File: rfiplots.cpp

package info (click to toggle)
aoflagger 3.4.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 8,960 kB
  • sloc: cpp: 83,076; python: 10,187; sh: 260; makefile: 178
file content (429 lines) | stat: -rw-r--r-- 14,910 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
#include "rfiplots.h"

#include <cmath>
#include <iostream>

#include "../util/plot.h"
#include "../util/multiplot.h"

#include "../structures/timefrequencydata.h"
#include "../structures/timefrequencymetadata.h"

#include "../algorithms/sinusfitter.h"
#include "../algorithms/thresholdtools.h"

#include "../plot/axis.h"
#include "../plot/xyplot.h"

using aocommon::Polarization;
using aocommon::PolarizationEnum;

using algorithms::SinusFitter;
using algorithms::ThresholdTools;

void RFIPlots::Bin(Image2DCPtr image, Mask2DCPtr mask,
                   std::vector<size_t>& valuesOutput,
                   std::vector<long double>& binsOutput, size_t binCount,
                   long double start, long double end, long double factor,
                   long double stretch) throw() {
  const long double min =
      start == end ? ThresholdTools::MinValue(image.get(), mask.get()) : start;
  const long double max =
      start == end ? ThresholdTools::MaxValue(image.get(), mask.get()) : end;
  const long double binsize = (max - min) / binCount;
  valuesOutput.resize(binCount);
  binsOutput.resize(binCount);
  for (size_t i = 0; i < binCount; ++i) {
    valuesOutput[i] = 0;
    binsOutput[i] = (binsize * ((long double)i + 0.5)) + min;
  }
  for (size_t y = 0; y < image->Height(); ++y) {
    for (size_t x = 0; x < image->Width(); ++x) {
      if (!mask->Value(x, y)) {
        const long double value = image->Value(x, y);
        const size_t index = (size_t)((value * stretch - min) / binsize);
        if (index < binCount) valuesOutput[index] += 1;
      }
    }
  }
  if (factor != 1.0) {
    for (size_t i = 0; i < binCount; ++i) {
      valuesOutput[i] = (size_t)(factor * valuesOutput[i]);
    }
  }
}

void RFIPlots::MakeDistPlot(XYPointSet& pointSet, Image2DCPtr image,
                            Mask2DCPtr mask) {
  std::vector<size_t> valuesOutput;
  std::vector<long double> binsOutput;
  pointSet.SetXDesc("Visibility");
  pointSet.SetYDesc("Occurences");

  num_t mean, stddev;
  num_t min = image->GetMinimum();
  num_t max = image->GetMaximum();
  ThresholdTools::WinsorizedMeanAndStdDev(image.get(), mean, stddev);
  if (min < mean - 3.0L * stddev) min = mean - 3.0L * stddev;
  if (max > mean + 3.0L * stddev) max = mean + 3.0L * stddev;

  Bin(image, mask, valuesOutput, binsOutput, 40, min, max);
  for (unsigned i = 0; i < valuesOutput.size(); ++i)
    pointSet.PushDataPoint(binsOutput[i], valuesOutput[i]);
}

template <bool Weight>
void RFIPlots::MakeMeanSpectrumPlot(XYPointSet& pointSet,
                                    const TimeFrequencyData& data,
                                    const Mask2DCPtr& mask,
                                    const TimeFrequencyMetaDataCPtr& metaData) {
  const bool hasBandInfo = metaData != nullptr && metaData->HasBand();
  if (hasBandInfo) {
    pointSet.SetXDesc("Frequency (MHz)");
    std::stringstream yDesc;
    yDesc << metaData->ValueDescription() << " (" << metaData->ValueUnits()
          << ')';
    pointSet.SetYDesc(yDesc.str());
  } else {
    pointSet.SetXDesc("Index");
    pointSet.SetYDesc("Mean (undefined units)");
  }

