1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
|
/*
* Copyright (c) 2018, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "tools/txfm_analyzer/txfm_graph.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
typedef struct Node Node;
void get_fun_name(char *str_fun_name, int str_buf_size, const TYPE_TXFM type,
const int txfm_size) {
if (type == TYPE_DCT)
snprintf(str_fun_name, str_buf_size, "fdct%d_new", txfm_size);
else if (type == TYPE_ADST)
snprintf(str_fun_name, str_buf_size, "fadst%d_new", txfm_size);
else if (type == TYPE_IDCT)
snprintf(str_fun_name, str_buf_size, "idct%d_new", txfm_size);
else if (type == TYPE_IADST)
snprintf(str_fun_name, str_buf_size, "iadst%d_new", txfm_size);
}
void get_txfm_type_name(char *str_fun_name, int str_buf_size,
const TYPE_TXFM type, const int txfm_size) {
if (type == TYPE_DCT)
snprintf(str_fun_name, str_buf_size, "TXFM_TYPE_DCT%d", txfm_size);
else if (type == TYPE_ADST)
snprintf(str_fun_name, str_buf_size, "TXFM_TYPE_ADST%d", txfm_size);
else if (type == TYPE_IDCT)
snprintf(str_fun_name, str_buf_size, "TXFM_TYPE_DCT%d", txfm_size);
else if (type == TYPE_IADST)
snprintf(str_fun_name, str_buf_size, "TXFM_TYPE_ADST%d", txfm_size);
}
void get_hybrid_2d_type_name(char *buf, int buf_size, const TYPE_TXFM type0,
const TYPE_TXFM type1, const int txfm_size0,
const int txfm_size1) {
if (type0 == TYPE_DCT && type1 == TYPE_DCT)
snprintf(buf, buf_size, "_dct_dct_%dx%d", txfm_size1, txfm_size0);
else if (type0 == TYPE_DCT && type1 == TYPE_ADST)
snprintf(buf, buf_size, "_dct_adst_%dx%d", txfm_size1, txfm_size0);
else if (type0 == TYPE_ADST && type1 == TYPE_ADST)
snprintf(buf, buf_size, "_adst_adst_%dx%d", txfm_size1, txfm_size0);
else if (type0 == TYPE_ADST && type1 == TYPE_DCT)
snprintf(buf, buf_size, "_adst_dct_%dx%d", txfm_size1, txfm_size0);
}
TYPE_TXFM get_inv_type(TYPE_TXFM type) {
if (type == TYPE_DCT)
return TYPE_IDCT;
else if (type == TYPE_ADST)
return TYPE_IADST;
else if (type == TYPE_IDCT)
return TYPE_DCT;
else if (type == TYPE_IADST)
return TYPE_ADST;
else
return TYPE_LAST;
}
void reference_dct_1d(double *in, double *out, int size) {
const double kInvSqrt2 = 0.707106781186547524400844362104;
for (int k = 0; k < size; k++) {
out[k] = 0; // initialize out[k]
for (int n = 0; n < size; n++) {
out[k] += in[n] * cos(PI * (2 * n + 1) * k / (2 * size));
}
if (k == 0) out[k] = out[k] * kInvSqrt2;
}
}
void reference_dct_2d(double *in, double *out, int size) {
double *tempOut = new double[size * size];
// dct each row: in -> out
for (int r = 0; r < size; r++) {
reference_dct_1d(in + r * size, out + r * size, size);
}
for (int r = 0; r < size; r++) {
// out ->tempOut
for (int c = 0; c < size; c++) {
tempOut[r * size + c] = out[c * size + r];
}
}
for (int r = 0; r < size; r++) {
reference_dct_1d(tempOut + r * size, out + r * size, size);
}
delete[] tempOut;
}
void reference_adst_1d(double *in, double *out, int size) {
for (int k = 0; k < size; k++) {
out[k] = 0; // initialize out[k]
for (int n = 0; n < size; n++) {
out[k] += in[n] * sin(PI * (2 * n + 1) * (2 * k + 1) / (4 * size));
}
}
}
void reference_hybrid_2d(double *in, double *out, int size, int type0,
int type1) {
double *tempOut = new double[size * size];
// dct each row: in -> out
for (int r = 0; r < size; r++) {
if (type0 == TYPE_DCT)
reference_dct_1d(in + r * size, out + r * size, size);
else
reference_adst_1d(in + r * size, out + r * size, size);
}
for (int r = 0; r < size; r++) {
