1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
#include "testtools.h"
#include "../../structures/image2d.h"
#include "../../structures/mask2d.h"
#include "../../structures/timefrequencydata.h"
#include "../../algorithms/testsetgenerator.h"
#include "../../algorithms/thresholdconfig.h"
#include "../../algorithms/sumthreshold.h"
#include "../../algorithms/sumthresholdmissing.h"
#include <boost/test/unit_test.hpp>
#include <functional>
#include <set>
using aocommon::Polarization;
using algorithms::BackgroundTestSet;
using algorithms::RFITestSet;
using algorithms::SumThreshold;
using algorithms::TestSetGenerator;
using algorithms::ThresholdConfig;
namespace test_tools {
namespace {
constexpr size_t kFeatureSize = 16;
}
void CompareVerticalSumThreshold(SumThresholdFunction algorithm,
const std::set<size_t>& skips) {
const unsigned width = 512, height = 256;
Mask2D mask = Mask2D::MakeUnsetMask(width, height);
Mask2D scratch = Mask2D::MakeUnsetMask(width, height);
Mask2D referenceMask = Mask2D::MakeUnsetMask(width, height);
TimeFrequencyData data = TestSetGenerator::MakeTestSet(
RFITestSet::GaussianBursts, BackgroundTestSet::Empty, width, height);
Image2DCPtr image = data.GetSingleImage();
ThresholdConfig config;
config.InitializeLengthsDefault(9);
num_t mode = image->GetMode();
config.InitializeThresholdsFromFirstThreshold(6.0 * mode,
ThresholdConfig::Rayleigh);
for (unsigned i = 0; i < 9; ++i) {
referenceMask.SetAll<false>();
mask.SetAll<false>();
const unsigned length = config.GetHorizontalLength(i);
const double threshold = config.GetHorizontalThreshold(i);
SumThreshold::VerticalLargeReference(image.get(), &referenceMask, &scratch,
length, threshold);
algorithm(image.get(), &mask, &scratch, length, threshold);
if (skips.find(length) == skips.end()) {
BOOST_CHECK_EQUAL(referenceMask.GetCount<true>(), mask.GetCount<true>());
std::ostringstream str;
str << "referenceMask == mask for length " << length;
BOOST_CHECK_MESSAGE(referenceMask == mask, str.str());
}
}
}
void CompareHorizontalSumThreshold(SumThresholdFunction algorithm) {
const size_t width = 512, height = 256;
Mask2D referenceMask = Mask2D::MakeUnsetMask(width, height),
mask = Mask2D::MakeUnsetMask(width, height),
scratch = Mask2D::MakeUnsetMask(width, height);
TimeFrequencyData data = TestSetGenerator::MakeTestSet(
RFITestSet::GaussianBursts, BackgroundTestSet::Empty, width, height);
Image2DPtr real(Image2D::MakePtr(*data.GetImage(0)));
Image2DPtr imag(Image2D::MakePtr(*data.GetImage(1)));
referenceMask.SwapXY();
mask.SwapXY();
real->Transpose();
imag->Transpose();
Image2DCPtr image =
TimeFrequencyData(Polarization::XX, real, imag).GetSingleImage();
ThresholdConfig config;
config.InitializeLengthsDefault(9);
num_t mode = image->GetMode();
config.InitializeThresholdsFromFirstThreshold(6.0 * mode,
ThresholdConfig::Rayleigh);
for (size_t i = 0; i < 9; ++i) {
referenceMask.SetAll<false>();
mask.SetAll<false>();
const size_t length = config.GetHorizontalLength(i);
const double threshold = config.GetHorizontalThreshold(i);
SumThreshold::HorizontalLargeReference(image.get(), &referenceMask,
&scratch, length, threshold);
