1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
|
#ifndef TIMEFREQUENCYDATA_H
#define TIMEFREQUENCYDATA_H
#include <array>
#include <string>
#include <vector>
#include <utility>
#include <sstream>
#include <stdexcept>
#include "image2d.h"
#include "mask2d.h"
#include <aocommon/polarization.h>
class TimeFrequencyData {
public:
enum ComplexRepresentation {
PhasePart,
AmplitudePart,
RealPart,
ImaginaryPart,
ComplexParts
};
TimeFrequencyData() : _complexRepresentation(AmplitudePart), _data() {}
TimeFrequencyData(ComplexRepresentation complexRepresentation,
aocommon::PolarizationEnum polarizationType,
const Image2DCPtr& image)
: _complexRepresentation(complexRepresentation) {
if (complexRepresentation == ComplexParts)
throw std::runtime_error(
"Incorrect construction of time/frequency data: trying to create "
"complex representation from single image");
_data.emplace_back(polarizationType, image);
}
TimeFrequencyData(aocommon::PolarizationEnum polarizationType,
const Image2DCPtr& real, const Image2DCPtr& imaginary)
: _complexRepresentation(ComplexParts) {
_data.emplace_back(polarizationType, real, imaginary);
}
TimeFrequencyData(ComplexRepresentation complexRepresentation,
aocommon::PolarizationEnum polarizationA,
const Image2DCPtr& imageA,
aocommon::PolarizationEnum polarizationB,
const Image2DCPtr& imageB)
: _complexRepresentation(complexRepresentation) {
_data.reserve(2);
_data.emplace_back(polarizationA, imageA);
_data.emplace_back(polarizationB, imageB);
}
TimeFrequencyData(aocommon::PolarizationEnum polarizationA,
const Image2DCPtr& realA, const Image2DCPtr& imaginaryA,
aocommon::PolarizationEnum polarizationB,
const Image2DCPtr& realB, const Image2DCPtr& imaginaryB)
: _complexRepresentation(ComplexParts) {
_data.reserve(2);
_data.emplace_back(polarizationA, realA, imaginaryA);
_data.emplace_back(polarizationB, realB, imaginaryB);
}
TimeFrequencyData(ComplexRepresentation complexRepresentation,
const aocommon::PolarizationEnum* polarizations,
size_t polarizationCount, const Image2DCPtr* images)
: _complexRepresentation(complexRepresentation) {
_data.reserve(polarizationCount);
if (complexRepresentation == ComplexParts) {
for (size_t p = 0; p != polarizationCount; p++)
_data.emplace_back(polarizations[p], images[p * 2], images[p * 2 + 1]);
} else {
for (size_t p = 0; p != polarizationCount; p++)
_data.emplace_back(polarizations[p], images[p]);
}
}
TimeFrequencyData(const aocommon::PolarizationEnum* polarizations,
size_t polarizationCount, const Image2DCPtr* realImages,
const Image2DCPtr* imaginaryImages)
: _complexRepresentation(ComplexParts) {
_data.reserve(polarizationCount);
for (size_t p = 0; p != polarizationCount; p++)
_data.emplace_back(polarizations[p], realImages[p], imaginaryImages[p]);
}
TimeFrequencyData(const aocommon::PolarizationEnum* polarizations,
size_t polarizationCount, const Image2DPtr* realImages,
const Image2DPtr* imaginaryImages)
: _complexRepresentation(ComplexParts) {
_data.reserve(polarizationCount);
for (size_t p = 0; p != polarizationCount; p++)
_data.emplace_back(polarizations[p], realImages[p], imaginaryImages[p]);
}
static TimeFrequencyData FromLinear(
ComplexRepresentation complexRepresentation, const Image2DCPtr& xx,
const Image2DCPtr& xy, const Image2DCPtr& yx, const Image2DCPtr& yy) {
TimeFrequencyData data;
data._complexRepresentation = complexRepresentation;
if (complexRepresentation == ComplexParts)
throw std::runtime_error(
"Incorrect construction of time/frequency data: trying to create "
"complex full-Stokes representation from four images");
data._data.reserve(4);
data._data.emplace_back(aocommon::Polarization::XX, xx);
data._data.emplace_back(aocommon::Polarization::XY, xy);
data._data.emplace_back(aocommon::Polarization::YX, yx);
data._data.emplace_back(aocommon::Polarization::YY, yy);
