1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
|
#include "ffttools.h"
#include <fftw3.h>
#include "../algorithms/sinusfitter.h"
Image2D* FFTTools::CreateFFTImage(const Image2D& original,
FFTOutputMethod method) {
Image2D* image;
if (method == Both)
image = Image2D::CreateUnsetImage(original.Width() + 2, original.Height());
else
image =
Image2D::CreateUnsetImage(original.Width() / 2 + 1, original.Height());
const unsigned long n_in = original.Width() * original.Height();
const unsigned long n_out = original.Width() * (original.Height() / 2 + 1);
double* in = (double*)fftw_malloc(sizeof(double) * n_in);
fftw_complex* out = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * n_out);
// According to the specification of fftw, the execute function might
// destroy the input array ("in"), wherefore we need to copy it.
unsigned long ptr = 0;
for (unsigned long y = 0; y < original.Height(); ++y) {
for (unsigned long x = 0; x < original.Width(); ++x) {
in[ptr] = original.Value(x, y);
++ptr;
}
}
fftw_plan plan = fftw_plan_dft_r2c_2d(original.Width(), original.Height(), in,
out, FFTW_ESTIMATE);
fftw_execute(plan);
// Copy data to new image
if (method != Both) {
ptr = 0;
const unsigned long halfwidth = original.Width() / 2 + 1;
for (unsigned long y = 0; y < image->Height(); ++y) {
for (unsigned long x = 0; x < halfwidth; ++x) {
switch (method) {
case Real:
image->SetValue(x, y, out[ptr][0]);
break;
case Imaginary:
image->SetValue(x, y, out[ptr][1]);
break;
case Absolute:
default:
image->SetValue(
x, y,
sqrtl(out[ptr][0] * out[ptr][0] + out[ptr][1] * out[ptr][1]));
break;
}
ptr++;
}
}
} else {
unsigned out_ptr = 0;
const unsigned long halfwidth = original.Width() / 2 + 1;
for (unsigned long y = 0; y < image->Height(); ++y) {
for (unsigned long x = 0; x < halfwidth; ++x) {
image->SetValue(x, y, out[out_ptr][0]);
++out_ptr;
}
out_ptr -= halfwidth;
for (unsigned long x = 0; x < halfwidth; ++x) {
image->SetValue(x, y, out[out_ptr][1]);
++out_ptr;
}
}
}
fftw_destroy_plan(plan);
fftw_free(in);
fftw_free(out);
return image;
}
void FFTTools::CreateFFTImage(const Image2D& real, const Image2D& imaginary,
Image2D& realOut, Image2D& imaginaryOut,
bool centerAfter, bool negate) {
const unsigned long n_in = real.Width() * real.Height();
fftw_complex* in = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * n_in);
fftw_complex* out = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * n_in);
const bool centerBefore = true;
if (centerBefore) {
Image2D* tmp = CreateShiftedImageFromFFT(real);
realOut = *tmp;
delete tmp;
tmp = CreateShiftedImageFromFFT(imaginary);
imaginaryOut = *tmp;
delete tmp;
} else {
realOut = real;
imaginaryOut = imaginary;
}
unsigned long ptr = 0;
for (unsigned long y = 0; y < real.Height(); y++) {
for (unsigned long x = 0; x < real.Width(); x++) {
in[ptr][0] = realOut.Value(x, y);
in[ptr][1] = imaginaryOut.Value(x, y);
ptr++;
}
}
int sign = 1;
if (negate) sign = -1;
fftw_plan plan = fftw_plan_dft_2d(real.Width(), real.Height(), in, out, sign,
FFTW_ESTIMATE);
fftw_execute(plan);
ptr = 0;
const num_t normFactor = 1.0 / std::sqrt((num_t)real.Width() * real.Height());