algorithm(image.get(), &mask, &scratch, length, threshold);
std::ostringstream str;
str << "referenceMask == mask for length " << length;
BOOST_CHECK_MESSAGE(mask == referenceMask, str.str());
}
}
void IntroduceGap(const Image2D& input, const Mask2D& mask, Image2D& mInput,
Mask2D& mMask, Mask2D& missing) {
const size_t feature_size = (kFeatureSize > input.Width()) ? 1 : kFeatureSize;
missing = Mask2D::MakeSetMask<false>(input.Width() + feature_size,
input.Height() + feature_size);
mMask = Mask2D::MakeUnsetMask(mask.Width() + feature_size,
mask.Height() + feature_size);
mInput = Image2D::MakeUnsetImage(input.Width() + feature_size,
input.Height() + feature_size);
const size_t x1 = input.Width() / 2;
const size_t x2 = x1 + feature_size;
const size_t y1 = input.Height() / 2;
const size_t y2 = y1 + feature_size;
for (size_t y = 0; y != y1; ++y) {
const num_t* dataRowIn = input.ValuePtr(0, y);
num_t* dataRowOut = mInput.ValuePtr(0, y);
std::copy_n(dataRowIn, x1, dataRowOut);
std::copy_n(dataRowIn, feature_size, dataRowOut + x1);
std::copy_n(dataRowIn + x1, input.Width() - x1, dataRowOut + x2);
const bool* maskRowIn = mask.ValuePtr(0, y);
bool* maskRowOut = mMask.ValuePtr(0, y);
std::copy_n(maskRowIn, x1, maskRowOut);
std::copy_n(maskRowIn, feature_size, maskRowOut + x1);
std::copy_n(maskRowIn + x1, input.Width() - x1, maskRowOut + x2);
std::fill_n(missing.ValuePtr(x1, y), feature_size, true);
}
for (size_t y = y1; y != y2; ++y) {
const num_t* rowIn = input.ValuePtr(0, y);
num_t* rowOut = mInput.ValuePtr(0, y);
std::copy_n(rowIn, x1, rowOut);
std::copy_n(rowIn, feature_size, rowOut + x1);
std::copy_n(rowIn + x1, input.Width() - x1, rowOut + x2);
std::fill_n(missing.ValuePtr(0, y), missing.Width(), true);
}
for (size_t y = y1; y != input.Height(); ++y) {
const num_t* dataRowIn = input.ValuePtr(0, y);
num_t* dataRowOut = mInput.ValuePtr(0, y + feature_size);
std::copy_n(dataRowIn, x1, dataRowOut);
std::copy_n(dataRowIn, feature_size, dataRowOut + x1);
std::copy_n(dataRowIn + x1, input.Width() - x1, dataRowOut + x2);
const bool* maskRowIn = mask.ValuePtr(0, y);
bool* maskRowOut = mMask.ValuePtr(0, y + feature_size);
std::copy_n(maskRowIn, x1, maskRowOut);
std::copy_n(maskRowIn, feature_size, maskRowOut + x1);
std::copy_n(maskRowIn + x1, input.Width() - x1, maskRowOut + x2);
std::fill_n(missing.ValuePtr(x1, y), feature_size, true);
}
}
void RemoveGap(Mask2D& mask, const Mask2D& mMask) {
const size_t feature_size = (kFeatureSize > mask.Width()) ? 1 : kFeatureSize;
const size_t x1 = mask.Width() / 2;
const size_t x2 = std::min(x1 + feature_size, mask.Width());
const size_t y1 = mask.Height() / 2;
for (size_t y = 0; y != y1; ++y) {
const bool* maskRowIn = mMask.ValuePtr(0, y);
bool* maskRowOut = mask.ValuePtr(0, y);
std::copy_n(maskRowIn, x1, maskRowOut);
std::copy_n(maskRowIn + x2, mask.Width() - x1, maskRowOut + x1);
}
for (size_t y = y1; y != mask.Height(); ++y) {
const bool* maskRowIn = mMask.ValuePtr(0, y + feature_size);
bool* maskRowOut = mask.ValuePtr(0, y);
std::copy_n(maskRowIn, x1, maskRowOut);
std::copy_n(maskRowIn + x2, mask.Width() - x1, maskRowOut + x1);
}
}
} // namespace test_tools
|