return data;
}
static TimeFrequencyData FromLinear(
const Image2DCPtr& xxReal, const Image2DCPtr& xxImag,
const Image2DCPtr& xyReal, const Image2DCPtr& xyImag,
const Image2DCPtr& yxReal, const Image2DCPtr& yxImag,
const Image2DCPtr& yyReal, const Image2DCPtr& yyImag) {
TimeFrequencyData data;
data._complexRepresentation = ComplexParts;
data._data.reserve(4);
data._data.emplace_back(aocommon::Polarization::XX, xxReal, xxImag);
data._data.emplace_back(aocommon::Polarization::XY, xyReal, xyImag);
data._data.emplace_back(aocommon::Polarization::YX, yxReal, yxImag);
data._data.emplace_back(aocommon::Polarization::YY, yyReal, yyImag);
return data;
}
static TimeFrequencyData FromLinear(size_t polarizationCount,
Image2DCPtr* realImages,
Image2DCPtr* imagImages) {
switch (polarizationCount) {
case 1:
return TimeFrequencyData(aocommon::Polarization::StokesI, realImages[0],
imagImages[0]);
case 2:
return TimeFrequencyData(aocommon::Polarization::XX, realImages[0],
imagImages[0], aocommon::Polarization::YY,
realImages[1], imagImages[1]);
case 4:
return FromLinear(realImages[0], imagImages[0], realImages[1],
imagImages[1], realImages[2], imagImages[2],
realImages[3], imagImages[3]);
default:
throw std::runtime_error(
"Can not create TimeFrequencyData structure with polarization type "
"other than 1, 2 or 4 polarizations using FromLinear().");
}
}
bool IsEmpty() const { return _data.empty(); }
bool HasPolarization(aocommon::PolarizationEnum polarization) const {
for (const PolarizedTimeFrequencyData& data : _data)
if (data._polarization == polarization) return true;
return false;
}
aocommon::PolarizationEnum GetPolarization(size_t index) const {
return _data[index]._polarization;
}
bool HasXX() const { return HasPolarization(aocommon::Polarization::XX); }
bool HasXY() const { return HasPolarization(aocommon::Polarization::XY); }
bool HasYX() const { return HasPolarization(aocommon::Polarization::YX); }
bool HasYY() const { return HasPolarization(aocommon::Polarization::YY); }
/**
* This function returns a new Image2D that contains
* an image that can be used best for thresholding-like
* RFI methods, or visualization. The encapsulated data
* may be converted in order to do so.
* @return A new image containing the TF-data.
*/
Image2DCPtr GetSingleImage() const {
switch (_complexRepresentation) {
case PhasePart:
case AmplitudePart:
case RealPart:
case ImaginaryPart:
return GetSingleImageFromSingleComplexPart();
case ComplexParts:
return GetSingleAbsoluteFromComplex();
}
throw std::runtime_error("Incorrect complex representation");
}
Mask2DCPtr GetSingleMask() const { return GetCombinedMask(); }
std::array<Image2DCPtr, 2> GetSingleComplexImage() const {
if (_complexRepresentation != ComplexParts)
throw std::runtime_error(
"Trying to create single complex image, but no complex data "
"available");
if (_data.size() != 1) {
return std::array<Image2DCPtr, 2>{
{Make(TimeFrequencyData::RealPart).GetSingleImage(),
Make(TimeFrequencyData::ImaginaryPart).GetSingleImage()}};
} else {
if (_data[0]._images[0] == nullptr || _data[0]._images[1] == nullptr)
throw std::runtime_error("Requesting non-existing image");
return std::array<Image2DCPtr, 2>{
{_data[0]._images[0], _data[0]._images[1]}};
}
}
void Set(aocommon::PolarizationEnum polarizationType, const Image2DCPtr& real,
const Image2DCPtr& imaginary) {
_complexRepresentation = ComplexParts;
_data.clear();
_data.emplace_back(polarizationType, real, imaginary);
}
void SetNoMask() noexcept {
for (PolarizedTimeFrequencyData& data : _data) data._flagging = nullptr;
}
void SetGlobalMask(const Mask2DCPtr& mask) {
SetNoMask();
for (PolarizedTimeFrequencyData& data : _data) data._flagging = mask;
}
Mask2DCPtr GetMask(aocommon::PolarizationEnum polarization) const {
for (const PolarizedTimeFrequencyData& data : _data) {
