1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
|
/*
*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "config/aom_config.h"
#include "aom_mem/aom_mem.h"
#include "aom_scale/yv12config.h"
#include "aom_util/aom_pthread.h"
#include "av1/common/alloccommon.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/blockd.h"
#include "av1/common/cdef_block.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
#include "av1/common/enums.h"
#include "av1/common/restoration.h"
#include "av1/common/thread_common.h"
int av1_get_MBs(int width, int height) {
const int aligned_width = ALIGN_POWER_OF_TWO(width, 3);
const int aligned_height = ALIGN_POWER_OF_TWO(height, 3);
const int mi_cols = aligned_width >> MI_SIZE_LOG2;
const int mi_rows = aligned_height >> MI_SIZE_LOG2;
const int mb_cols = ROUND_POWER_OF_TWO(mi_cols, 2);
const int mb_rows = ROUND_POWER_OF_TWO(mi_rows, 2);
return mb_rows * mb_cols;
}
void av1_free_ref_frame_buffers(BufferPool *pool) {
int i;
for (i = 0; i < pool->num_frame_bufs; ++i) {
if (pool->frame_bufs[i].ref_count > 0 &&
pool->frame_bufs[i].raw_frame_buffer.data != NULL) {
pool->release_fb_cb(pool->cb_priv, &pool->frame_bufs[i].raw_frame_buffer);
pool->frame_bufs[i].raw_frame_buffer.data = NULL;
pool->frame_bufs[i].raw_frame_buffer.size = 0;
pool->frame_bufs[i].raw_frame_buffer.priv = NULL;
pool->frame_bufs[i].ref_count = 0;
}
aom_free(pool->frame_bufs[i].mvs);
pool->frame_bufs[i].mvs = NULL;
aom_free(pool->frame_bufs[i].seg_map);
pool->frame_bufs[i].seg_map = NULL;
aom_free_frame_buffer(&pool->frame_bufs[i].buf);
}
aom_free(pool->frame_bufs);
pool->frame_bufs = NULL;
pool->num_frame_bufs = 0;
}
static inline void free_cdef_linebuf_conditional(
AV1_COMMON *const cm, const size_t *new_linebuf_size) {
CdefInfo *cdef_info = &cm->cdef_info;
for (int plane = 0; plane < MAX_MB_PLANE; plane++) {
if (new_linebuf_size[plane] != cdef_info->allocated_linebuf_size[plane]) {
aom_free(cdef_info->linebuf[plane]);
cdef_info->linebuf[plane] = NULL;
}
}
}
static inline void free_cdef_bufs_conditional(AV1_COMMON *const cm,
uint16_t **colbuf,
uint16_t **srcbuf,
const size_t *new_colbuf_size,
const size_t new_srcbuf_size) {
CdefInfo *cdef_info = &cm->cdef_info;
if (new_srcbuf_size != cdef_info->allocated_srcbuf_size) {
aom_free(*srcbuf);
*srcbuf = NULL;
}
for (int plane = 0; plane < MAX_MB_PLANE; plane++) {
if (new_colbuf_size[plane] != cdef_info->allocated_colbuf_size[plane]) {
aom_free(colbuf[plane]);
colbuf[plane] = NULL;
}
}
}
static inline void free_cdef_bufs(uint16_t **colbuf, uint16_t **srcbuf) {
aom_free(*srcbuf);
*srcbuf = NULL;
for (int plane = 0; plane < MAX_MB_PLANE; plane++) {
aom_free(colbuf[plane]);
colbuf[plane] = NULL;
}
}
static inline void free_cdef_row_sync(AV1CdefRowSync **cdef_row_mt,
const int num_mi_rows) {
if (*cdef_row_mt == NULL) return;
#if CONFIG_MULTITHREAD
for (int row_idx = 0; row_idx < num_mi_rows; row_idx++) {
if ((*cdef_row_mt)[row_idx].row_mutex_ != NULL) {
pthread_mutex_destroy((*cdef_row_mt)[row_idx].row_mutex_);
aom_free((*cdef_row_mt)[row_idx].row_mutex_);
}
if ((*cdef_row_mt)[row_idx].row_cond_ != NULL) {
pthread_cond_destroy((*cdef_row_mt)[row_idx].row_cond_);
aom_free((*cdef_row_mt)[row_idx].row_cond_);
}
}
#else
(void)num_mi_rows;
#endif // CONFIG_MULTITHREAD
aom_free(*cdef_row_mt);
*cdef_row_mt = NULL;
}
void av1_free_cdef_buffers(AV1_COMMON *const cm,
AV1CdefWorkerData **cdef_worker,
AV1CdefSync *cdef_sync) {
CdefInfo *cdef_info = &cm->cdef_info;
const int num_mi_rows = cdef_info->allocated_mi_rows;
for (int plane = 0; plane < MAX_MB_PLANE; plane++) {
aom_free(cdef_info->linebuf[plane]);
cdef_info->linebuf[plane] = NULL;
}
// De-allocation of column buffer & source buffer (worker_0).
