetValueMissing(size_t i) {
SetValue(i, std::numeric_limits<num_t>::quiet_NaN());
}
void ConvolveWithGaussian(num_t sigma) {
algorithms::Convolutions::OneDimensionalGausConvolution(
_values.data(), _values.size(), sigma);
}
void ConvolveWithSinc(num_t frequency) {
algorithms::Convolutions::OneDimensionalSincConvolution(
_values.data(), _values.size(), frequency);
}
SampleRow* operator-=(const SampleRow& source) noexcept {
for (unsigned i = 0; i < _values.size(); ++i)
_values[i] -= source._values[i];
return this;
}
num_t WinsorizedMean() const {
std::vector<num_t> data(_values);
std::sort(data.begin(), data.end(), numLessThanOperator);
size_t lowIndex = (size_t)floor(0.1 * data.size());
size_t highIndex = (size_t)ceil(0.9 * data.size()) - 1;
num_t lowValue = data[lowIndex];
num_t highValue = data[highIndex];
// Calculate mean
num_t mean = 0.0;
for (size_t x = 0; x < data.size(); ++x) {
const num_t value = data[x];
if (value < lowValue)
mean += lowValue;
else if (value > highValue)
mean += highValue;
else
mean += value;
}
return mean / (num_t)data.size();
}
num_t WinsorizedMeanWithMissings() const {
return MakeWithoutMissings().WinsorizedMean();
}
private:
std::vector<num_t> _values;
// We need this less than operator, because the normal operator
// does not enforce a strictly ordered set, because a<b != !(b<a) in the case
// of nans/infs.
static bool numLessThanOperator(const num_t& a, const num_t& b) noexcept {
if (std::isfinite(a)) {
if (std::isfinite(b))
return a < b;
else
return true;
}
return false;
}
};
#endif
|