1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
|
#include "timefrequencydata.h"
#include "stokesimager.h"
#include "../util/ffttools.h"
namespace {
/// Performs complex division and updates lhs
void DivideComplexSinglePolarization(TimeFrequencyData& lhs,
const TimeFrequencyData& rhs) {
const size_t width = lhs.ImageWidth();
const size_t height = lhs.ImageHeight();
const Image2DCPtr& l_real = lhs.GetImage(0);
const Image2DCPtr& l_imag = lhs.GetImage(1);
const Image2DCPtr& r_real = rhs.GetImage(0);
const Image2DCPtr& r_imag = rhs.GetImage(1);
Image2DPtr real_result = Image2D::CreateUnsetImagePtr(width, height);
Image2DPtr imag_result = Image2D::CreateUnsetImagePtr(width, height);
for (size_t y = 0; y != height; ++y) {
for (size_t x = 0; x != width; ++x) {
const std::complex<num_t> lhs_value(l_real->Value(x, y),
l_imag->Value(x, y));
const std::complex<num_t> rhs_value(r_real->Value(x, y),
r_imag->Value(x, y));
const std::complex<num_t> result_value = lhs_value / rhs_value;
real_result->SetValue(x, y, result_value.real());
imag_result->SetValue(x, y, result_value.imag());
}
}
lhs.SetImage(0, std::move(real_result));
lhs.SetImage(1, std::move(imag_result));
}
/// Performs real division and updates lhs
void DivideRealSinglePolarization(TimeFrequencyData& lhs,
const TimeFrequencyData& rhs) {
const size_t width = lhs.ImageWidth();
const size_t height = lhs.ImageHeight();
Image2DCPtr l_data = lhs.GetImage(0);
Image2DCPtr r_data = rhs.GetImage(0);
Image2DPtr result_image = Image2D::CreateUnsetImagePtr(width, height);
for (size_t y = 0; y != height; ++y) {
for (size_t x = 0; x != width; ++x) {
result_image->SetValue(x, y, l_data->Value(x, y) / r_data->Value(x, y));
}
}
lhs.SetImage(0, std::move(result_image));
}
} // namespace
Image2DCPtr TimeFrequencyData::GetAbsoluteFromComplex(
const Image2DCPtr& real, const Image2DCPtr& imag) const {
return Image2DPtr(FFTTools::CreateAbsoluteImage(*real, *imag));
}
Image2DCPtr TimeFrequencyData::GetSum(const Image2DCPtr& left,
const Image2DCPtr& right) const {
return StokesImager::CreateSum(left, right);
}
Image2DCPtr TimeFrequencyData::GetNegatedSum(const Image2DCPtr& left,
const Image2DCPtr& right) const {
return StokesImager::CreateNegatedSum(left, right);
}
Image2DCPtr TimeFrequencyData::GetDifference(const Image2DCPtr& left,
const Image2DCPtr& right) const {
return StokesImager::CreateDifference(left, right);
}
Image2DCPtr TimeFrequencyData::getSinglePhaseFromTwoPolPhase(
size_t polA, size_t polB) const {
return StokesImager::CreateAvgPhase(_data[polA]._images[0],
_data[polB]._images[0]);
}
Mask2DCPtr TimeFrequencyData::GetCombinedMask() const {
if (MaskCount() == 0) {
return GetSetMask<false>();
} else if (MaskCount() == 1) {
return GetMask(0);
} else {
Mask2DPtr mask(new Mask2D(*GetMask(0)));
size_t i = 0;
while (i != MaskCount()) {
const Mask2DCPtr& curMask = GetMask(i);
for (unsigned y = 0; y < mask->Height(); ++y) {
for (unsigned x = 0; x < mask->Width(); ++x) {
const bool v = curMask->Value(x, y);
if (v) mask->SetValue(x, y, true);
}
}
++i;
}
return mask;
}
}
TimeFrequencyData TimeFrequencyData::MakeZeroLinearData(size_t width,
size_t height) {
const Image2DPtr zero = Image2D::CreateSetImagePtr(width, height, 0.0);
TimeFrequencyData data;
data._data.resize(4);
data._data[0] =
PolarizedTimeFrequencyData(aocommon::Polarization::XX, zero, zero);
data._data[1] =
PolarizedTimeFrequencyData(aocommon::Polarization::XY, zero, zero);
data._data[2] =