free_cdef_bufs(cdef_info->colbuf, &cdef_info->srcbuf);
free_cdef_row_sync(&cdef_sync->cdef_row_mt, num_mi_rows);
if (cdef_info->allocated_num_workers < 2) return;
if (*cdef_worker != NULL) {
for (int idx = cdef_info->allocated_num_workers - 1; idx >= 1; idx--) {
// De-allocation of column buffer & source buffer for remaining workers.
free_cdef_bufs((*cdef_worker)[idx].colbuf, &(*cdef_worker)[idx].srcbuf);
}
aom_free(*cdef_worker);
*cdef_worker = NULL;
}
}
static inline void alloc_cdef_linebuf(AV1_COMMON *const cm, uint16_t **linebuf,
const int num_planes) {
CdefInfo *cdef_info = &cm->cdef_info;
for (int plane = 0; plane < num_planes; plane++) {
if (linebuf[plane] == NULL)
CHECK_MEM_ERROR(cm, linebuf[plane],
aom_malloc(cdef_info->allocated_linebuf_size[plane]));
}
}
static inline void alloc_cdef_bufs(AV1_COMMON *const cm, uint16_t **colbuf,
uint16_t **srcbuf, const int num_planes) {
CdefInfo *cdef_info = &cm->cdef_info;
if (*srcbuf == NULL)
CHECK_MEM_ERROR(cm, *srcbuf,
aom_memalign(16, cdef_info->allocated_srcbuf_size));
for (int plane = 0; plane < num_planes; plane++) {
if (colbuf[plane] == NULL)
CHECK_MEM_ERROR(cm, colbuf[plane],
aom_malloc(cdef_info->allocated_colbuf_size[plane]));
}
}
static inline void alloc_cdef_row_sync(AV1_COMMON *const cm,
AV1CdefRowSync **cdef_row_mt,
const int num_mi_rows) {
if (*cdef_row_mt != NULL) return;
CHECK_MEM_ERROR(cm, *cdef_row_mt,
aom_calloc(num_mi_rows, sizeof(**cdef_row_mt)));
#if CONFIG_MULTITHREAD
for (int row_idx = 0; row_idx < num_mi_rows; row_idx++) {
CHECK_MEM_ERROR(cm, (*cdef_row_mt)[row_idx].row_mutex_,
aom_malloc(sizeof(*(*cdef_row_mt)[row_idx].row_mutex_)));
pthread_mutex_init((*cdef_row_mt)[row_idx].row_mutex_, NULL);
CHECK_MEM_ERROR(cm, (*cdef_row_mt)[row_idx].row_cond_,
aom_malloc(sizeof(*(*cdef_row_mt)[row_idx].row_cond_)));
pthread_cond_init((*cdef_row_mt)[row_idx].row_cond_, NULL);
}
#endif // CONFIG_MULTITHREAD
}
void av1_alloc_cdef_buffers(AV1_COMMON *const cm,
AV1CdefWorkerData **cdef_worker,
AV1CdefSync *cdef_sync, int num_workers,
int init_worker) {
const int num_planes = av1_num_planes(cm);
size_t new_linebuf_size[MAX_MB_PLANE] = { 0 };
size_t new_colbuf_size[MAX_MB_PLANE] = { 0 };
size_t new_srcbuf_size = 0;
CdefInfo *const cdef_info = &cm->cdef_info;
// Check for configuration change
const int num_mi_rows =
(cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
const int is_num_workers_changed =
cdef_info->allocated_num_workers != num_workers;
const int is_cdef_enabled =
cm->seq_params->enable_cdef && !cm->tiles.single_tile_decoding;
// num-bufs=3 represents ping-pong buffers for top linebuf,
// followed by bottom linebuf.