for (unsigned long y = 0; y < real.Height(); y++) {
for (unsigned long x = 0; x < real.Width(); x++) {
realOut.SetValue(x, y, out[ptr][0] * normFactor);
imaginaryOut.SetValue(x, y, out[ptr][1] * normFactor);
ptr++;
}
}
fftw_destroy_plan(plan);
fftw_free(in);
fftw_free(out);
if (centerAfter) {
Image2D* tmp = CreateShiftedImageFromFFT(realOut);
realOut = *tmp;
delete tmp;
tmp = CreateShiftedImageFromFFT(imaginaryOut);
imaginaryOut = *tmp;
delete tmp;
}
}
Image2D* FFTTools::CreateFullImageFromFFT(const Image2D& fft) {
const int width = fft.Width() * 2;
Image2D* image = Image2D::CreateUnsetImage(width, fft.Height());
for (unsigned y = 0; y < fft.Height(); ++y) {
for (unsigned x = 0; x < fft.Width(); ++x) {
image->SetValue(x, y,
fft.Value(fft.Width() - x - 1,
(y + fft.Height() / 2) % fft.Height()));
image->SetValue(fft.Width() * 2 - x - 1, fft.Height() - y - 1,
fft.Value(fft.Width() - x - 1,
(y + fft.Height() / 2) % fft.Height()));
}
}
return image;
}
Image2D* FFTTools::CreateShiftedImageFromFFT(const Image2D& fft) {
Image2D* image = Image2D::CreateUnsetImage(fft.Width(), fft.Height());
for (unsigned y = 0; y < fft.Height(); ++y) {
for (unsigned x = 0; x < fft.Width(); ++x) {
image->SetValue(x, y,
fft.Value((x + fft.Width() / 2) % fft.Width(),
(y + fft.Height() / 2) % fft.Height()));
}
}
return image;
}
Image2D* FFTTools::CreateAbsoluteImage(const Image2D& real,
const Image2D& imaginary) {
Image2D* image = Image2D::CreateUnsetImage(real.Width(), real.Height());
for (unsigned y = 0; y < real.Height(); ++y) {
for (unsigned x = 0; x < real.Width(); ++x)
image->SetValue(x, y,
sqrtl(real.Value(x, y) * real.Value(x, y) +
imaginary.Value(x, y) * imaginary.Value(x, y)));
}
return image;
}
Image2DPtr FFTTools::CreatePhaseImage(Image2DCPtr real, Image2DCPtr imaginary) {
Image2DPtr image =
Image2D::CreateUnsetImagePtr(real->Width(), real->Height());
for (unsigned y = 0; y < real->Height(); ++y) {
for (unsigned x = 0; x < real->Width(); ++x)
image->SetValue(x, y,
algorithms::SinusFitter::Phase(real->Value(x, y),
imaginary->Value(x, y)));
}
return image;
}
void FFTTools::FFTConvolve(const Image2D& realIn, const Image2D& imaginaryIn,
const Image2D& realKernel,
const Image2D& imaginaryKernel, Image2D& outReal,
Image2D& outImaginary) {
Image2D realFFTIn = Image2D::MakeUnsetImage(realIn.Width(), realIn.Height()),
imaginaryFFTIn = Image2D::MakeUnsetImage(imaginaryIn.Width(),
imaginaryIn.Height());
CreateFFTImage(realIn, imaginaryIn, realFFTIn, imaginaryFFTIn);
Image2D realFFTKernel =
Image2D::MakeUnsetImage(realKernel.Width(), realKernel.Height()),
imaginaryFFTKernel = Image2D::MakeUnsetImage(
imaginaryKernel.Width(), imaginaryKernel.Height());
CreateFFTImage(realKernel, imaginaryKernel, realFFTKernel,
imaginaryFFTKernel);
Multiply(realFFTIn, imaginaryFFTIn, realFFTKernel, imaginaryFFTKernel);
CreateFFTImage(realFFTIn, imaginaryFFTIn, outReal, outImaginary, true, true);
}
/*void FFTTools::FFTConvolve(num_t *realValues, num_t *imagValues, num_t
*realKernel, num_t *imagKernel, size_t count)
{
fftw_complex
*in = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * count),
*out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) *
