1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <stdbool.h>
#include <stddef.h>
#include "config/aom_config.h"
#include "config/aom_scale_rtcd.h"
#include "aom/aom_codec.h"
#include "aom/aom_image.h"
#include "aom/internal/aom_codec_internal.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/binary_codes_reader.h"
#include "aom_dsp/bitreader.h"
#include "aom_dsp/bitreader_buffer.h"
#include "aom_dsp/txfm_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/aom_timer.h"
#include "aom_ports/mem.h"
#include "aom_ports/mem_ops.h"
#include "aom_scale/yv12config.h"
#include "aom_util/aom_pthread.h"
#include "aom_util/aom_thread.h"
#if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
#include "aom_util/debug_util.h"
#endif // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
#include "av1/common/alloccommon.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/blockd.h"
#include "av1/common/cdef.h"
#include "av1/common/cfl.h"
#include "av1/common/common_data.h"
#include "av1/common/common.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
#include "av1/common/enums.h"
#include "av1/common/frame_buffers.h"
#include "av1/common/idct.h"
#include "av1/common/mv.h"
#include "av1/common/mvref_common.h"
#include "av1/common/obmc.h"
#include "av1/common/pred_common.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/resize.h"
#include "av1/common/restoration.h"
#include "av1/common/scale.h"
#include "av1/common/seg_common.h"
#include "av1/common/thread_common.h"
#include "av1/common/tile_common.h"
#include "av1/common/warped_motion.h"
#include "av1/decoder/decodeframe.h"
#include "av1/decoder/decodemv.h"
#include "av1/decoder/decoder.h"
#include "av1/decoder/decodetxb.h"
#include "av1/decoder/detokenize.h"
#if CONFIG_INSPECTION
#include "av1/decoder/inspection.h"
#endif
#define ACCT_STR __func__
#define AOM_MIN_THREADS_PER_TILE 1
#define AOM_MAX_THREADS_PER_TILE 2
// This is needed by ext_tile related unit tests.
#define EXT_TILE_DEBUG 1
#define MC_TEMP_BUF_PELS \
(((MAX_SB_SIZE) * 2 + (AOM_INTERP_EXTEND) * 2) * \
((MAX_SB_SIZE) * 2 + (AOM_INTERP_EXTEND) * 2))
// Checks that the remaining bits start with a 1 and ends with 0s.
// It consumes an additional byte, if already byte aligned before the check.
int av1_check_trailing_bits(AV1Decoder *pbi, struct aom_read_bit_buffer *rb) {
// bit_offset is set to 0 (mod 8) when the reader is already byte aligned
int bits_before_alignment = 8 - rb->bit_offset % 8;
int trailing = aom_rb_read_literal(rb, bits_before_alignment);
if (trailing != (1 << (bits_before_alignment - 1))) {
pbi->error.error_code = AOM_CODEC_CORRUPT_FRAME;
return -1;
}
return 0;
}
// Use only_chroma = 1 to only set the chroma planes
static inline void set_planes_to_neutral_grey(
const SequenceHeader *const seq_params, const YV12_BUFFER_CONFIG *const buf,
int only_chroma) {
if (seq_params->use_highbitdepth) {
const int val = 1 << (seq_params->bit_depth - 1);
for (int plane = only_chroma; plane < MAX_MB_PLANE; plane++) {
const int is_uv = plane > 0;
uint16_t *const base = CONVERT_TO_SHORTPTR(buf->buffers[plane]);
// Set the first row to neutral grey. Then copy the first row to all
// subsequent rows.
if (buf->crop_heights[is_uv] > 0) {
aom_memset16(base, val, buf->crop_widths[is_uv]);
for (int row_idx = 1; row_idx < buf->crop_heights[is_uv]; row_idx++) {
memcpy(&base[row_idx * buf->strides[is_uv]], base,
sizeof(*base) * buf->crop_widths[is_uv]);
}
}
}
} else {
for (int plane = only_chroma; plane < MAX_MB_PLANE; plane++) {
const int is_uv = plane > 0;
for (int row_idx = 0; row_idx < buf->crop_heights[is_uv]; row_idx++) {
memset(&buf->buffers[plane][row_idx * buf->strides[is_uv]], 1 << 7,
buf->crop_widths[is_uv]);
}
}
}
}
static inline void loop_restoration_read_sb_coeffs(const AV1_COMMON *const cm,
MACROBLOCKD *xd,
aom_reader *const r,
int plane, int runit_idx);
static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) {
return len != 0 && len <= (size_t)(end - start);
}
static TX_MODE read_tx_mode(struct aom_read_bit_buffer *rb,
int coded_lossless) {
if (coded_lossless) return ONLY_4X4;
return aom_rb_read_bit(rb) ? TX_MODE_SELECT : TX_MODE_LARGEST;
}
static REFERENCE_MODE read_frame_reference_mode(
const AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
if (frame_is_intra_only(cm)) {
return SINGLE_REFERENCE;
} else {
return aom_rb_read_bit(rb) ? REFERENCE_MODE_SELECT : SINGLE_REFERENCE;
}
}
static inline void inverse_transform_block(DecoderCodingBlock *dcb, int plane,
const TX_TYPE tx_type,
const TX_SIZE tx_size, uint8_t *dst,
int stride, int reduced_tx_set) {