  TimeFrequencyData displayData = data;
  if (displayData.ComplexRepresentation() == TimeFrequencyData::ComplexParts) {
    displayData = data.Make(TimeFrequencyData::AmplitudePart);
  }

  long double min = 1e100, max = -1e100;
  const size_t height = data.ImageHeight(), width = data.ImageWidth();

  for (size_t y = 0; y < height; ++y) {
    long double sum = 0.0L;
    size_t count = 0;
    for (size_t i = 0; i < displayData.ImageCount(); ++i) {
      const Image2DCPtr image = displayData.GetImage(i);
      for (size_t x = 0; x < width; ++x) {
        if (!mask->Value(x, y) && std::isnormal(image->Value(x, y))) {
          sum += image->Value(x, y);
          ++count;
        }
      }
    }
    if (count > 0) {
      long double v;
      if (Weight)
        v = sum;
      else
        v = sum / count;
      if (v < min) min = v;
      if (v > max) max = v;
      if (hasBandInfo)
        pointSet.PushDataPoint(
            metaData->Band().channels[y].frequencyHz / 1000000.0, v);
      else
        pointSet.PushDataPoint(y, v);
    }
  }
}
template void RFIPlots::MakeMeanSpectrumPlot<true>(
    XYPointSet& pointSet, const TimeFrequencyData& data, const Mask2DCPtr& mask,
    const TimeFrequencyMetaDataCPtr& metaData);
template void RFIPlots::MakeMeanSpectrumPlot<false>(
    XYPointSet& pointSet, const TimeFrequencyData& data, const Mask2DCPtr& mask,
    const TimeFrequencyMetaDataCPtr& metaData);

void RFIPlots::MakePowerSpectrumPlot(XYPointSet& pointSet, const Image2D& real,
                                     const Image2D& imag, const Mask2D& mask,
                                     const TimeFrequencyMetaData* metaData) {
  const bool hasBandInfo = metaData != nullptr && metaData->HasBand();
  if (hasBandInfo) {
    pointSet.SetXDesc("Frequency (MHz)");
    std::stringstream yDesc;
    yDesc << metaData->ValueDescription() << "^2 (" << metaData->ValueUnits()
          << "^2)";
    pointSet.SetYDesc(yDesc.str());
  } else {
    pointSet.SetXDesc("Index");
    pointSet.SetYDesc("Power (undefined units)");
  }

  for (size_t y = 0; y < real.Height(); ++y) {
    long double sum = 0.0L;
    size_t count = 0;
    for (size_t x = 0; x < real.Width(); ++x) {
      if (!mask.Value(x, y) && std::isfinite(real.Value(x, y))) {
        const std::complex<num_t> val(real.Value(x, y), imag.Value(x, y));
        sum += (val * std::conj(val)).real();
        ++count;
      }
    }
    long double v;
    if (count > 0)
      v = sum / count;
    else
      v = std::numeric_limits<long double>::quiet_NaN();
    if (hasBandInfo)
      pointSet.PushDataPoint(
          metaData->Band().channels[y].frequencyHz / 1000000.0, v);
    else
      pointSet.PushDataPoint(y, v);
  }
}

void RFIPlots::MakePowerTimePlot(XYPointSet& pointSet, Image2DCPtr image,
                                 Mask2DCPtr mask,
                                 TimeFrequencyMetaDataCPtr metaData) {
  pointSet.SetXDesc("Time");
  pointSet.SetYDesc("Visibility");
  bool useMeta;
  if (metaData != nullptr && metaData->HasObservationTimes()) {
    useMeta = true;
  } else {
    useMeta = false;
  }

  const size_t binSize = (size_t)ceil(image->Width() / 256.0L);

  unsigned index = 0;
  for (size_t x = 0; x < image->Width(); x += binSize) {
    long double sum = 0.0L;
    size_t count = 0;
    for (size_t binx = 0; binx < binSize; ++binx) {
      for (size_t y = 0; y < image->Height(); ++y) {
        if (!mask->Value(x + binx, y) &&
            std::isnormal(image->Value(x + binx, y))) {
          sum += image->Value(x + binx, y);
          ++count;
        }
      }
    }
    if (useMeta)
      pointSet.PushDataPoint(metaData->ObservationTimes()[x], sum / count);
    else
      pointSet.PushDataPoint(index, sum / count);
    ++index;
  }
}