// out ->tempOut
for (int c = 0; c < size; c++) {
tempOut[r * size + c] = out[c * size + r];
}
}
for (int r = 0; r < size; r++) {
if (type1 == TYPE_DCT)
reference_dct_1d(tempOut + r * size, out + r * size, size);
else
reference_adst_1d(tempOut + r * size, out + r * size, size);
}
delete[] tempOut;
}
void reference_hybrid_2d_new(double *in, double *out, int size0, int size1,
int type0, int type1) {
double *tempOut = new double[size0 * size1];
// dct each row: in -> out
for (int r = 0; r < size1; r++) {
if (type0 == TYPE_DCT)
reference_dct_1d(in + r * size0, out + r * size0, size0);
else
reference_adst_1d(in + r * size0, out + r * size0, size0);
}
for (int r = 0; r < size1; r++) {
// out ->tempOut
for (int c = 0; c < size0; c++) {
tempOut[c * size1 + r] = out[r * size0 + c];
}
}
for (int r = 0; r < size0; r++) {
if (type1 == TYPE_DCT)
reference_dct_1d(tempOut + r * size1, out + r * size1, size1);
else
reference_adst_1d(tempOut + r * size1, out + r * size1, size1);
}
delete[] tempOut;
}
unsigned int get_max_bit(unsigned int x) {
int max_bit = -1;
while (x) {
x = x >> 1;
max_bit++;
}
return max_bit;
}
unsigned int bitwise_reverse(unsigned int x, int max_bit) {
x = ((x >> 16) & 0x0000ffff) | ((x & 0x0000ffff) << 16);
x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
x = x >> (31 - max_bit);
return x;
}
int get_idx(int ri, int ci, int cSize) { return ri * cSize + ci; }
void add_node(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int in, double w) {
int outIdx = get_idx(stage_idx, node_idx, node_num);
int inIdx = get_idx(stage_idx - 1, in, node_num);
int idx = node[outIdx].inNodeNum;
if (idx < 2) {
node[outIdx].inNode[idx] = &node[inIdx];
node[outIdx].inNodeIdx[idx] = in;
node[outIdx].inWeight[idx] = w;
idx++;
node[outIdx].inNodeNum = idx;
} else {
printf("Error: inNode is full");
}
}
void connect_node(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int in0, double w0, int in1, double w1) {
int outIdx = get_idx(stage_idx, node_idx, node_num);
int inIdx0 = get_idx(stage_idx - 1, in0, node_num);
int inIdx1 = get_idx(stage_idx - 1, in1, node_num);
int idx = 0;
// if(w0 != 0) {
node[outIdx].inNode[idx] = &node[inIdx0];
node[outIdx].inNodeIdx[idx] = in0;
node[outIdx].inWeight[idx] = w0;
idx++;
//}
// if(w1 != 0) {
node[outIdx].inNode[idx] = &node[inIdx1];
node[outIdx].inNodeIdx[idx] = in1;
node[outIdx].inWeight[idx] = w1;
idx++;
//}
node[outIdx].inNodeNum = idx;
}
void propagate(Node *node, int stage_num, int node_num, int stage_idx) {
for (int ni = 0; ni < node_num; ni++) {
int outIdx = get_idx(stage_idx, ni, node_num);
node[outIdx].value = 0;
for (int k = 0; k < node[outIdx].inNodeNum; k++) {
node[outIdx].value +=
node[outIdx].inNode[k]->value * node[outIdx].inWeight[k];
}
}
}
int64_t round_shift(int64_t value, int bit) {
if (bit > 0) {
if (value < 0) {
return -round_shift(-value, bit);
} else {
return (value + (1 << (bit - 1))) >> bit;
}
} else {
return value << (-bit);
}
}
void round_shift_array(int32_t *arr, int size, int bit) {
if (bit == 0) {
return;
} else {
for (int i = 0; i < size; i++) {
arr[i] = round_shift(arr[i], bit);
}
}
}
void graph_reset_visited(Node *node, int stage_num, int node_num) {
for (int si = 0; si < stage_num; si++) {
for (int ni = 0; ni < node_num; ni++) {
int idx = get_idx(si, ni, node_num);
node[idx].visited = 0;
}
}
}
void estimate_value(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int estimate_bit) {