PolarizedTimeFrequencyData(aocommon::Polarization::YX, zero, zero);
data._data[3] =
PolarizedTimeFrequencyData(aocommon::Polarization::YY, zero, zero);
return data;
}
TimeFrequencyData TimeFrequencyData::Make(
enum ComplexRepresentation representation) const {
if (representation == _complexRepresentation) {
return TimeFrequencyData(*this);
} else if (_complexRepresentation == ComplexParts) {
TimeFrequencyData data;
data._complexRepresentation = representation;
data._data.resize(_data.size());
for (size_t i = 0; i != _data.size(); ++i) {
const PolarizedTimeFrequencyData& source = _data[i];
PolarizedTimeFrequencyData& dest = data._data[i];
dest._polarization = source._polarization;
dest._flagging = source._flagging;
switch (representation) {
case RealPart:
dest._images[0] = source._images[0];
break;
case ImaginaryPart:
dest._images[0] = source._images[1];
break;
case AmplitudePart:
dest._images[0] =
GetAbsoluteFromComplex(source._images[0], source._images[1]);
break;
case PhasePart:
dest._images[0] = StokesImager::CreateAvgPhase(source._images[0],
source._images[1]);
break;
case ComplexParts:
break; // already handled above.
}
}
return data;
} else if (representation == ComplexParts &&
_complexRepresentation == AmplitudePart) {
return MakeFromComplexCombination(*this, *this);
} else {
throw std::runtime_error(
"Request for time/frequency data with a phase representation that can "
"not be extracted from the source (source is not complex)");
}
}
TimeFrequencyData TimeFrequencyData::MakeFromComplexCombination(
const TimeFrequencyData& real, const TimeFrequencyData& imaginary) {
if (real.ComplexRepresentation() == ComplexParts ||
imaginary.ComplexRepresentation() == ComplexParts)
throw std::runtime_error(
"Trying to create complex TF data from incorrect phase "
"representations");
if (real.Polarizations() != imaginary.Polarizations())
throw std::runtime_error(
"Combining real/imaginary time frequency data from different "
"polarisations");
TimeFrequencyData data;
data._data.resize(real._data.size());
data._complexRepresentation = ComplexParts;
for (size_t i = 0; i != real._data.size(); ++i) {
data._data[i]._polarization = real._data[i]._polarization;
data._data[i]._images[0] = real._data[i]._images[0];
data._data[i]._images[1] = imaginary._data[i]._images[0];
data._data[i]._flagging = real._data[i]._flagging;
}
return data;
}
TimeFrequencyData TimeFrequencyData::MakeFromPolarizationCombination(
const TimeFrequencyData& xx, const TimeFrequencyData& xy,
const TimeFrequencyData& yx, const TimeFrequencyData& yy) {
if (xx.ComplexRepresentation() != xy.ComplexRepresentation() ||
xx.ComplexRepresentation() != yx.ComplexRepresentation() ||
xx.ComplexRepresentation() != yy.ComplexRepresentation())
throw std::runtime_error(
"Trying to create dipole time frequency combination from data with "
"different phase representations!");
TimeFrequencyData data;
data._data.resize(4);
data._complexRepresentation = xx._complexRepresentation;
for (size_t i = 0; i != xx._data.size(); ++i) {
data._data[0] = xx._data[0];
data._data[1] = xy._data[0];
data._data[2] = yx._data[0];
data._data[3] = yy._data[0];
}
return data;
}
TimeFrequencyData TimeFrequencyData::MakeFromPolarizationCombination(
const TimeFrequencyData& first, const TimeFrequencyData& second) {
if (first.IsEmpty()) return second;
if (second.IsEmpty()) return first;
if (first.ComplexRepresentation() != second.ComplexRepresentation())