void RFIPlots::MakeComplexPlanePlot(XYPointSet& pointSet,
                                    const TimeFrequencyData& data,
                                    size_t xStart, size_t length, size_t y,
                                    size_t yAvgSize, Mask2DCPtr mask,
                                    bool realVersusImaginary,
                                    bool drawImaginary) {
  if (realVersusImaginary) {
    pointSet.SetXDesc("real");
    pointSet.SetYDesc("imaginary");
  } else {
    // pointSet.SetXRange(xStart, xStart+length-1);
    pointSet.SetXDesc("time");
    pointSet.SetYDesc("real/imaginary visibility");
  }

  const Image2DCPtr real = data.GetRealPart();
  const Image2DCPtr imaginary = data.GetImaginaryPart();

  for (size_t x = xStart; x < xStart + length; ++x) {
    long double r = 0.0L, i = 0.0L;
    for (size_t yi = y; yi < yAvgSize + y; ++yi) {
      if (!mask->Value(x, yi) && std::isfinite(real->Value(x, yi)) &&
          std::isfinite(imaginary->Value(x, yi))) {
        r += real->Value(x, yi);
        i += imaginary->Value(x, yi);
      }
    }
    if (realVersusImaginary)
      pointSet.PushDataPoint(r, i);
    else if (drawImaginary)
      pointSet.PushDataPoint(x, i);
    else
      pointSet.PushDataPoint(x, r);
  }
}

void RFIPlots::MakeFittedComplexPlot(XYPointSet& pointSet,
                                     const TimeFrequencyData& data,
                                     size_t xStart, size_t length, size_t y,
                                     size_t yAvgSize, Mask2DCPtr mask,
                                     num_t frequency, bool realVersusImaginary,
                                     bool drawImaginary) {
  if (realVersusImaginary) {
    pointSet.SetXDesc("real");
    pointSet.SetYDesc("imaginary");
  } else {
    // plot.SetXRange(xStart, xStart+length-1);
    pointSet.SetXDesc("time");
    pointSet.SetYDesc("real/imaginary visibility");
  }
  const Image2DCPtr real = data.GetRealPart();
  const Image2DCPtr imaginary = data.GetImaginaryPart();

  std::vector<num_t> xReal(length);
  std::vector<num_t> xImag(length);
  std::vector<num_t> t(length);
  size_t dataIndex = 0;

  for (size_t x = xStart; x < xStart + length; ++x) {
    num_t r = 0.0L, i = 0.0L;
    size_t count = 0;
    for (size_t yi = y; yi < yAvgSize + y; ++yi) {
      if (!mask->Value(x, yi) && std::isfinite(real->Value(x, yi)) &&
          std::isfinite(imaginary->Value(x, yi))) {
        r += real->Value(x, yi);
        i += imaginary->Value(x, yi);
        ++count;
      }
    }
    if (count > 0) {
      t[dataIndex] = x;
      xReal[dataIndex] = r;
      xImag[dataIndex] = i;
      ++dataIndex;
    }
  }
  if (dataIndex != length)
    std::cout << "Warning: " << (length - dataIndex)
              << " time points were removed." << std::endl;
  SinusFitter fitter;
  num_t realPhase, realAmplitude, realMean, imagPhase, imagAmplitude, imagMean;
  const num_t twopi = 2.0 * M_PIn;

  fitter.FindPhaseAndAmplitudeComplex(realPhase, realAmplitude, xReal.data(),
                                      xImag.data(), t.data(), dataIndex,
                                      frequency * twopi);
  imagPhase = realPhase + 0.5 * M_PIn;
  imagAmplitude = realAmplitude;
  realMean = fitter.FindMean(realPhase, realAmplitude, xReal.data(), t.data(),
                             dataIndex, frequency * twopi);
  imagMean = fitter.FindMean(imagPhase, imagAmplitude, xImag.data(), t.data(),
                             dataIndex, frequency * twopi);

  std::cout << "Amplitude found: " << realAmplitude
            << " phase found: " << realPhase << std::endl;

  for (size_t x = xStart; x < xStart + length; ++x) {
    if (realVersusImaginary)
      pointSet.PushDataPoint(
          std::cos(frequency * twopi * (long double)x + realPhase) *
                  realAmplitude +
              realMean,
          std::cos(frequency * twopi * (long double)x + imagPhase) *
                  imagAmplitude +
              imagMean);
    else if (drawImaginary)
      pointSet.PushDataPoint(
          x, std::cos(frequency * twopi * (long double)x + imagPhase) *
                     imagAmplitude +
                 imagMean);
    else
      pointSet.PushDataPoint(
          x, std::cos(frequency * twopi * (long double)x + realPhase) *
                     realAmplitude +
                 realMean);
  }
}