count); for(unsigned i=0;i<count;++i)
{
in[i][0] = realValues[i];
in[i][1] = imagValues[i];
}
fftw_plan p = fftw_plan_dft_1d(count, in, out, FFTW_FORWARD,
FFTW_ESTIMATE); fftw_execute(p);
fftw_free(out);
fftw_free(in);
}*/
void FFTTools::FFTConvolveFFTKernel(const Image2D& realIn,
const Image2D& imaginaryIn,
const Image2D& realFFTKernel,
const Image2D& imaginaryFFTKernel,
Image2D& outReal, Image2D& outImaginary) {
Image2D *realFFTIn =
Image2D::CreateUnsetImage(realIn.Width(), realIn.Height()),
*imaginaryFFTIn = Image2D::CreateUnsetImage(imaginaryIn.Width(),
imaginaryIn.Height());
CreateFFTImage(realIn, imaginaryIn, *realFFTIn, *imaginaryFFTIn);
Multiply(*realFFTIn, *imaginaryFFTIn, realFFTKernel, imaginaryFFTKernel);
CreateFFTImage(*realFFTIn, *imaginaryFFTIn, outReal, outImaginary, true,
true);
delete imaginaryFFTIn;
delete realFFTIn;
}
void FFTTools::Multiply(Image2D& left, const Image2D& right) {
for (unsigned y = 0; y < left.Height(); ++y) {
for (unsigned x = 0; x < left.Width(); ++x)
left.SetValue(x, y, left.Value(x, y) * right.Value(x, y));
}
}
void FFTTools::Divide(Image2D& left, const Image2D& right) {
for (unsigned y = 0; y < left.Height(); ++y) {
for (unsigned x = 0; x < left.Width(); ++x)
left.SetValue(x, y, left.Value(x, y) / right.Value(x, y));
}
}
void FFTTools::Multiply(Image2D& leftReal, Image2D& leftImaginary,
const Image2D& rightReal,
const Image2D& rightImaginary) {
for (unsigned y = 0; y < leftReal.Height(); ++y) {
for (unsigned x = 0; x < leftReal.Width(); ++x) {
const num_t r1 = leftReal.Value(x, y);
const num_t i1 = leftImaginary.Value(x, y);
const num_t r2 = rightReal.Value(x, y);
const num_t i2 = rightImaginary.Value(x, y);
leftReal.SetValue(x, y, r1 * r2 - i1 * i2);
leftImaginary.SetValue(x, y, r1 * i2 + r2 * i1);
}
}
}
void FFTTools::Sqrt(Image2D& image) {
for (unsigned y = 0; y < image.Height(); ++y) {
for (unsigned x = 0; x < image.Width(); ++x) {
image.SetValue(x, y, std::sqrt(std::fabs(image.Value(x, y))));
}
}
}
void FFTTools::SignedSqrt(Image2D& image) {
for (size_t y = 0; y < image.Height(); ++y) {
for (size_t x = 0; x < image.Width(); ++x) {
if (image.Value(x, y) >= 0.0)
image.SetValue(x, y, std::sqrt(image.Value(x, y)));
else
image.SetValue(x, y, -std::sqrt(-image.Value(x, y)));
}
}
}
void FFTTools::CreateHorizontalFFTImage(Image2D& real, Image2D& imaginary,
bool inverse) {
if (real.Height() == 0) return;
const unsigned long n_in = real.Width();
fftw_complex* in = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * n_in);
fftw_complex* out = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * n_in);
for (unsigned long x = 0; x < real.Width(); ++x) {
in[x][0] = real.Value(x, 0);
in[x][1] = imaginary.Value(x, 0);
}
int sign = -1;
if (inverse) sign = 1;
for (unsigned long y = 0; y < real.Height(); ++y) {
for (unsigned long x = 0; x < real.Width(); ++x) {
in[x][0] = real.Value(x, y);
in[x][1] = imaginary.Value(x, y);
}
fftw_plan plan =
fftw_plan_dft_1d(real.Width(), in, out, sign, FFTW_ESTIMATE);
fftw_execute(plan);
fftw_destroy_plan(plan);
for (unsigned long x = 0; x < real.Width(); ++x) {
real.SetValue(x, y, out[x][0]);
imaginary.SetValue(x, y, out[x][1]);
}
}