if (data._polarization == polarization) {
if (data._flagging == nullptr)
return GetSetMask<false>();
else
return data._flagging;
}
}
return GetSingleMask();
}
void SetIndividualPolarizationMasks(const Mask2DCPtr* maskPerPolarization) {
for (size_t p = 0; p != _data.size(); ++p)
_data[p]._flagging = maskPerPolarization[p];
}
void SetIndividualPolarizationMasks(const Mask2DPtr* maskPerPolarization) {
for (size_t p = 0; p != _data.size(); ++p)
_data[p]._flagging = maskPerPolarization[p];
}
void SetIndividualPolarizationMasks(const Mask2DCPtr& maskA,
const Mask2DCPtr& maskB) {
if (_data.size() != 2)
throw std::runtime_error(
"Trying to set two individual mask in non-matching time frequency "
"data");
_data[0]._flagging = maskA;
_data[1]._flagging = maskB;
}
void SetIndividualPolarizationMasks(const Mask2DCPtr& maskA,
const Mask2DCPtr& maskB,
const Mask2DCPtr& maskC,
const Mask2DCPtr& maskD) {
if (_data.size() != 4)
throw std::runtime_error(
"Trying to set four individual masks in non-matching time frequency "
"data");
_data[0]._flagging = maskA;
_data[1]._flagging = maskB;
_data[2]._flagging = maskC;
_data[3]._flagging = maskD;
}
static TimeFrequencyData MakeZeroLinearData(size_t width, size_t height);
TimeFrequencyData Make(ComplexRepresentation representation) const;
TimeFrequencyData Make(aocommon::PolarizationEnum polarization) const {
for (const PolarizedTimeFrequencyData& data : _data) {
if (data._polarization == polarization)
return TimeFrequencyData(_complexRepresentation, data);
}
TimeFrequencyData newData;
size_t xxPol = GetPolarizationIndex(aocommon::Polarization::XX),
xyPol = GetPolarizationIndex(aocommon::Polarization::XY),
yxPol = GetPolarizationIndex(aocommon::Polarization::YX),
yyPol = GetPolarizationIndex(aocommon::Polarization::YY);
bool hasLinear = xxPol < _data.size() || xyPol < _data.size();
if (hasLinear) {
if (_complexRepresentation == ComplexParts) {
switch (polarization) {
case aocommon::Polarization::StokesI:
newData = TimeFrequencyData(aocommon::Polarization::StokesI,
getFirstSum(xxPol, yyPol),
getSecondSum(xxPol, yyPol));
break;
case aocommon::Polarization::StokesQ:
newData = TimeFrequencyData(aocommon::Polarization::StokesQ,
getFirstDiff(xxPol, yyPol),
getSecondDiff(xxPol, yyPol));
break;
case aocommon::Polarization::StokesU:
newData = TimeFrequencyData(aocommon::Polarization::StokesU,
getFirstSum(xyPol, yxPol),
getSecondSum(xyPol, yxPol));
break;
case aocommon::Polarization::StokesV:
newData = TimeFrequencyData(aocommon::Polarization::StokesV,
getNegRealPlusImag(xyPol, yxPol),
getRealMinusImag(xyPol, yxPol));
break;
default:
throw std::runtime_error(
"Polarization not available or not implemented");
}
} else { // _complexRepresentation != ComplexParts
// TODO should be done on only real or imaginary
switch (polarization) {
case aocommon::Polarization::StokesI:
newData = TimeFrequencyData(_complexRepresentation,
aocommon::Polarization::StokesI,
getFirstSum(xxPol, yyPol));
break;
case aocommon::Polarization::StokesQ:
newData = TimeFrequencyData(_complexRepresentation,
aocommon::Polarization::StokesQ,
getFirstDiff(xxPol, yyPol));
break;
// this is not correct, but it is useful for visualization
case aocommon::Polarization::StokesU:
newData = TimeFrequencyData(_complexRepresentation,
aocommon::Polarization::StokesU,
getFirstSum(xyPol, yxPol));
break;
default:
throw std::runtime_error(
"Requested polarization type not available in time frequency "
"data");
}
}
} else {
size_t rrPol = GetPolarizationIndex(aocommon::Polarization::RR),
rlPol = GetPolarizationIndex(aocommon::Polarization::RL),
lrPol = GetPolarizationIndex(aocommon::Polarization::LR),
llPol = GetPolarizationIndex(aocommon::Polarization::LL);
bool hasCircular = rrPol < _data.size() || rlPol < _data.size();
