File: timefrequencydata.cpp

package info (click to toggle)
aoflagger 3.4.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 8,960 kB
  • sloc: cpp: 83,076; python: 10,187; sh: 260; makefile: 178
file content (414 lines) | stat: -rw-r--r-- 15,925 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
#include "timefrequencydata.h"
#include "stokesimager.h"

#include "../util/ffttools.h"

namespace {
/// Performs complex division and updates lhs
void DivideComplexSinglePolarization(TimeFrequencyData& lhs,
                                     const TimeFrequencyData& rhs) {
  const size_t width = lhs.ImageWidth();
  const size_t height = lhs.ImageHeight();
  const Image2DCPtr& l_real = lhs.GetImage(0);
  const Image2DCPtr& l_imag = lhs.GetImage(1);
  const Image2DCPtr& r_real = rhs.GetImage(0);
  const Image2DCPtr& r_imag = rhs.GetImage(1);
  Image2DPtr real_result = Image2D::CreateUnsetImagePtr(width, height);
  Image2DPtr imag_result = Image2D::CreateUnsetImagePtr(width, height);
  for (size_t y = 0; y != height; ++y) {
    for (size_t x = 0; x != width; ++x) {
      const std::complex<num_t> lhs_value(l_real->Value(x, y),
                                          l_imag->Value(x, y));
      const std::complex<num_t> rhs_value(r_real->Value(x, y),
                                          r_imag->Value(x, y));
      const std::complex<num_t> result_value = lhs_value / rhs_value;
      real_result->SetValue(x, y, result_value.real());
      imag_result->SetValue(x, y, result_value.imag());
    }
  }
  lhs.SetImage(0, std::move(real_result));
  lhs.SetImage(1, std::move(imag_result));
}

/// Performs real division and updates lhs
void DivideRealSinglePolarization(TimeFrequencyData& lhs,
                                  const TimeFrequencyData& rhs) {
  const size_t width = lhs.ImageWidth();
  const size_t height = lhs.ImageHeight();
  Image2DCPtr l_data = lhs.GetImage(0);
  Image2DCPtr r_data = rhs.GetImage(0);
  Image2DPtr result_image = Image2D::CreateUnsetImagePtr(width, height);
  for (size_t y = 0; y != height; ++y) {
    for (size_t x = 0; x != width; ++x) {
      result_image->SetValue(x, y, l_data->Value(x, y) / r_data->Value(x, y));
    }
  }
  lhs.SetImage(0, std::move(result_image));
}

}  // namespace

Image2DCPtr TimeFrequencyData::GetAbsoluteFromComplex(
    const Image2DCPtr& real, const Image2DCPtr& imag) const {
  return Image2DPtr(FFTTools::CreateAbsoluteImage(*real, *imag));
}

Image2DCPtr TimeFrequencyData::GetSum(const Image2DCPtr& left,
                                      const Image2DCPtr& right) const {
  return StokesImager::CreateSum(left, right);
}

Image2DCPtr TimeFrequencyData::GetNegatedSum(const Image2DCPtr& left,
                                             const Image2DCPtr& right) const {
  return StokesImager::CreateNegatedSum(left, right);
}

Image2DCPtr TimeFrequencyData::GetDifference(const Image2DCPtr& left,
                                             const Image2DCPtr& right) const {
  return StokesImager::CreateDifference(left, right);
}

Image2DCPtr TimeFrequencyData::getSinglePhaseFromTwoPolPhase(
    size_t polA, size_t polB) const {
  return StokesImager::CreateAvgPhase(_data[polA]._images[0],
                                      _data[polB]._images[0]);
}

Mask2DCPtr TimeFrequencyData::GetCombinedMask() const {
  if (MaskCount() == 0) {
    return GetSetMask<false>();
  } else if (MaskCount() == 1) {
    return GetMask(0);
  } else {
    Mask2DPtr mask(new Mask2D(*GetMask(0)));
    size_t i = 0;
    while (i != MaskCount()) {
      const Mask2DCPtr& curMask = GetMask(i);
      for (unsigned y = 0; y < mask->Height(); ++y) {
        for (unsigned x = 0; x < mask->Width(); ++x) {
          const bool v = curMask->Value(x, y);
          if (v) mask->SetValue(x, y, true);
        }
      }
      ++i;
    }
    return mask;
  }
}