fftw_free(out);
fftw_free(in);
}
void FFTTools::CreateDynamicHorizontalFFTImage(Image2DPtr real,
Image2DPtr imaginary,
unsigned sections,
bool inverse) {
const size_t width = real->Width();
if (real->Height() == 0 || width == 0) return;
SampleRow realRow = SampleRow::MakeFromRowSum(real.get(), 0, real->Height()),
imaginaryRow = SampleRow::MakeFromRowSum(imaginary.get(), 0,
imaginary->Height());
Image2D destReal = Image2D::MakeUnsetImage(real->Width(), real->Height()),
destImag = Image2D::MakeUnsetImage(real->Width(), real->Height());
const unsigned long n_in = width;
fftw_complex* in = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * n_in);
fftw_complex* out = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * n_in);
int sign = -1;
if (inverse) sign = 1;
for (unsigned sec = 0; sec < sections; ++sec) {
const unsigned secStart = width * sec / (sections + 1),
secEnd = width * (sec + 2) / (sections + 1);
for (unsigned x = secStart; x < secEnd; ++x) {
in[x - secStart][0] = realRow.Value(x);
in[x - secStart][1] = imaginaryRow.Value(x);
}
fftw_plan plan =
fftw_plan_dft_1d(secEnd - secStart, in, out, sign, FFTW_ESTIMATE);
fftw_execute(plan);
fftw_destroy_plan(plan);
size_t maxF = secEnd - secStart;
if (maxF > destReal.Height()) maxF = destReal.Height();
const unsigned xEnd = width * (sec + 1) / sections;
for (unsigned long x = width * sec / sections; x < xEnd; ++x) {
for (unsigned long y = 0; y < maxF; ++y) {
destReal.SetValue(x, y, out[y][0]);
destImag.SetValue(x, y, out[y][1]);
}
for (unsigned long y = maxF; y < destReal.Height(); ++y) {
destReal.SetValue(x, y, 0.0);
destImag.SetValue(x, y, 0.0);
}
}
}
fftw_free(out);
fftw_free(in);
*real = destReal;
*imaginary = destImag;
}
Image2DPtr FFTTools::AngularTransform(Image2DCPtr image) {
const size_t minDim =
image->Width() > image->Height() ? image->Height() : image->Width();
Image2D* transformedImage = Image2D::CreateUnsetImage(minDim, minDim);
numl_t halfMinDim = (numl_t)minDim / 2.0,
halfWidth = (numl_t)image->Width() / 2.0,
halfHeight = (numl_t)image->Height() / 2.0;
for (size_t angleIndex = 0; angleIndex < minDim; ++angleIndex) {
numl_t angle = (numl_t)angleIndex * M_PInl / (numl_t)minDim,
cosAngle = std::cos(angle), sinAngle = std::sin(angle);
for (unsigned offsetIndex = 0; offsetIndex < minDim; ++offsetIndex) {
numl_t offset = (numl_t)(halfMinDim - offsetIndex),
x = halfWidth + offset * cosAngle,
y = halfHeight - offset * sinAngle;
transformedImage->SetValue(angleIndex, offsetIndex,
image->Value((size_t)x, (size_t)y));
}
}
return Image2DPtr(transformedImage);
}
void FFTTools::FFT(SampleRow& realRow, SampleRow& imaginaryRow) {
const size_t n = realRow.Size();
fftw_complex *in = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * n),
*out = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * n);
for (unsigned i = 0; i < n; ++i) {
in[i][0] = realRow.Value(i);
in[i][1] = imaginaryRow.Value(i);
}
fftw_plan p = fftw_plan_dft_1d(n, in, out, FFTW_FORWARD, FFTW_ESTIMATE);
fftw_execute(p);
fftw_destroy_plan(p);
for (unsigned i = 0; i < n; ++i) {
realRow.SetValue(i, out[i][0]);
imaginaryRow.SetValue(i, out[i][0]);
}
fftw_free(in);
fftw_free(out);
}
|