if (stage_idx > 0) {
int outIdx = get_idx(stage_idx, node_idx, node_num);
int64_t out = 0;
node[outIdx].value = 0;
for (int k = 0; k < node[outIdx].inNodeNum; k++) {
int64_t w = round(node[outIdx].inWeight[k] * (1 << estimate_bit));
int64_t v = round(node[outIdx].inNode[k]->value);
out += v * w;
}
node[outIdx].value = round_shift(out, estimate_bit);
}
}
void amplify_value(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int amplify_bit) {
int outIdx = get_idx(stage_idx, node_idx, node_num);
node[outIdx].value = round_shift(round(node[outIdx].value), -amplify_bit);
}
void propagate_estimate_amlify(Node *node, int stage_num, int node_num,
int stage_idx, int amplify_bit,
int estimate_bit) {
for (int ni = 0; ni < node_num; ni++) {
estimate_value(node, stage_num, node_num, stage_idx, ni, estimate_bit);
amplify_value(node, stage_num, node_num, stage_idx, ni, amplify_bit);
}
}
void init_graph(Node *node, int stage_num, int node_num) {
for (int si = 0; si < stage_num; si++) {
for (int ni = 0; ni < node_num; ni++) {
int outIdx = get_idx(si, ni, node_num);
node[outIdx].stageIdx = si;
node[outIdx].nodeIdx = ni;
node[outIdx].value = 0;
node[outIdx].inNodeNum = 0;
if (si >= 1) {
connect_node(node, stage_num, node_num, si, ni, ni, 1, ni, 0);
}
}
}
}
void gen_B_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int N, int star) {
for (int i = 0; i < N / 2; i++) {
int out = node_idx + i;
int in1 = node_idx + N - 1 - i;
if (star == 1) {
connect_node(node, stage_num, node_num, stage_idx + 1, out, out, -1, in1,
1);
} else {
connect_node(node, stage_num, node_num, stage_idx + 1, out, out, 1, in1,
1);
}
}
for (int i = N / 2; i < N; i++) {
int out = node_idx + i;
int in1 = node_idx + N - 1 - i;
if (star == 1) {
connect_node(node, stage_num, node_num, stage_idx + 1, out, out, 1, in1,
1);
} else {
connect_node(node, stage_num, node_num, stage_idx + 1, out, out, -1, in1,
1);
}
}
}
void gen_P_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int N) {
int max_bit = get_max_bit(N - 1);
for (int i = 0; i < N; i++) {
int out = node_idx + bitwise_reverse(i, max_bit);
int in = node_idx + i;
connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0);
}
}
void gen_type1_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int N) {
int max_bit = get_max_bit(N);
for (int ni = 0; ni < N / 2; ni++) {
int ai = bitwise_reverse(N + ni, max_bit);
int out = node_idx + ni;
int in1 = node_idx + N - ni - 1;
connect_node(node, stage_num, node_num, stage_idx + 1, out, out,
sin(PI * ai / (2 * 2 * N)), in1, cos(PI * ai / (2 * 2 * N)));
}
for (int ni = N / 2; ni < N; ni++) {
int ai = bitwise_reverse(N + ni, max_bit);
int out = node_idx + ni;
int in1 = node_idx + N - ni - 1;
connect_node(node, stage_num, node_num, stage_idx + 1, out, out,
cos(PI * ai / (2 * 2 * N)), in1, -sin(PI * ai / (2 * 2 * N)));
}
}
void gen_type2_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int N) {
for (int ni = 0; ni < N / 4; ni++) {
int out = node_idx + ni;
connect_node(node, stage_num, node_num, stage_idx + 1, out, out, 1, out, 0);
}
for (int ni = N / 4; ni < N / 2; ni++) {
int out = node_idx + ni;
int in1 = node_idx + N - ni - 1;
connect_node(node, stage_num, node_num, stage_idx + 1, out, out,
-cos(PI / 4), in1, cos(-PI / 4));
}
for (int ni = N / 2; ni < N * 3 / 4; ni++) {
int out = node_idx + ni;
int in1 = node_idx + N - ni - 1;
connect_node(node, stage_num, node_num, stage_idx + 1, out, out,
cos(-PI / 4), in1, cos(PI / 4));