TimeFrequencyData TimeFrequencyData::MakeZeroLinearData(size_t width,
                                                        size_t height) {
  const Image2DPtr zero = Image2D::CreateSetImagePtr(width, height, 0.0);
  TimeFrequencyData data;
  data._data.resize(4);
  data._data[0] =
      PolarizedTimeFrequencyData(aocommon::Polarization::XX, zero, zero);
  data._data[1] =
      PolarizedTimeFrequencyData(aocommon::Polarization::XY, zero, zero);
  data._data[2] =
      PolarizedTimeFrequencyData(aocommon::Polarization::YX, zero, zero);
  data._data[3] =
      PolarizedTimeFrequencyData(aocommon::Polarization::YY, zero, zero);
  return data;
}

TimeFrequencyData TimeFrequencyData::Make(
    enum ComplexRepresentation representation) const {
  if (representation == _complexRepresentation) {
    return TimeFrequencyData(*this);
  } else if (_complexRepresentation == ComplexParts) {
    TimeFrequencyData data;
    data._complexRepresentation = representation;
    data._data.resize(_data.size());
    for (size_t i = 0; i != _data.size(); ++i) {
      const PolarizedTimeFrequencyData& source = _data[i];
      PolarizedTimeFrequencyData& dest = data._data[i];
      dest._polarization = source._polarization;
      dest._flagging = source._flagging;
      switch (representation) {
        case RealPart:
          dest._images[0] = source._images[0];
          break;
        case ImaginaryPart:
          dest._images[0] = source._images[1];
          break;
        case AmplitudePart:
          dest._images[0] =
              GetAbsoluteFromComplex(source._images[0], source._images[1]);
          break;
        case PhasePart:
          dest._images[0] = StokesImager::CreateAvgPhase(source._images[0],
                                                         source._images[1]);
          break;
        case ComplexParts:
          break;  // already handled above.
      }
    }
    return data;
  } else if (representation == ComplexParts &&
             _complexRepresentation == AmplitudePart) {
    return MakeFromComplexCombination(*this, *this);
  } else {
    throw std::runtime_error(
        "Request for time/frequency data with a phase representation that can "
        "not be extracted from the source (source is not complex)");
  }
}

TimeFrequencyData TimeFrequencyData::MakeFromComplexCombination(
    const TimeFrequencyData& real, const TimeFrequencyData& imaginary) {
  if (real.ComplexRepresentation() == ComplexParts ||
      imaginary.ComplexRepresentation() == ComplexParts)
    throw std::runtime_error(
        "Trying to create complex TF data from incorrect phase "
        "representations");
  if (real.Polarizations() != imaginary.Polarizations())
    throw std::runtime_error(
        "Combining real/imaginary time frequency data from different "
        "polarisations");
  TimeFrequencyData data;
  data._data.resize(real._data.size());
  data._complexRepresentation = ComplexParts;
  for (size_t i = 0; i != real._data.size(); ++i) {
    data._data[i]._polarization = real._data[i]._polarization;
    data._data[i]._images[0] = real._data[i]._images[0];
    data._data[i]._images[1] = imaginary._data[i]._images[0];
    data._data[i]._flagging = real._data[i]._flagging;
  }
  return data;
}

TimeFrequencyData TimeFrequencyData::MakeFromPolarizationCombination(
    const TimeFrequencyData& xx, const TimeFrequencyData& xy,
    const TimeFrequencyData& yx, const TimeFrequencyData& yy) {
  if (xx.ComplexRepresentation() != xy.ComplexRepresentation() ||
      xx.ComplexRepresentation() != yx.ComplexRepresentation() ||
      xx.ComplexRepresentation() != yy.ComplexRepresentation())
    throw std::runtime_error(
        "Trying to create dipole time frequency combination from data with "
        "different phase representations!");

  TimeFrequencyData data;
  data._data.resize(4);
  data._complexRepresentation = xx._complexRepresentation;
  for (size_t i = 0; i != xx._data.size(); ++i) {
    data._data[0] = xx._data[0];
    data._data[1] = xy._data[0];
    data._data[2] = yx._data[0];
    data._data[3] = yy._data[0];
  }
  return data;
}

TimeFrequencyData TimeFrequencyData::MakeFromPolarizationCombination(
    const TimeFrequencyData& first, const TimeFrequencyData& second) {
  if (first.IsEmpty()) return second;
  if (second.IsEmpty()) return first;
  if (first.ComplexRepresentation() != second.ComplexRepresentation())
    throw std::runtime_error(
        "Trying to create polarization combination from data with different "
        "phase representations!");