throw std::runtime_error(
"Trying to create polarization combination from data with different "
"phase representations!");
TimeFrequencyData data;
data._data = first._data;
data._complexRepresentation = first._complexRepresentation;
data._data.insert(data._data.end(), second._data.begin(), second._data.end());
return data;
}
void TimeFrequencyData::SetImagesToZero() {
if (!IsEmpty()) {
const Image2DPtr zeroImage =
Image2D::CreateZeroImagePtr(ImageWidth(), ImageHeight());
const Mask2DPtr mask =
Mask2D::CreateSetMaskPtr<false>(ImageWidth(), ImageHeight());
for (PolarizedTimeFrequencyData& data : _data) {
data._images[0] = zeroImage;
if (data._images[1]) data._images[1] = zeroImage;
data._flagging = mask;
}
}
}
void TimeFrequencyData::MultiplyImages(long double factor) {
for (PolarizedTimeFrequencyData& data : _data) {
if (data._images[0]) {
const Image2DPtr newImage(new Image2D(*data._images[0]));
newImage->MultiplyValues(factor);
data._images[0] = newImage;
}
if (data._images[1]) {
const Image2DPtr newImage(new Image2D(*data._images[1]));
newImage->MultiplyValues(factor);
data._images[1] = newImage;
}
}
}
void TimeFrequencyData::JoinMask(const TimeFrequencyData& other) {
if (other.MaskCount() == 0) {
// Nothing to be done; other has no flags
} else if (other.MaskCount() == MaskCount()) {
for (size_t i = 0; i < MaskCount(); ++i) {
Mask2D mask(*GetMask(i));
mask.Join(*other.GetMask(i));
SetMask(i, Mask2DPtr(new Mask2D(mask)));
}
} else if (other.MaskCount() == 1) {
if (MaskCount() == 0) {
for (size_t i = 0; i != _data.size(); ++i)
_data[i]._flagging = other._data[0]._flagging;
} else {
for (size_t i = 0; i < MaskCount(); ++i) {
Mask2D mask(*GetMask(i));
mask.Join(*other.GetMask(0));
SetMask(i, Mask2DPtr(new Mask2D(mask)));
}
}
} else if (MaskCount() == 1) {
Mask2D mask(*GetMask(0));
mask.Join(*other.GetSingleMask());
SetMask(0, Mask2DPtr(new Mask2D(mask)));
} else if (MaskCount() == 0 && _data.size() == other._data.size()) {
for (size_t i = 0; i != _data.size(); ++i)
_data[i]._flagging = other._data[i]._flagging;
} else {
throw std::runtime_error(
"Joining time frequency flagging with incompatible structures");
}
}
std::vector<std::complex<num_t>> ToComplexVector(
const TimeFrequencyData& tf_data) {
if (tf_data.ComplexRepresentation() != TimeFrequencyData::ComplexParts)
throw std::runtime_error(
"Can't convert non-complex data into a complex vector");
const size_t n_pol = tf_data.PolarizationCount();
const size_t width = tf_data.ImageWidth();
const size_t height = tf_data.ImageHeight();
std::vector<std::complex<num_t>> data(n_pol * width * height);
for (size_t pol = 0; pol != n_pol; ++pol) {
const TimeFrequencyData pol_data = tf_data.MakeFromPolarizationIndex(pol);
const Image2DCPtr real = pol_data.GetImage(0);
const Image2DCPtr imaginary = pol_data.GetImage(1);
size_t index = pol * width * height;
for (size_t y = 0; y != height; ++y) {
for (size_t x = 0; x != width; ++x) {
data[index] = {real->Value(x, y), imaginary->Value(x, y)};
++index;
}
}
}
return data;
}
TimeFrequencyData ElementWiseDivide(const TimeFrequencyData& lhs,
const TimeFrequencyData& rhs) {
if (lhs.ImageCount() != rhs.ImageCount() ||
lhs.ComplexRepresentation() != rhs.ComplexRepresentation()) {
throw std::runtime_error(
"Can not element-wise divide time-frequency data: inputs do not have "
"the same number of polarizations or complex representation!");
}
if (lhs.ImageWidth() != rhs.ImageWidth() ||
lhs.ImageHeight() != rhs.ImageHeight())