// ping-pong is to avoid top linebuf over-write by consecutive row.
int num_bufs = 3;
if (num_workers > 1)
num_bufs = (cm->mi_params.mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
if (is_cdef_enabled) {
// Calculate src buffer size
new_srcbuf_size = sizeof(*cdef_info->srcbuf) * CDEF_INBUF_SIZE;
for (int plane = 0; plane < num_planes; plane++) {
const int shift =
plane == AOM_PLANE_Y ? 0 : cm->seq_params->subsampling_x;
// Calculate top and bottom line buffer size
const int luma_stride =
ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols << MI_SIZE_LOG2, 4);
new_linebuf_size[plane] = sizeof(*cdef_info->linebuf) * num_bufs *
(CDEF_VBORDER << 1) * (luma_stride >> shift);
// Calculate column buffer size
const int block_height =
(CDEF_BLOCKSIZE << (MI_SIZE_LOG2 - shift)) * 2 * CDEF_VBORDER;
new_colbuf_size[plane] =
sizeof(*cdef_info->colbuf[plane]) * block_height * CDEF_HBORDER;
}
}
// Free src, line and column buffers for worker 0 in case of reallocation
free_cdef_linebuf_conditional(cm, new_linebuf_size);
free_cdef_bufs_conditional(cm, cdef_info->colbuf, &cdef_info->srcbuf,
new_colbuf_size, new_srcbuf_size);
// The flag init_worker indicates if cdef_worker has to be allocated for the
// frame. This is passed as 1 always from decoder. At encoder side, it is 0
// when called for parallel frames during FPMT (where cdef_worker is shared
// across parallel frames) and 1 otherwise.
if (*cdef_worker != NULL && init_worker) {
if (is_num_workers_changed) {
// Free src and column buffers for remaining workers in case of change in
// num_workers
for (int idx = cdef_info->allocated_num_workers - 1; idx >= 1; idx--)
free_cdef_bufs((*cdef_worker)[idx].colbuf, &(*cdef_worker)[idx].srcbuf);
aom_free(*cdef_worker);
*cdef_worker = NULL;
} else if (num_workers > 1) {
// Free src and column buffers for remaining workers in case of
// reallocation
for (int idx = num_workers - 1; idx >= 1; idx--)
free_cdef_bufs_conditional(cm, (*cdef_worker)[idx].colbuf,
&(*cdef_worker)[idx].srcbuf, new_colbuf_size,
new_srcbuf_size);
}
}
if (cdef_info->allocated_mi_rows != num_mi_rows)
free_cdef_row_sync(&cdef_sync->cdef_row_mt, cdef_info->allocated_mi_rows);
// Store allocated sizes for reallocation
cdef_info->allocated_srcbuf_size = new_srcbuf_size;
av1_copy(cdef_info->allocated_colbuf_size, new_colbuf_size);
av1_copy(cdef_info->allocated_linebuf_size, new_linebuf_size);
// Store configuration to check change in configuration
cdef_info->allocated_mi_rows = num_mi_rows;
cdef_info->allocated_num_workers = num_workers;
if (!is_cdef_enabled) return;
// Memory allocation of column buffer & source buffer (worker_0).
alloc_cdef_bufs(cm, cdef_info->colbuf, &cdef_info->srcbuf, num_planes);
alloc_cdef_linebuf(cm, cdef_info->linebuf, num_planes);
if (num_workers < 2) return;
if (init_worker) {
if (*cdef_worker == NULL)
CHECK_MEM_ERROR(cm, *cdef_worker,
aom_calloc(num_workers, sizeof(**cdef_worker)));
// Memory allocation of column buffer & source buffer for remaining workers.
for (int idx = num_workers - 1; idx >= 1; idx--)
alloc_cdef_bufs(cm, (*cdef_worker)[idx].colbuf,
&(*cdef_worker)[idx].srcbuf, num_planes);
}
alloc_cdef_row_sync(cm, &cdef_sync->cdef_row_mt,
cdef_info->allocated_mi_rows);
}
#if !CONFIG_REALTIME_ONLY || CONFIG_AV1_DECODER
// Allocate buffers which are independent of restoration_unit_size
void av1_alloc_restoration_buffers(AV1_COMMON *cm, bool is_sgr_enabled) {
const int num_planes = av1_num_planes(cm);
if (cm->rst_tmpbuf == NULL && is_sgr_enabled) {
CHECK_MEM_ERROR(cm, cm->rst_tmpbuf,
(int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE));
}
if (cm->rlbs == NULL) {
CHECK_MEM_ERROR(cm, cm->rlbs, aom_malloc(sizeof(RestorationLineBuffers)));
}
// For striped loop restoration, we divide each plane into "stripes",
// of height 64 luma pixels but with an offset by RESTORATION_UNIT_OFFSET
// luma pixels to match the output from CDEF. We will need to store 2 *
// RESTORATION_CTX_VERT lines of data for each stripe.