  TimeFrequencyData data;
  data._data = first._data;
  data._complexRepresentation = first._complexRepresentation;
  data._data.insert(data._data.end(), second._data.begin(), second._data.end());
  return data;
}

void TimeFrequencyData::SetImagesToZero() {
  if (!IsEmpty()) {
    const Image2DPtr zeroImage =
        Image2D::CreateZeroImagePtr(ImageWidth(), ImageHeight());
    const Mask2DPtr mask =
        Mask2D::CreateSetMaskPtr<false>(ImageWidth(), ImageHeight());
    for (PolarizedTimeFrequencyData& data : _data) {
      data._images[0] = zeroImage;
      if (data._images[1]) data._images[1] = zeroImage;
      data._flagging = mask;
    }
  }
}

void TimeFrequencyData::MultiplyImages(long double factor) {
  for (PolarizedTimeFrequencyData& data : _data) {
    if (data._images[0]) {
      const Image2DPtr newImage(new Image2D(*data._images[0]));
      newImage->MultiplyValues(factor);
      data._images[0] = newImage;
    }
    if (data._images[1]) {
      const Image2DPtr newImage(new Image2D(*data._images[1]));
      newImage->MultiplyValues(factor);
      data._images[1] = newImage;
    }
  }
}

void TimeFrequencyData::JoinMask(const TimeFrequencyData& other) {
  if (other.MaskCount() == 0) {
    // Nothing to be done; other has no flags
  } else if (other.MaskCount() == MaskCount()) {
    for (size_t i = 0; i < MaskCount(); ++i) {
      Mask2D mask(*GetMask(i));
      mask.Join(*other.GetMask(i));
      SetMask(i, Mask2DPtr(new Mask2D(mask)));
    }
  } else if (other.MaskCount() == 1) {
    if (MaskCount() == 0) {
      for (size_t i = 0; i != _data.size(); ++i)
        _data[i]._flagging = other._data[0]._flagging;
    } else {
      for (size_t i = 0; i < MaskCount(); ++i) {
        Mask2D mask(*GetMask(i));
        mask.Join(*other.GetMask(0));
        SetMask(i, Mask2DPtr(new Mask2D(mask)));
      }
    }
  } else if (MaskCount() == 1) {
    Mask2D mask(*GetMask(0));
    mask.Join(*other.GetSingleMask());
    SetMask(0, Mask2DPtr(new Mask2D(mask)));
  } else if (MaskCount() == 0 && _data.size() == other._data.size()) {
    for (size_t i = 0; i != _data.size(); ++i)
      _data[i]._flagging = other._data[i]._flagging;
  } else {
    throw std::runtime_error(
        "Joining time frequency flagging with incompatible structures");
  }
}

std::vector<std::complex<num_t>> ToComplexVector(
    const TimeFrequencyData& tf_data) {
  if (tf_data.ComplexRepresentation() != TimeFrequencyData::ComplexParts)
    throw std::runtime_error(
        "Can't convert non-complex data into a complex vector");
  const size_t n_pol = tf_data.PolarizationCount();
  const size_t width = tf_data.ImageWidth();
  const size_t height = tf_data.ImageHeight();
  std::vector<std::complex<num_t>> data(n_pol * width * height);
  for (size_t pol = 0; pol != n_pol; ++pol) {
    const TimeFrequencyData pol_data = tf_data.MakeFromPolarizationIndex(pol);
    const Image2DCPtr real = pol_data.GetImage(0);
    const Image2DCPtr imaginary = pol_data.GetImage(1);
    size_t index = pol * width * height;
    for (size_t y = 0; y != height; ++y) {
      for (size_t x = 0; x != width; ++x) {
        data[index] = {real->Value(x, y), imaginary->Value(x, y)};
        ++index;
      }
    }
  }
  return data;
}