}
for (int ni = N * 3 / 4; ni < N; ni++) {
int out = node_idx + ni;
connect_node(node, stage_num, node_num, stage_idx + 1, out, out, 1, out, 0);
}
}
void gen_type3_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int idx, int N) {
// TODO(angiebird): Simplify and clarify this function
int i = 2 * N / (1 << (idx / 2));
int max_bit =
get_max_bit(i / 2) - 1; // the max_bit counts on i/2 instead of N here
int N_over_i = 2 << (idx / 2);
for (int nj = 0; nj < N / 2; nj += N_over_i) {
int j = nj / (N_over_i);
int kj = bitwise_reverse(i / 4 + j, max_bit);
// printf("kj = %d\n", kj);
// I_N/2i --- 0
int offset = nj;
for (int ni = 0; ni < N_over_i / 4; ni++) {
int out = node_idx + offset + ni;
int in = out;
connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0);
}
// -C_Kj/i --- S_Kj/i
offset += N_over_i / 4;
for (int ni = 0; ni < N_over_i / 4; ni++) {
int out = node_idx + offset + ni;
int in0 = out;
double w0 = -cos(kj * PI / i);
int in1 = N - (offset + ni) - 1 + node_idx;
double w1 = sin(kj * PI / i);
connect_node(node, stage_num, node_num, stage_idx + 1, out, in0, w0, in1,
w1);
}
// S_kj/i --- -C_Kj/i
offset += N_over_i / 4;
for (int ni = 0; ni < N_over_i / 4; ni++) {
int out = node_idx + offset + ni;
int in0 = out;
double w0 = -sin(kj * PI / i);
int in1 = N - (offset + ni) - 1 + node_idx;
double w1 = -cos(kj * PI / i);
connect_node(node, stage_num, node_num, stage_idx + 1, out, in0, w0, in1,
w1);
}
// I_N/2i --- 0
offset += N_over_i / 4;
for (int ni = 0; ni < N_over_i / 4; ni++) {
int out = node_idx + offset + ni;
int in = out;
connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0);
}
}
for (int nj = N / 2; nj < N; nj += N_over_i) {
int j = nj / N_over_i;
int kj = bitwise_reverse(i / 4 + j, max_bit);
// I_N/2i --- 0
int offset = nj;
for (int ni = 0; ni < N_over_i / 4; ni++) {
int out = node_idx + offset + ni;
int in = out;
connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0);
}
// C_kj/i --- -S_Kj/i
offset += N_over_i / 4;
for (int ni = 0; ni < N_over_i / 4; ni++) {
int out = node_idx + offset + ni;
int in0 = out;
double w0 = cos(kj * PI / i);
int in1 = N - (offset + ni) - 1 + node_idx;
double w1 = -sin(kj * PI / i);
connect_node(node, stage_num, node_num, stage_idx + 1, out, in0, w0, in1,
w1);
}
// S_kj/i --- C_Kj/i
offset += N_over_i / 4;
for (int ni = 0; ni < N_over_i / 4; ni++) {
int out = node_idx + offset + ni;
int in0 = out;
double w0 = sin(kj * PI / i);
int in1 = N - (offset + ni) - 1 + node_idx;
double w1 = cos(kj * PI / i);
connect_node(node, stage_num, node_num, stage_idx + 1, out, in0, w0, in1,
w1);
}
// I_N/2i --- 0
offset += N_over_i / 4;
for (int ni = 0; ni < N_over_i / 4; ni++) {
int out = node_idx + offset + ni;
int in = out;
connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0);
}
}
}
void gen_type4_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int idx, int N) {
int B_size = 1 << ((idx + 1) / 2);
for (int ni = 0; ni < N; ni += B_size) {
gen_B_graph(node, stage_num, node_num, stage_idx, node_idx + ni, B_size,
(ni / B_size) % 2);
}
}
void gen_R_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int N) {
int max_idx = 2 * (get_max_bit(N) + 1) - 3;
for (int idx = 0; idx < max_idx; idx++) {
int s = stage_idx + max_idx - idx - 1;
if (idx == 0) {
// type 1
gen_type1_graph(node, stage_num, node_num, s, node_idx, N);
} else if (idx == max_idx - 1) {
// type 2
gen_type2_graph(node, stage_num, node_num, s, node_idx, N);