throw std::runtime_error(
"Can not element-wise divide time-frequency data: inputs have "
"different sizes.");
TimeFrequencyData data(lhs);
for (size_t pol_index = 0; pol_index != data.PolarizationCount();
++pol_index) {
TimeFrequencyData lhs_pol = lhs.MakeFromPolarizationIndex(pol_index);
const TimeFrequencyData rhs_pol = rhs.MakeFromPolarizationIndex(pol_index);
if (lhs_pol.ImageCount() == 2) {
DivideComplexSinglePolarization(lhs_pol, rhs_pol);
} else {
DivideRealSinglePolarization(lhs_pol, rhs_pol);
}
data.SetPolarizationData(pol_index, std::move(lhs_pol));
}
return data;
}
TimeFrequencyData ElementWiseNorm(const TimeFrequencyData& data) {
if (data.ComplexRepresentation() == TimeFrequencyData::ComplexParts) {
std::vector<Image2DCPtr> norm_images;
norm_images.reserve(data.PolarizationCount());
for (size_t pol_index = 0; pol_index != data.PolarizationCount();
++pol_index) {
TimeFrequencyData pol = data.MakeFromPolarizationIndex(pol_index);
Image2DCPtr real = pol.GetImage(0);
Image2DCPtr imaginary = pol.GetImage(1);
const size_t width = pol.ImageWidth();
const size_t height = pol.ImageHeight();
Image2DPtr norm_image = Image2D::CreateUnsetImagePtr(width, height);
for (size_t y = 0; y != height; ++y) {
for (size_t x = 0; x != width; ++x) {
const std::complex<num_t> z(real->Value(x, y),
imaginary->Value(x, y));
norm_image->SetValue(x, y, std::norm(z));
}
}
norm_images.emplace_back(std::move(norm_image));
}
return TimeFrequencyData(TimeFrequencyData::AmplitudePart,
data.Polarizations().data(),
data.PolarizationCount(), norm_images.data());
} else {
TimeFrequencyData result = data;
for (size_t pol_index = 0; pol_index != data.PolarizationCount();
++pol_index) {
TimeFrequencyData pol = data.MakeFromPolarizationIndex(pol_index);
Image2DCPtr values = pol.GetImage(0);
const size_t width = values->Width();
const size_t height = values->Height();
Image2DPtr new_values = Image2D::CreateUnsetImagePtr(width, height);
for (size_t y = 0; y != height; ++y) {
for (size_t x = 0; x != width; ++x) {
new_values->SetValue(x, y, std::norm(values->Value(x, y)));
}
}
pol.SetImage(0, new_values);
result.SetPolarizationData(pol_index, pol);
}
return result;
}
}
TimeFrequencyData ElementWiseSqrt(const TimeFrequencyData& data) {
TimeFrequencyData result = data;
for (size_t pol_index = 0; pol_index != data.PolarizationCount();
++pol_index) {
TimeFrequencyData pol = data.MakeFromPolarizationIndex(pol_index);
const size_t width = pol.ImageWidth();
const size_t height = pol.ImageHeight();
if (pol.ImageCount() == 2) {
Image2DCPtr real = pol.GetImage(0);
Image2DCPtr imaginary = pol.GetImage(1);
Image2DPtr new_real = Image2D::CreateUnsetImagePtr(width, height);
Image2DPtr new_imaginary = Image2D::CreateUnsetImagePtr(width, height);
for (size_t y = 0; y != height; ++y) {
for (size_t x = 0; x != width; ++x) {
const std::complex<num_t> z(real->Value(x, y),
imaginary->Value(x, y));
const std::complex<num_t> sqrt = std::sqrt(z);
new_real->SetValue(x, y, sqrt.real());
new_imaginary->SetValue(x, y, sqrt.imag());
}
}
pol.SetImage(0, new_real);
pol.SetImage(1, new_imaginary);
} else {
Image2DCPtr values = pol.GetImage(0);
Image2DPtr new_values = Image2D::CreateUnsetImagePtr(width, height);
for (size_t y = 0; y != height; ++y) {
for (size_t x = 0; x != width; ++x) {
new_values->SetValue(x, y, std::sqrt(values->Value(x, y)));
}
}
pol.SetImage(0, new_values);
}
result.SetPolarizationData(pol_index, pol);
}
return result;
}
|