void RFIPlots::MakeTimeScatterPlot(class MultiPlot& plot, size_t plotIndex,
                                   const Image2DCPtr& image,
                                   const Mask2DCPtr& mask,
                                   const TimeFrequencyMetaDataCPtr& metaData) {
  plot.SetXAxisText("Time (s)");
  plot.SetYAxisText("Visibility");
  bool useMeta;
  if (metaData != nullptr && metaData->HasObservationTimes())
    useMeta = true;
  else
    useMeta = false;
  double firstTimeStep;
  if (useMeta)
    firstTimeStep = metaData->ObservationTimes()[0];
  else
    firstTimeStep = 0;

  for (size_t x = 0; x < image->Width(); ++x) {
    size_t count = 0;
    num_t sum = 0.0;
    for (size_t y = 0; y < image->Height(); ++y) {
      if (!mask->Value(x, y) && std::isnormal(image->Value(x, y))) {
        sum += image->Value(x, y);
        ++count;
      }
    }
    if (count > 0) {
      if (useMeta)
        plot.AddPoint(plotIndex,
                      metaData->ObservationTimes()[x] - firstTimeStep,
                      sum / count);
      else
        plot.AddPoint(plotIndex, x, sum / count);
    }
  }
}

void RFIPlots::MakeFrequencyScatterPlot(
    class MultiPlot& plot, size_t plotIndex, const Image2DCPtr& image,
    const Mask2DCPtr& mask, const TimeFrequencyMetaDataCPtr& metaData) {
  plot.SetYAxisText("Visibility");
  bool useMeta;
  if (metaData != nullptr && metaData->HasBand())
    useMeta = true;
  else
    useMeta = false;
  if (useMeta)
    plot.SetXAxisText("Frequency (MHz)");
  else
    plot.SetXAxisText("Channel index");

  for (size_t y = 0; y < image->Height(); ++y) {
    size_t count = 0;
    num_t sum = 0.0;
    for (size_t x = 0; x < image->Width(); ++x) {
      if (!mask->Value(x, y) && std::isnormal(image->Value(x, y))) {
        sum += image->Value(x, y);
        ++count;
      }
    }
    if (count > 0) {
      if (useMeta)
        plot.AddPoint(plotIndex,
                      metaData->Band().channels[y].frequencyHz * 1e-6,
                      sum / count);
      else
        plot.AddPoint(plotIndex, y, sum / count);
    }
  }
}

void RFIPlots::MakeTimeScatterPlot(class MultiPlot& plot,
                                   const TimeFrequencyData& data,
                                   const TimeFrequencyMetaDataCPtr& metaData,
                                   unsigned startIndex) {
  for (size_t polIndex = 0; polIndex != data.PolarizationCount(); ++polIndex) {
    const PolarizationEnum pol = data.GetPolarization(polIndex);
    const TimeFrequencyData polTF = data.Make(pol);
    MakeTimeScatterPlot(plot, startIndex + polIndex, polTF.GetSingleImage(),
                        polTF.GetSingleMask(), metaData);
    if (data.PolarizationCount() == 1)
      plot.SetLegend(startIndex, data.Description());
    else
      plot.SetLegend(startIndex + polIndex,
                     Polarization::TypeToFullString(pol));
  }
}

void RFIPlots::MakeFrequencyScatterPlot(
    class MultiPlot& plot, const TimeFrequencyData& data,
    const TimeFrequencyMetaDataCPtr& metaData, unsigned startIndex) {
  for (size_t polIndex = 0; polIndex != data.PolarizationCount(); ++polIndex) {
    const PolarizationEnum pol = data.GetPolarization(polIndex);
    const TimeFrequencyData polTF = data.Make(pol);
    MakeFrequencyScatterPlot(plot, startIndex + polIndex,
                             polTF.GetSingleImage(), polTF.GetSingleMask(),
                             metaData);
    if (data.PolarizationCount() == 1)
      plot.SetLegend(startIndex, data.Description());
    else
      plot.SetLegend(startIndex + polIndex,
                     Polarization::TypeToFullString(pol));
  }
}