} else if ((idx + 1) % 2 == 0) {
// type 4
gen_type4_graph(node, stage_num, node_num, s, node_idx, idx, N);
} else if ((idx + 1) % 2 == 1) {
// type 3
gen_type3_graph(node, stage_num, node_num, s, node_idx, idx, N);
} else {
printf("check gen_R_graph()\n");
}
}
}
void gen_DCT_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int N) {
if (N > 2) {
gen_B_graph(node, stage_num, node_num, stage_idx, node_idx, N, 0);
gen_DCT_graph(node, stage_num, node_num, stage_idx + 1, node_idx, N / 2);
gen_R_graph(node, stage_num, node_num, stage_idx + 1, node_idx + N / 2,
N / 2);
} else {
// generate dct_2
connect_node(node, stage_num, node_num, stage_idx + 1, node_idx, node_idx,
cos(PI / 4), node_idx + 1, cos(PI / 4));
connect_node(node, stage_num, node_num, stage_idx + 1, node_idx + 1,
node_idx + 1, -cos(PI / 4), node_idx, cos(PI / 4));
}
}
int get_dct_stage_num(int size) { return 2 * get_max_bit(size); }
void gen_DCT_graph_1d(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int dct_node_num) {
gen_DCT_graph(node, stage_num, node_num, stage_idx, node_idx, dct_node_num);
int dct_stage_num = get_dct_stage_num(dct_node_num);
gen_P_graph(node, stage_num, node_num, stage_idx + dct_stage_num - 2,
node_idx, dct_node_num);
}
void gen_adst_B_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int adst_idx) {
int size = 1 << (adst_idx + 1);
for (int ni = 0; ni < size / 2; ni++) {
int nOut = node_idx + ni;
int nIn = nOut + size / 2;
connect_node(node, stage_num, node_num, stage_idx + 1, nOut, nOut, 1, nIn,
1);
// printf("nOut: %d nIn: %d\n", nOut, nIn);
}
for (int ni = size / 2; ni < size; ni++) {
int nOut = node_idx + ni;
int nIn = nOut - size / 2;
connect_node(node, stage_num, node_num, stage_idx + 1, nOut, nOut, -1, nIn,
1);
// printf("ndctOut: %d nIn: %d\n", nOut, nIn);
}
}
void gen_adst_U_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int adst_idx, int adst_node_num) {
int size = 1 << (adst_idx + 1);
for (int ni = 0; ni < adst_node_num; ni += size) {
gen_adst_B_graph(node, stage_num, node_num, stage_idx, node_idx + ni,
adst_idx);
}
}
void gen_adst_T_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, double freq) {
connect_node(node, stage_num, node_num, stage_idx + 1, node_idx, node_idx,
cos(freq * PI), node_idx + 1, sin(freq * PI));
connect_node(node, stage_num, node_num, stage_idx + 1, node_idx + 1,
node_idx + 1, -cos(freq * PI), node_idx, sin(freq * PI));
}
void gen_adst_E_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int adst_idx) {
int size = 1 << (adst_idx);
for (int i = 0; i < size / 2; i++) {
int ni = i * 2;
double fi = (1 + 4 * i) * 1.0 / (1 << (adst_idx + 1));
gen_adst_T_graph(node, stage_num, node_num, stage_idx, node_idx + ni, fi);
}
}
void gen_adst_V_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int adst_idx, int adst_node_num) {
int size = 1 << (adst_idx);
for (int i = 0; i < adst_node_num / size; i++) {
if (i % 2 == 1) {
int ni = i * size;
gen_adst_E_graph(node, stage_num, node_num, stage_idx, node_idx + ni,
adst_idx);
}
}
}
void gen_adst_VJ_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int adst_node_num) {
for (int i = 0; i < adst_node_num / 2; i++) {
int ni = i * 2;
double fi = (1 + 4 * i) * 1.0 / (4 * adst_node_num);
gen_adst_T_graph(node, stage_num, node_num, stage_idx, node_idx + ni, fi);
}
}
void gen_adst_Q_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int adst_node_num) {
// reverse order when idx is 1, 3, 5, 7 ...