if (hasCircular) {
if (_complexRepresentation == ComplexParts) {
switch (polarization) {
case aocommon::Polarization::StokesI:
newData = TimeFrequencyData(aocommon::Polarization::StokesI,
getFirstSum(rrPol, llPol),
getSecondSum(rrPol, llPol));
break;
case aocommon::Polarization::StokesQ: // Q = RL + LR
newData = TimeFrequencyData(aocommon::Polarization::StokesQ,
getFirstSum(rlPol, rlPol),
getSecondSum(rlPol, lrPol));
break;
case aocommon::Polarization::StokesU: // U_r = RL_i - LR_i, U_i =
// -RL_r + LR_r
newData = TimeFrequencyData(aocommon::Polarization::StokesU,
getSecondDiff(rlPol, lrPol),
getFirstDiff(lrPol, rlPol));
break;
case aocommon::Polarization::StokesV: // V = RR - LL
newData = TimeFrequencyData(aocommon::Polarization::StokesV,
getFirstDiff(rrPol, llPol),
getSecondDiff(rrPol, llPol));
break;
default:
throw std::runtime_error(
"Requested polarization type not available in time frequency "
"data");
break;
}
} else {
switch (polarization) {
case aocommon::Polarization::StokesI:
newData = TimeFrequencyData(_complexRepresentation,
aocommon::Polarization::StokesI,
getFirstSum(rrPol, llPol));
break;
default:
throw std::runtime_error(
"Requested conversion is not implemented for circular "
"polarizations");
}
}
} else {
throw std::runtime_error(
"Trying to convert the polarization in time frequency data in an "
"invalid way");
}
}
newData.SetGlobalMask(GetMask(polarization));
return newData;
}
Image2DCPtr GetRealPart() const {
if (_data.size() != 1) {
throw std::runtime_error(
"This tfdata contains !=1 polarizations; which real part should I "
"return?");
} else if (_complexRepresentation == ComplexParts ||
_complexRepresentation == RealPart) {
return _data[0]._images[0];
} else {
throw std::runtime_error(
"Trying to retrieve real part from time frequency data in which "
"values are not stored as complex or reals");
}
}
Image2DCPtr GetImaginaryPart() const {
if (_data.size() != 1) {
throw std::runtime_error(
"This tfdata contains !=1 polarizations; which imaginary part should "
"I return?");
} else if (_complexRepresentation == ComplexParts) {
return _data[0]._images[1];
} else if (_complexRepresentation == ImaginaryPart) {
return _data[0]._images[0];
} else {
throw std::runtime_error(
"Trying to retrieve imaginary part from time frequency data in which "
"values are not stored as complex or imaginary representation");
}
}
size_t ImageWidth() const {
if (!_data.empty() && _data[0]._images[0] != nullptr)
return _data[0]._images[0]->Width();
else
return 0;
}
size_t ImageHeight() const {
if (!_data.empty() && _data[0]._images[0] != nullptr)
return _data[0]._images[0]->Height();
else
return 0;
}
enum ComplexRepresentation ComplexRepresentation() const {
return _complexRepresentation;
}
std::vector<aocommon::PolarizationEnum> Polarizations() const {
std::vector<aocommon::PolarizationEnum> pols;
for (const PolarizedTimeFrequencyData& data : _data)
pols.push_back(data._polarization);
return pols;
}
void Subtract(const TimeFrequencyData& rhs) {
if (rhs._data.size() != _data.size() ||
rhs._complexRepresentation != _complexRepresentation) {
std::stringstream s;
s << "Can not subtract time-frequency data: they do not have the same "
"number of polarizations or complex representation! ("
<< rhs._data.size() << " vs. " << _data.size() << ")";
throw std::runtime_error(s.str());
}
for (size_t i = 0; i != _data.size(); ++i) {
if (_data[i]._images[0] == nullptr)
throw std::runtime_error("Can't subtract TFs with unset image data");
_data[i]._images[0].reset(new Image2D(Image2D::MakeFromDiff(
*_data[i]._images[0], *rhs._data[i]._images[0])));
if (_data[i]._images[1])
_data[i]._images[1].reset(new Image2D(Image2D::MakeFromDiff(
*_data[i]._images[1], *rhs._data[i]._images[1])));
}
}
void SubtractAsRHS(const TimeFrequencyData& lhs) {