int mi_h = cm->mi_params.mi_rows;
const int ext_h = RESTORATION_UNIT_OFFSET + (mi_h << MI_SIZE_LOG2);
const int num_stripes = (ext_h + 63) / 64;
// Now we need to allocate enough space to store the line buffers for the
// stripes
const int frame_w = cm->superres_upscaled_width;
const int use_highbd = cm->seq_params->use_highbitdepth;
for (int p = 0; p < num_planes; ++p) {
const int is_uv = p > 0;
const int ss_x = is_uv && cm->seq_params->subsampling_x;
const int plane_w = ((frame_w + ss_x) >> ss_x) + 2 * RESTORATION_EXTRA_HORZ;
const int stride = ALIGN_POWER_OF_TWO(plane_w, 5);
const int buf_size = num_stripes * stride * RESTORATION_CTX_VERT
<< use_highbd;
RestorationStripeBoundaries *boundaries = &cm->rst_info[p].boundaries;
if (buf_size != boundaries->stripe_boundary_size ||
boundaries->stripe_boundary_above == NULL ||
boundaries->stripe_boundary_below == NULL) {
aom_free(boundaries->stripe_boundary_above);
aom_free(boundaries->stripe_boundary_below);
CHECK_MEM_ERROR(cm, boundaries->stripe_boundary_above,
(uint8_t *)aom_memalign(32, buf_size));
CHECK_MEM_ERROR(cm, boundaries->stripe_boundary_below,
(uint8_t *)aom_memalign(32, buf_size));
boundaries->stripe_boundary_size = buf_size;
}
boundaries->stripe_boundary_stride = stride;
}
}
void av1_free_restoration_buffers(AV1_COMMON *cm) {
int p;
for (p = 0; p < MAX_MB_PLANE; ++p)
av1_free_restoration_struct(&cm->rst_info[p]);
aom_free(cm->rst_tmpbuf);
cm->rst_tmpbuf = NULL;
aom_free(cm->rlbs);
cm->rlbs = NULL;
for (p = 0; p < MAX_MB_PLANE; ++p) {
RestorationStripeBoundaries *boundaries = &cm->rst_info[p].boundaries;
aom_free(boundaries->stripe_boundary_above);
aom_free(boundaries->stripe_boundary_below);
boundaries->stripe_boundary_above = NULL;
boundaries->stripe_boundary_below = NULL;
}
aom_free_frame_buffer(&cm->rst_frame);
}
#endif // !CONFIG_REALTIME_ONLY || CONFIG_AV1_DECODER
void av1_free_above_context_buffers(CommonContexts *above_contexts) {
int i;
const int num_planes = above_contexts->num_planes;
for (int tile_row = 0; tile_row < above_contexts->num_tile_rows; tile_row++) {
for (i = 0; i < num_planes; i++) {
if (above_contexts->entropy[i] == NULL) break;
aom_free(above_contexts->entropy[i][tile_row]);
above_contexts->entropy[i][tile_row] = NULL;
}
if (above_contexts->partition != NULL) {
aom_free(above_contexts->partition[tile_row]);
above_contexts->partition[tile_row] = NULL;
}
if (above_contexts->txfm != NULL) {
aom_free(above_contexts->txfm[tile_row]);
above_contexts->txfm[tile_row] = NULL;
}
}
for (i = 0; i < num_planes; i++) {
aom_free(above_contexts->entropy[i]);
above_contexts->entropy[i] = NULL;
}
aom_free(above_contexts->partition);
above_contexts->partition = NULL;
aom_free(above_contexts->txfm);
above_contexts->txfm = NULL;
above_contexts->num_tile_rows = 0;
above_contexts->num_mi_cols = 0;
above_contexts->num_planes = 0;
}
void av1_free_context_buffers(AV1_COMMON *cm) {
if (cm->mi_params.free_mi != NULL) cm->mi_params.free_mi(&cm->mi_params);
av1_free_above_context_buffers(&cm->above_contexts);
}
int av1_alloc_above_context_buffers(CommonContexts *above_contexts,
int num_tile_rows, int num_mi_cols,
int num_planes) {
const int aligned_mi_cols =
ALIGN_POWER_OF_TWO(num_mi_cols, MAX_MIB_SIZE_LOG2);