// example of adst_node_num = 8:
// 0 1 2 3 4 5 6 7
// --> 0 7 2 5 4 3 6 1
for (int ni = 0; ni < adst_node_num; ni++) {
if (ni % 2 == 0) {
int out = node_idx + ni;
connect_node(node, stage_num, node_num, stage_idx + 1, out, out, 1, out,
0);
} else {
int out = node_idx + ni;
int in = node_idx + adst_node_num - ni;
connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0);
}
}
}
void gen_adst_Ibar_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int adst_node_num) {
// reverse order
// 0 1 2 3 --> 3 2 1 0
for (int ni = 0; ni < adst_node_num; ni++) {
int out = node_idx + ni;
int in = node_idx + adst_node_num - ni - 1;
connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0);
}
}
int get_Q_out2in(int adst_node_num, int out) {
int in;
if (out % 2 == 0) {
in = out;
} else {
in = adst_node_num - out;
}
return in;
}
int get_Ibar_out2in(int adst_node_num, int out) {
return adst_node_num - out - 1;
}
void gen_adst_IbarQ_graph(Node *node, int stage_num, int node_num,
int stage_idx, int node_idx, int adst_node_num) {
// in -> Ibar -> Q -> out
for (int ni = 0; ni < adst_node_num; ni++) {
int out = node_idx + ni;
int in = node_idx +
get_Ibar_out2in(adst_node_num, get_Q_out2in(adst_node_num, ni));
connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0);
}
}
void gen_adst_D_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int adst_node_num) {
// reverse order
for (int ni = 0; ni < adst_node_num; ni++) {
int out = node_idx + ni;
int in = out;
if (ni % 2 == 0) {
connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0);
} else {
connect_node(node, stage_num, node_num, stage_idx + 1, out, in, -1, in,
0);
}
}
}
int get_hadamard_idx(int x, int adst_node_num) {
int max_bit = get_max_bit(adst_node_num - 1);
x = bitwise_reverse(x, max_bit);
// gray code
int c = x & 1;
int p = x & 1;
int y = c;
for (int i = 1; i <= max_bit; i++) {
p = c;
c = (x >> i) & 1;
y += (c ^ p) << i;
}
return y;
}
void gen_adst_Ht_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int adst_node_num) {
for (int ni = 0; ni < adst_node_num; ni++) {
int out = node_idx + ni;
int in = node_idx + get_hadamard_idx(ni, adst_node_num);
connect_node(node, stage_num, node_num, stage_idx + 1, out, in, 1, in, 0);
}
}
void gen_adst_HtD_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int adst_node_num) {
for (int ni = 0; ni < adst_node_num; ni++) {
int out = node_idx + ni;
int in = node_idx + get_hadamard_idx(ni, adst_node_num);
double inW;
if (ni % 2 == 0)
inW = 1;
else
inW = -1;
connect_node(node, stage_num, node_num, stage_idx + 1, out, in, inW, in, 0);
}
}
int get_adst_stage_num(int adst_node_num) {
return 2 * get_max_bit(adst_node_num) + 2;
}
int gen_iadst_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int adst_node_num) {
int max_bit = get_max_bit(adst_node_num);
int si = 0;
gen_adst_IbarQ_graph(node, stage_num, node_num, stage_idx + si, node_idx,
adst_node_num);
si++;
gen_adst_VJ_graph(node, stage_num, node_num, stage_idx + si, node_idx,
adst_node_num);
si++;
for (int adst_idx = max_bit - 1; adst_idx >= 1; adst_idx--) {
gen_adst_U_graph(node, stage_num, node_num, stage_idx + si, node_idx,
adst_idx, adst_node_num);
si++;
gen_adst_V_graph(node, stage_num, node_num, stage_idx + si, node_idx,
adst_idx, adst_node_num);
si++;
}
gen_adst_HtD_graph(node, stage_num, node_num, stage_idx + si, node_idx,
adst_node_num);
si++;