TimeFrequencyData ElementWiseDivide(const TimeFrequencyData& lhs,
                                    const TimeFrequencyData& rhs) {
  if (lhs.ImageCount() != rhs.ImageCount() ||
      lhs.ComplexRepresentation() != rhs.ComplexRepresentation()) {
    throw std::runtime_error(
        "Can not element-wise divide time-frequency data: inputs do not have "
        "the same number of polarizations or complex representation!");
  }
  if (lhs.ImageWidth() != rhs.ImageWidth() ||
      lhs.ImageHeight() != rhs.ImageHeight())
    throw std::runtime_error(
        "Can not element-wise divide time-frequency data: inputs have "
        "different sizes.");
  TimeFrequencyData data(lhs);
  for (size_t pol_index = 0; pol_index != data.PolarizationCount();
       ++pol_index) {
    TimeFrequencyData lhs_pol = lhs.MakeFromPolarizationIndex(pol_index);
    const TimeFrequencyData rhs_pol = rhs.MakeFromPolarizationIndex(pol_index);
    if (lhs_pol.ImageCount() == 2) {
      DivideComplexSinglePolarization(lhs_pol, rhs_pol);
    } else {
      DivideRealSinglePolarization(lhs_pol, rhs_pol);
    }
    data.SetPolarizationData(pol_index, std::move(lhs_pol));
  }
  return data;
}

TimeFrequencyData ElementWiseNorm(const TimeFrequencyData& data) {
  if (data.ComplexRepresentation() == TimeFrequencyData::ComplexParts) {
    std::vector<Image2DCPtr> norm_images;
    norm_images.reserve(data.PolarizationCount());
    for (size_t pol_index = 0; pol_index != data.PolarizationCount();
         ++pol_index) {
      TimeFrequencyData pol = data.MakeFromPolarizationIndex(pol_index);
      Image2DCPtr real = pol.GetImage(0);
      Image2DCPtr imaginary = pol.GetImage(1);
      const size_t width = pol.ImageWidth();
      const size_t height = pol.ImageHeight();
      Image2DPtr norm_image = Image2D::CreateUnsetImagePtr(width, height);
      for (size_t y = 0; y != height; ++y) {
        for (size_t x = 0; x != width; ++x) {
          const std::complex<num_t> z(real->Value(x, y),
                                      imaginary->Value(x, y));
          norm_image->SetValue(x, y, std::norm(z));
        }
      }
      norm_images.emplace_back(std::move(norm_image));
    }
    return TimeFrequencyData(TimeFrequencyData::AmplitudePart,
                             data.Polarizations().data(),
                             data.PolarizationCount(), norm_images.data());
  } else {
    TimeFrequencyData result = data;
    for (size_t pol_index = 0; pol_index != data.PolarizationCount();
         ++pol_index) {
      TimeFrequencyData pol = data.MakeFromPolarizationIndex(pol_index);
      Image2DCPtr values = pol.GetImage(0);
      const size_t width = values->Width();
      const size_t height = values->Height();
      Image2DPtr new_values = Image2D::CreateUnsetImagePtr(width, height);
      for (size_t y = 0; y != height; ++y) {
        for (size_t x = 0; x != width; ++x) {
          new_values->SetValue(x, y, std::norm(values->Value(x, y)));
        }
      }
      pol.SetImage(0, new_values);
      result.SetPolarizationData(pol_index, pol);
    }
    return result;
  }
}

TimeFrequencyData ElementWiseSqrt(const TimeFrequencyData& data) {
  TimeFrequencyData result = data;
  for (size_t pol_index = 0; pol_index != data.PolarizationCount();
       ++pol_index) {
    TimeFrequencyData pol = data.MakeFromPolarizationIndex(pol_index);
    const size_t width = pol.ImageWidth();
    const size_t height = pol.ImageHeight();
    if (pol.ImageCount() == 2) {
      Image2DCPtr real = pol.GetImage(0);
      Image2DCPtr imaginary = pol.GetImage(1);
      Image2DPtr new_real = Image2D::CreateUnsetImagePtr(width, height);
      Image2DPtr new_imaginary = Image2D::CreateUnsetImagePtr(width, height);
      for (size_t y = 0; y != height; ++y) {
        for (size_t x = 0; x != width; ++x) {
          const std::complex<num_t> z(real->Value(x, y),
                                      imaginary->Value(x, y));
          const std::complex<num_t> sqrt = std::sqrt(z);
          new_real->SetValue(x, y, sqrt.real());
          new_imaginary->SetValue(x, y, sqrt.imag());
        }
      }
      pol.SetImage(0, new_real);
      pol.SetImage(1, new_imaginary);
    } else {
      Image2DCPtr values = pol.GetImage(0);
      Image2DPtr new_values = Image2D::CreateUnsetImagePtr(width, height);
      for (size_t y = 0; y != height; ++y) {
        for (size_t x = 0; x != width; ++x) {
          new_values->SetValue(x, y, std::sqrt(values->Value(x, y)));
        }
      }
      pol.SetImage(0, new_values);
    }
    result.SetPolarizationData(pol_index, pol);
  }
  return result;
}