if (lhs._data.size() != _data.size() ||
lhs._complexRepresentation != _complexRepresentation) {
std::stringstream s;
s << "Can not subtract time-frequency data: they do not have the same "
"number of polarizations or complex representation! ("
<< lhs._data.size() << " vs. " << _data.size() << ")";
throw std::runtime_error(s.str());
}
for (size_t i = 0; i != _data.size(); ++i) {
if (_data[i]._images[0] == nullptr)
throw std::runtime_error("Can't subtract TFs with unset image data");
_data[i]._images[0].reset(new Image2D(Image2D::MakeFromDiff(
*lhs._data[i]._images[0], *_data[i]._images[0])));
if (_data[i]._images[1])
_data[i]._images[1].reset(new Image2D(Image2D::MakeFromDiff(
*lhs._data[i]._images[1], *_data[i]._images[1])));
}
}
static TimeFrequencyData MakeFromDiff(const TimeFrequencyData& lhs,
const TimeFrequencyData& rhs) {
if (lhs._data.size() != rhs._data.size() ||
lhs._complexRepresentation != rhs._complexRepresentation) {
std::stringstream s;
s << "Can not subtract time-frequency data: they do not have the same "
"number of polarizations or complex representation! ("
<< lhs._data.size() << " vs. " << rhs._data.size() << ")";
throw std::runtime_error(s.str());
}
TimeFrequencyData data(lhs);
for (size_t i = 0; i < lhs._data.size(); ++i) {
if (lhs._data[i]._images[0] == nullptr)
throw std::runtime_error("Can't subtract TFs with unset image data");
data._data[i]._images[0].reset(new Image2D(Image2D::MakeFromDiff(
*lhs._data[i]._images[0], *rhs._data[i]._images[0])));
if (lhs._data[i]._images[1])
data._data[i]._images[1].reset(new Image2D(Image2D::MakeFromDiff(
*lhs._data[i]._images[1], *rhs._data[i]._images[1])));
}
return data;
}
static TimeFrequencyData MakeFromSum(const TimeFrequencyData& lhs,
const TimeFrequencyData& rhs) {
if (lhs._data.size() != rhs._data.size() ||
lhs._complexRepresentation != rhs._complexRepresentation) {
std::stringstream s;
s << "Can not add time-frequency data: they do not have the same number "
"of polarizations or complex representation! ("
<< lhs._data.size() << " vs. " << rhs._data.size() << ")";
throw std::runtime_error(s.str());
}
TimeFrequencyData data(lhs);
for (size_t i = 0; i < lhs._data.size(); ++i) {
if (lhs._data[i]._images[0] == nullptr)
throw std::runtime_error("Can't add TFs with unset image data");
data._data[i]._images[0].reset(new Image2D(Image2D::MakeFromSum(
*lhs._data[i]._images[0], *rhs._data[i]._images[0])));
if (lhs._data[i]._images[1])
data._data[i]._images[1].reset(new Image2D(Image2D::MakeFromSum(
*lhs._data[i]._images[1], *rhs._data[i]._images[1])));
}
return data;
}
size_t ImageCount() const {
size_t images = 0;
for (const PolarizedTimeFrequencyData& data : _data) {
if (data._images[0]) ++images;
if (data._images[1]) ++images;
}
return images;
}
size_t MaskCount() const {
size_t masks = 0;
for (const PolarizedTimeFrequencyData& data : _data)
if (data._flagging) ++masks;
return masks;
}
const Image2DCPtr& GetImage(size_t imageIndex) const {
size_t index = 0;
for (const PolarizedTimeFrequencyData& data : _data) {
if (data._images[0]) {
if (index == imageIndex) return data._images[0];
++index;
}
if (data._images[1]) {
if (index == imageIndex) return data._images[1];
++index;
}
}
throw std::runtime_error("Invalid image index in GetImage()");
}
const Mask2DCPtr& GetMask(size_t maskIndex) const {
size_t index = 0;
for (const PolarizedTimeFrequencyData& data : _data) {
if (data._flagging) {
if (index == maskIndex) return data._flagging;
++index;
}
}
std::ostringstream msg;
msg << "Invalid mask index of " << maskIndex
<< " in GetMask(): mask count is " << MaskCount();
throw std::runtime_error(msg.str());
}
void SetImage(size_t imageIndex, const Image2DCPtr& image) {
size_t index = 0;
for (PolarizedTimeFrequencyData& data : _data) {
if (data._images[0]) {
if (index == imageIndex) {