return si + 1;
}
int gen_adst_graph(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int adst_node_num) {
int hybrid_stage_num = get_hybrid_stage_num(TYPE_ADST, adst_node_num);
// generate a adst tempNode
Node *tempNode = new Node[hybrid_stage_num * adst_node_num];
init_graph(tempNode, hybrid_stage_num, adst_node_num);
int si = gen_iadst_graph(tempNode, hybrid_stage_num, adst_node_num, 0, 0,
adst_node_num);
// tempNode's inverse graph to node[stage_idx][node_idx]
gen_inv_graph(tempNode, hybrid_stage_num, adst_node_num, node, stage_num,
node_num, stage_idx, node_idx);
delete[] tempNode;
return si;
}
void connect_layer_2d(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int dct_node_num) {
for (int first = 0; first < dct_node_num; first++) {
for (int second = 0; second < dct_node_num; second++) {
// int sIn = stage_idx;
int sOut = stage_idx + 1;
int nIn = node_idx + first * dct_node_num + second;
int nOut = node_idx + second * dct_node_num + first;
// printf("sIn: %d nIn: %d sOut: %d nOut: %d\n", sIn, nIn, sOut, nOut);
connect_node(node, stage_num, node_num, sOut, nOut, nIn, 1, nIn, 0);
}
}
}
void connect_layer_2d_new(Node *node, int stage_num, int node_num,
int stage_idx, int node_idx, int dct_node_num0,
int dct_node_num1) {
for (int i = 0; i < dct_node_num1; i++) {
for (int j = 0; j < dct_node_num0; j++) {
// int sIn = stage_idx;
int sOut = stage_idx + 1;
int nIn = node_idx + i * dct_node_num0 + j;
int nOut = node_idx + j * dct_node_num1 + i;
// printf("sIn: %d nIn: %d sOut: %d nOut: %d\n", sIn, nIn, sOut, nOut);
connect_node(node, stage_num, node_num, sOut, nOut, nIn, 1, nIn, 0);
}
}
}
void gen_DCT_graph_2d(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int dct_node_num) {
int dct_stage_num = get_dct_stage_num(dct_node_num);
// put 2 layers of dct_node_num DCTs on the graph
for (int ni = 0; ni < dct_node_num; ni++) {
gen_DCT_graph_1d(node, stage_num, node_num, stage_idx,
node_idx + ni * dct_node_num, dct_node_num);
gen_DCT_graph_1d(node, stage_num, node_num, stage_idx + dct_stage_num,
node_idx + ni * dct_node_num, dct_node_num);
}
// connect first layer and second layer
connect_layer_2d(node, stage_num, node_num, stage_idx + dct_stage_num - 1,
node_idx, dct_node_num);
}
int get_hybrid_stage_num(int type, int hybrid_node_num) {
if (type == TYPE_DCT || type == TYPE_IDCT) {
return get_dct_stage_num(hybrid_node_num);
} else if (type == TYPE_ADST || type == TYPE_IADST) {
return get_adst_stage_num(hybrid_node_num);
}
return 0;
}
int get_hybrid_2d_stage_num(int type0, int type1, int hybrid_node_num) {
int stage_num = 0;
stage_num += get_hybrid_stage_num(type0, hybrid_node_num);
stage_num += get_hybrid_stage_num(type1, hybrid_node_num);
return stage_num;
}
int get_hybrid_2d_stage_num_new(int type0, int type1, int hybrid_node_num0,
int hybrid_node_num1) {
int stage_num = 0;
stage_num += get_hybrid_stage_num(type0, hybrid_node_num0);
stage_num += get_hybrid_stage_num(type1, hybrid_node_num1);
return stage_num;
}
int get_hybrid_amplify_factor(int type, int hybrid_node_num) {
return get_max_bit(hybrid_node_num) - 1;
}
void gen_hybrid_graph_1d(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int hybrid_node_num, int type) {
if (type == TYPE_DCT) {
gen_DCT_graph_1d(node, stage_num, node_num, stage_idx, node_idx,
hybrid_node_num);
} else if (type == TYPE_ADST) {