// Allocate above context buffers
above_contexts->num_tile_rows = num_tile_rows;
above_contexts->num_mi_cols = aligned_mi_cols;
above_contexts->num_planes = num_planes;
for (int plane_idx = 0; plane_idx < num_planes; plane_idx++) {
above_contexts->entropy[plane_idx] = (ENTROPY_CONTEXT **)aom_calloc(
num_tile_rows, sizeof(above_contexts->entropy[0]));
if (!above_contexts->entropy[plane_idx]) return 1;
}
above_contexts->partition = (PARTITION_CONTEXT **)aom_calloc(
num_tile_rows, sizeof(above_contexts->partition));
if (!above_contexts->partition) return 1;
above_contexts->txfm =
(TXFM_CONTEXT **)aom_calloc(num_tile_rows, sizeof(above_contexts->txfm));
if (!above_contexts->txfm) return 1;
for (int tile_row = 0; tile_row < num_tile_rows; tile_row++) {
for (int plane_idx = 0; plane_idx < num_planes; plane_idx++) {
above_contexts->entropy[plane_idx][tile_row] =
(ENTROPY_CONTEXT *)aom_calloc(
aligned_mi_cols, sizeof(*above_contexts->entropy[0][tile_row]));
if (!above_contexts->entropy[plane_idx][tile_row]) return 1;
}
above_contexts->partition[tile_row] = (PARTITION_CONTEXT *)aom_calloc(
aligned_mi_cols, sizeof(*above_contexts->partition[tile_row]));
if (!above_contexts->partition[tile_row]) return 1;
above_contexts->txfm[tile_row] = (TXFM_CONTEXT *)aom_calloc(
aligned_mi_cols, sizeof(*above_contexts->txfm[tile_row]));
if (!above_contexts->txfm[tile_row]) return 1;
}
return 0;
}
// Allocate the dynamically allocated arrays in 'mi_params' assuming
// 'mi_params->set_mb_mi()' was already called earlier to initialize the rest of
// the struct members.
static int alloc_mi(CommonModeInfoParams *mi_params) {
const int aligned_mi_rows = calc_mi_size(mi_params->mi_rows);
const int mi_grid_size = mi_params->mi_stride * aligned_mi_rows;
const int alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
const int alloc_mi_size =
mi_params->mi_alloc_stride * (aligned_mi_rows / alloc_size_1d);
if (mi_params->mi_alloc_size < alloc_mi_size ||
mi_params->mi_grid_size < mi_grid_size) {
mi_params->free_mi(mi_params);
mi_params->mi_alloc =
aom_calloc(alloc_mi_size, sizeof(*mi_params->mi_alloc));
if (!mi_params->mi_alloc) return 1;
mi_params->mi_alloc_size = alloc_mi_size;
mi_params->mi_grid_base = (MB_MODE_INFO **)aom_calloc(
mi_grid_size, sizeof(*mi_params->mi_grid_base));
if (!mi_params->mi_grid_base) return 1;
mi_params->tx_type_map =
aom_calloc(mi_grid_size, sizeof(*mi_params->tx_type_map));
if (!mi_params->tx_type_map) return 1;
mi_params->mi_grid_size = mi_grid_size;
}
return 0;
}
int av1_alloc_context_buffers(AV1_COMMON *cm, int width, int height,
BLOCK_SIZE min_partition_size) {
CommonModeInfoParams *const mi_params = &cm->mi_params;
mi_params->set_mb_mi(mi_params, width, height, min_partition_size);
if (alloc_mi(mi_params)) goto fail;
return 0;
fail:
// clear the mi_* values to force a realloc on resync
mi_params->set_mb_mi(mi_params, 0, 0, BLOCK_4X4);
av1_free_context_buffers(cm);
return 1;
}
void av1_remove_common(AV1_COMMON *cm) {
av1_free_context_buffers(cm);
aom_free(cm->fc);
cm->fc = NULL;
aom_free(cm->default_frame_context);
cm->default_frame_context = NULL;
}
void av1_init_mi_buffers(CommonModeInfoParams *mi_params) {
mi_params->setup_mi(mi_params);
}
|