data._images[0] = image;
return;
}
++index;
}
if (data._images[1]) {
if (index == imageIndex) {
data._images[1] = image;
return;
}
++index;
}
}
throw std::runtime_error("Invalid image index in SetImage()");
}
void SetImage(size_t imageIndex, Image2DCPtr&& image) {
size_t index = 0;
for (PolarizedTimeFrequencyData& data : _data) {
if (data._images[0]) {
if (index == imageIndex) {
data._images[0] = std::move(image);
return;
}
++index;
}
if (data._images[1]) {
if (index == imageIndex) {
data._images[1] = std::move(image);
return;
}
++index;
}
}
throw std::runtime_error("Invalid image index in SetImage()");
}
void SetMask(size_t maskIndex, const Mask2DCPtr& mask) {
size_t index = 0;
for (PolarizedTimeFrequencyData& data : _data) {
if (data._flagging) {
if (index == maskIndex) {
data._flagging = mask;
return;
}
++index;
}
}
throw std::runtime_error("Invalid mask index in SetMask()");
}
void SetMask(size_t maskIndex, Mask2DCPtr&& mask) {
size_t index = 0;
for (PolarizedTimeFrequencyData& data : _data) {
if (data._flagging) {
if (index == maskIndex) {
data._flagging = std::move(mask);
return;
}
++index;
}
}
throw std::runtime_error("Invalid mask index in SetMask()");
}
void SetMask(const TimeFrequencyData& source) { source.CopyFlaggingTo(this); }
static TimeFrequencyData MakeFromComplexCombination(
const TimeFrequencyData& real, const TimeFrequencyData& imaginary);
static TimeFrequencyData MakeFromPolarizationCombination(
const TimeFrequencyData& xx, const TimeFrequencyData& xy,
const TimeFrequencyData& yx, const TimeFrequencyData& yy);
static TimeFrequencyData MakeFromPolarizationCombination(
const TimeFrequencyData& first, const TimeFrequencyData& second);
void SetImagesToZero();
template <bool Value>
void SetMasksToValue() {
if (!IsEmpty()) {
Mask2DPtr mask =
Mask2D::CreateSetMaskPtr<Value>(ImageWidth(), ImageHeight());
for (PolarizedTimeFrequencyData& data : _data) {
data._flagging = mask;
}
}
}
void MultiplyImages(long double factor);
void JoinMask(const TimeFrequencyData& other);
void Trim(unsigned timeStart, unsigned freqStart, unsigned timeEnd,
unsigned freqEnd) {
for (PolarizedTimeFrequencyData& data : _data) {
if (data._images[0])
data._images[0].reset(new Image2D(
data._images[0]->Trim(timeStart, freqStart, timeEnd, freqEnd)));
if (data._images[1])
data._images[1].reset(new Image2D(
data._images[1]->Trim(timeStart, freqStart, timeEnd, freqEnd)));
if (data._flagging)
data._flagging.reset(new Mask2D(
data._flagging->Trim(timeStart, freqStart, timeEnd, freqEnd)));
}
}
std::string Description() const {
std::ostringstream s;
switch (_complexRepresentation) {
case RealPart:
s << "Real component of ";
break;
case ImaginaryPart:
s << "Imaginary component of ";
break;
case PhasePart:
s << "Phase of ";
break;
case AmplitudePart:
s << "Amplitude of ";
break;
case ComplexParts:
break;
}
if (_data.empty()) {
s << "empty";
} else {
s << "("
<< aocommon::Polarization::TypeToFullString(_data[0]._polarization);
for (size_t i = 1; i != _data.size(); ++i)
s << ","
<< aocommon::Polarization::TypeToFullString(_data[i]._polarization);
s << ")";
}
return s.str();
}
size_t PolarizationCount() const { return _data.size(); }
TimeFrequencyData MakeFromPolarizationIndex(size_t index) const {
return TimeFrequencyData(_complexRepresentation, _data[index]);
}
void SetPolarizationData(size_t polarizationIndex,
const TimeFrequencyData& data) {
if (data.PolarizationCount() != 1)
throw std::runtime_error(
"Trying to set multiple polarizations by single polarization index");
else if (data.ComplexRepresentation() != ComplexRepresentation())
throw std::runtime_error(
"Trying to combine TFData's with different complex representations");
else
_data[polarizationIndex] = data._data[0];
}
void SetPolarizationData(size_t polarizationIndex, TimeFrequencyData&& data) {