gen_adst_graph(node, stage_num, node_num, stage_idx, node_idx,
hybrid_node_num);
} else if (type == TYPE_IDCT) {
int hybrid_stage_num = get_hybrid_stage_num(type, hybrid_node_num);
// generate a dct tempNode
Node *tempNode = new Node[hybrid_stage_num * hybrid_node_num];
init_graph(tempNode, hybrid_stage_num, hybrid_node_num);
gen_DCT_graph_1d(tempNode, hybrid_stage_num, hybrid_node_num, 0, 0,
hybrid_node_num);
// tempNode's inverse graph to node[stage_idx][node_idx]
gen_inv_graph(tempNode, hybrid_stage_num, hybrid_node_num, node, stage_num,
node_num, stage_idx, node_idx);
delete[] tempNode;
} else if (type == TYPE_IADST) {
int hybrid_stage_num = get_hybrid_stage_num(type, hybrid_node_num);
// generate a adst tempNode
Node *tempNode = new Node[hybrid_stage_num * hybrid_node_num];
init_graph(tempNode, hybrid_stage_num, hybrid_node_num);
gen_adst_graph(tempNode, hybrid_stage_num, hybrid_node_num, 0, 0,
hybrid_node_num);
// tempNode's inverse graph to node[stage_idx][node_idx]
gen_inv_graph(tempNode, hybrid_stage_num, hybrid_node_num, node, stage_num,
node_num, stage_idx, node_idx);
delete[] tempNode;
}
}
void gen_hybrid_graph_2d(Node *node, int stage_num, int node_num, int stage_idx,
int node_idx, int hybrid_node_num, int type0,
int type1) {
int hybrid_stage_num = get_hybrid_stage_num(type0, hybrid_node_num);
for (int ni = 0; ni < hybrid_node_num; ni++) {
gen_hybrid_graph_1d(node, stage_num, node_num, stage_idx,
node_idx + ni * hybrid_node_num, hybrid_node_num,
type0);
gen_hybrid_graph_1d(node, stage_num, node_num, stage_idx + hybrid_stage_num,
node_idx + ni * hybrid_node_num, hybrid_node_num,
type1);
}
// connect first layer and second layer
connect_layer_2d(node, stage_num, node_num, stage_idx + hybrid_stage_num - 1,
node_idx, hybrid_node_num);
}
void gen_hybrid_graph_2d_new(Node *node, int stage_num, int node_num,
int stage_idx, int node_idx, int hybrid_node_num0,
int hybrid_node_num1, int type0, int type1) {
int hybrid_stage_num0 = get_hybrid_stage_num(type0, hybrid_node_num0);
for (int ni = 0; ni < hybrid_node_num1; ni++) {
gen_hybrid_graph_1d(node, stage_num, node_num, stage_idx,
node_idx + ni * hybrid_node_num0, hybrid_node_num0,
type0);
}
for (int ni = 0; ni < hybrid_node_num0; ni++) {
gen_hybrid_graph_1d(
node, stage_num, node_num, stage_idx + hybrid_stage_num0,
node_idx + ni * hybrid_node_num1, hybrid_node_num1, type1);
}
// connect first layer and second layer
connect_layer_2d_new(node, stage_num, node_num,
stage_idx + hybrid_stage_num0 - 1, node_idx,
hybrid_node_num0, hybrid_node_num1);
}
void gen_inv_graph(Node *node, int stage_num, int node_num, Node *invNode,
int inv_stage_num, int inv_node_num, int inv_stage_idx,
int inv_node_idx) {
// clean up inNodeNum in invNode because of add_node
for (int si = 1 + inv_stage_idx; si < inv_stage_idx + stage_num; si++) {
for (int ni = inv_node_idx; ni < inv_node_idx + node_num; ni++) {
int idx = get_idx(si, ni, inv_node_num);
invNode[idx].inNodeNum = 0;
}
}
// generate inverse graph of node on invNode
for (int si = 1; si < stage_num; si++) {
for (int ni = 0; ni < node_num; ni++) {
int invSi = stage_num - si;
int idx = get_idx(si, ni, node_num);
for (int k = 0; k < node[idx].inNodeNum; k++) {
int invNi = node[idx].inNodeIdx[k];
add_node(invNode, inv_stage_num, inv_node_num, invSi + inv_stage_idx,
invNi + inv_node_idx, ni + inv_node_idx,
node[idx].inWeight[k]);
}
}
}
}
|