if (data.PolarizationCount() != 1) {
throw std::runtime_error(
"Trying to set multiple polarizations by single polarization index");
} else if (data.ComplexRepresentation() != ComplexRepresentation()) {
throw std::runtime_error(
"Trying to combine TFData's with different complex representations");
} else {
_data[polarizationIndex] = std::move(data._data[0]);
data._data.clear();
}
}
void SetImageSize(size_t width, size_t height) {
for (size_t i = 0; i < _data.size(); ++i) {
if (_data[i]._images[0])
_data[i]._images[0] = Image2D::CreateUnsetImagePtr(width, height);
if (_data[i]._images[1])
_data[i]._images[1] = Image2D::CreateUnsetImagePtr(width, height);
if (_data[i]._flagging)
_data[i]._flagging = Mask2D::CreateUnsetMaskPtr(width, height);
}
}
void CopyFrom(const TimeFrequencyData& source, size_t destX, size_t destY) {
if (source._data.size() != _data.size())
throw std::runtime_error("CopyFrom: tf data do not match");
for (size_t i = 0; i < _data.size(); ++i) {
if (_data[i]._images[0]) {
Image2D image(*_data[i]._images[0]);
image.CopyFrom(*source._data[i]._images[0], destX, destY);
_data[i]._images[0].reset(new Image2D(std::move(image)));
}
if (_data[i]._images[1]) {
Image2D image(*_data[i]._images[1]);
image.CopyFrom(*source._data[i]._images[1], destX, destY);
_data[i]._images[1].reset(new Image2D(std::move(image)));
}
if (_data[i]._flagging) {
Mask2D mask(*_data[i]._flagging);
mask.CopyFrom(*source._data[i]._flagging, destX, destY);
_data[i]._flagging.reset(new Mask2D(std::move(mask)));
}
}
}
/**
* Will return true when this is the imaginary part of the visibilities. Will
* throw an exception when the data is neither real nor imaginary.
*/
bool IsImaginary() const {
if (ComplexRepresentation() == RealPart)
return false;
else if (ComplexRepresentation() == ImaginaryPart)
return true;
else
throw std::runtime_error("Data is not real or imaginary");
}
/**
* Returns the data index of the given polarization, or _data.size() if
* not found.
*/
size_t GetPolarizationIndex(aocommon::PolarizationEnum polarization) const {
for (size_t i = 0; i != _data.size(); ++i)
if (_data[i]._polarization == polarization) return i;
return _data.size();
}
private:
Image2DCPtr GetSingleAbsoluteFromComplex() const {
if (_data.size() == 4)
return GetAbsoluteFromComplex(getFirstSum(0, 3), getSecondSum(0, 3));
else if (_data.size() == 2)
return GetAbsoluteFromComplex(getFirstSum(0, 1), getSecondSum(0, 1));
else
return getAbsoluteFromComplex(0);
}
Image2DCPtr GetSingleImageFromSingleComplexPart() const {
if (_data.size() == 4) {
if (_complexRepresentation == PhasePart)
return getSinglePhaseFromTwoPolPhase(0, 3);
else
return getFirstSum(0, 3);
}
if (_data.size() == 2) {
if (_complexRepresentation == PhasePart)
return getSinglePhaseFromTwoPolPhase(0, 1);
else
return getFirstSum(0, 1);
} else { // if(_data.size() == 1)
return _data[0]._images[0];
}
}
void CopyFlaggingTo(TimeFrequencyData* data) const {
if (MaskCount() == 0) {
data->SetNoMask();
} else if (MaskCount() == 1) {
data->SetGlobalMask(GetMask(0));
} else {
if (_data.size() == data->_data.size()) {
for (size_t i = 0; i != _data.size(); ++i)
data->_data[i]._flagging = _data[i]._flagging;
} else {
throw std::runtime_error(
"Trying to copy flagging from incompatible time frequency data");
}
}
}
Image2DCPtr getAbsoluteFromComplex(size_t polIndex) const {
return GetAbsoluteFromComplex(_data[polIndex]._images[0],
_data[polIndex]._images[1]);
}
Image2DCPtr GetAbsoluteFromComplex(const Image2DCPtr& real,
const Image2DCPtr& imag) const;
Image2DCPtr getFirstSum(size_t dataIndexA, size_t dataIndexB) const {
if (dataIndexA >= _data.size())
throw std::runtime_error("Polarization not available");
if (dataIndexB >= _data.size())
throw std::runtime_error("Polarization not available");
return GetSum(_data[dataIndexA]._images[0], _data[dataIndexB]._images[0]);
}
Image2DCPtr getSecondSum(size_t dataIndexA, size_t dataIndexB) const {
if (dataIndexA >= _data.size())
throw std::runtime_error("Polarization not available");
if (dataIndexB >= _data.size())
throw std::runtime_error("Polarization not available");
return GetSum(_data[dataIndexA]._images[1], _data[dataIndexB]._images[1]);
}
Image2DCPtr getFirstDiff(size_t dataIndexA, size_t dataIndexB) const {
if (dataIndexA >= _data.size())
throw std::runtime_error("Polarization not available");
if (dataIndexB >= _data.size())
throw std::runtime_error("Polarization not available");
return GetDifference(_data[dataIndexA]._images[0],
_data[dataIndexB]._images[0]);
}
Image2DCPtr getSecondDiff(size_t dataIndexA, size_t dataIndexB) const {
if (dataIndexA >= _data.size())
throw std::runtime_error("Polarization not available");
if (dataIndexB >= _data.size())
throw std::runtime_error("Polarization not available");
return GetDifference(_data[dataIndexA]._images[1],
_data[dataIndexB]._images[1]);
}
Image2DCPtr getNegRealPlusImag(size_t xyIndex, size_t yxIndex) const {
if (xyIndex >= _data.size())
throw std::runtime_error("Polarization not available");
if (yxIndex >= _data.size())
throw std::runtime_error("Polarization not available");
return GetNegatedSum(_data[xyIndex]._images[1], _data[yxIndex]._images[0]);
}
Image2DCPtr getRealMinusImag(size_t xyIndex, size_t yxIndex) const {
if (xyIndex >= _data.size())
throw std::runtime_error("Polarization not available");
if (yxIndex >= _data.size())
throw std::runtime_error("Polarization not available");
return GetDifference(_data[xyIndex]._images[0], _data[yxIndex]._images[1]);
}
Image2DCPtr GetSum(const Image2DCPtr& left, const Image2DCPtr& right) const;
Image2DCPtr GetNegatedSum(const Image2DCPtr& left,
const Image2DCPtr& right) const;
Image2DCPtr GetDifference(const Image2DCPtr& left,
const Image2DCPtr& right) const;
Image2DCPtr getSinglePhaseFromTwoPolPhase(size_t polA, size_t polB) const;
// Image2DCPtr GetZeroImage() const;
template <bool InitValue>
Mask2DCPtr GetSetMask() const {
if (ImageWidth() == 0 || ImageHeight() == 0)
throw std::runtime_error("Can't make a mask without an image");
return Mask2D::CreateSetMaskPtr<InitValue>(ImageWidth(), ImageHeight());
}
Mask2DCPtr GetCombinedMask() const;
struct PolarizedTimeFrequencyData {
PolarizedTimeFrequencyData()
: _images{nullptr, nullptr},
_flagging(nullptr),
_polarization(aocommon::Polarization::StokesI) {}
PolarizedTimeFrequencyData(aocommon::PolarizationEnum polarization,
const Image2DCPtr& image)
: _images{image, nullptr},
_flagging(nullptr),
_polarization(polarization) {}
PolarizedTimeFrequencyData(aocommon::PolarizationEnum polarization,
const Image2DCPtr& imageA,
const Image2DCPtr& imageB)
: _images{imageA, imageB},
_flagging(nullptr),
_polarization(polarization) {}
// Second image is only filled when complex representation = complex parts
Image2DCPtr _images[2];
Mask2DCPtr _flagging;
aocommon::PolarizationEnum _polarization;
};
TimeFrequencyData(enum ComplexRepresentation complexRepresentation,
const PolarizedTimeFrequencyData& source)
: _complexRepresentation(complexRepresentation), _data(1, source) {}
enum ComplexRepresentation _complexRepresentation;
std::vector<PolarizedTimeFrequencyData> _data;
};
/**
* Concatenates the data inside the time-frequency data into a single vector.
* The returned vector will be ordered in polarization (major), frequency and
* then time.
*/
std::vector<std::complex<num_t>> ToComplexVector(
const TimeFrequencyData& tf_data);
TimeFrequencyData ElementWiseDivide(const TimeFrequencyData& lhs,
const TimeFrequencyData& rhs);
TimeFrequencyData ElementWiseNorm(const TimeFrequencyData& data);
TimeFrequencyData ElementWiseSqrt(const TimeFrequencyData& data);
#endif
|