tran_low_t *const dqcoeff = dcb->dqcoeff_block[plane] + dcb->cb_offset[plane];
eob_info *eob_data = dcb->eob_data[plane] + dcb->txb_offset[plane];
uint16_t scan_line = eob_data->max_scan_line;
uint16_t eob = eob_data->eob;
av1_inverse_transform_block(&dcb->xd, dqcoeff, plane, tx_type, tx_size, dst,
stride, eob, reduced_tx_set);
memset(dqcoeff, 0, (scan_line + 1) * sizeof(dqcoeff[0]));
}
static inline void read_coeffs_tx_intra_block(
const AV1_COMMON *const cm, DecoderCodingBlock *dcb, aom_reader *const r,
const int plane, const int row, const int col, const TX_SIZE tx_size) {
MB_MODE_INFO *mbmi = dcb->xd.mi[0];
if (!mbmi->skip_txfm) {
#if TXCOEFF_TIMER
struct aom_usec_timer timer;
aom_usec_timer_start(&timer);
#endif
av1_read_coeffs_txb(cm, dcb, r, plane, row, col, tx_size);
#if TXCOEFF_TIMER
aom_usec_timer_mark(&timer);
const int64_t elapsed_time = aom_usec_timer_elapsed(&timer);
cm->txcoeff_timer += elapsed_time;
++cm->txb_count;
#endif
}
}
static inline void decode_block_void(const AV1_COMMON *const cm,
DecoderCodingBlock *dcb,
aom_reader *const r, const int plane,
const int row, const int col,
const TX_SIZE tx_size) {
(void)cm;
(void)dcb;
(void)r;
(void)plane;
(void)row;
(void)col;
(void)tx_size;
}
static inline void predict_inter_block_void(AV1_COMMON *const cm,
DecoderCodingBlock *dcb,
BLOCK_SIZE bsize) {
(void)cm;
(void)dcb;
(void)bsize;
}
static inline void cfl_store_inter_block_void(AV1_COMMON *const cm,
MACROBLOCKD *const xd) {
(void)cm;
(void)xd;
}
static inline void predict_and_reconstruct_intra_block(
const AV1_COMMON *const cm, DecoderCodingBlock *dcb, aom_reader *const r,
const int plane, const int row, const int col, const TX_SIZE tx_size) {
(void)r;
MACROBLOCKD *const xd = &dcb->xd;
MB_MODE_INFO *mbmi = xd->mi[0];
PLANE_TYPE plane_type = get_plane_type(plane);
av1_predict_intra_block_facade(cm, xd, plane, col, row, tx_size);
if (!mbmi->skip_txfm) {
eob_info *eob_data = dcb->eob_data[plane] + dcb->txb_offset[plane];
if (eob_data->eob) {
const bool reduced_tx_set_used = cm->features.reduced_tx_set_used;
// tx_type was read out in av1_read_coeffs_txb.
const TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, row, col, tx_size,
reduced_tx_set_used);
struct macroblockd_plane *const pd = &xd->plane[plane];
uint8_t *dst = &pd->dst.buf[(row * pd->dst.stride + col) << MI_SIZE_LOG2];
inverse_transform_block(dcb, plane, tx_type, tx_size, dst, pd->dst.stride,
reduced_tx_set_used);
}
}
if (plane == AOM_PLANE_Y && store_cfl_required(cm, xd)) {
cfl_store_tx(xd, row, col, tx_size, mbmi->bsize);
}
}
static inline void inverse_transform_inter_block(
const AV1_COMMON *const cm, DecoderCodingBlock *dcb, aom_reader *const r,
const int plane, const int blk_row, const int blk_col,
const TX_SIZE tx_size) {
(void)r;
MACROBLOCKD *const xd = &dcb->xd;
PLANE_TYPE plane_type = get_plane_type(plane);
const struct macroblockd_plane *const pd = &xd->plane[plane];
const bool reduced_tx_set_used = cm->features.reduced_tx_set_used;
// tx_type was read out in av1_read_coeffs_txb.
const TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col,
tx_size, reduced_tx_set_used);
uint8_t *dst =
&pd->dst.buf[(blk_row * pd->dst.stride + blk_col) << MI_SIZE_LOG2];
inverse_transform_block(dcb, plane, tx_type, tx_size, dst, pd->dst.stride,
reduced_tx_set_used);
#if CONFIG_MISMATCH_DEBUG
int pixel_c, pixel_r;
BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
int blk_w = block_size_wide[bsize];
int blk_h = block_size_high[bsize];
const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2);
const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2);
mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, blk_col, blk_row,
pd->subsampling_x, pd->subsampling_y);
mismatch_check_block_tx(dst, pd->dst.stride, cm->current_frame.order_hint,
plane, pixel_c, pixel_r, blk_w, blk_h,
xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH);
#endif
}
static inline void set_cb_buffer_offsets(DecoderCodingBlock *dcb,
TX_SIZE tx_size, int plane) {
dcb->cb_offset[plane] += tx_size_wide[tx_size] * tx_size_high[tx_size];
dcb->txb_offset[plane] =
dcb->cb_offset[plane] / (TX_SIZE_W_MIN * TX_SIZE_H_MIN);
}
static inline void decode_reconstruct_tx(AV1_COMMON *cm, ThreadData *const td,
aom_reader *r,
MB_MODE_INFO *const mbmi, int plane,
BLOCK_SIZE plane_bsize, int blk_row,
int blk_col, int block,
TX_SIZE tx_size, int *eob_total) {
DecoderCodingBlock *const dcb = &td->dcb;
MACROBLOCKD *const xd = &dcb->xd;
const struct macroblockd_plane *const pd = &xd->plane[plane];
const TX_SIZE plane_tx_size =
plane ? av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
pd->subsampling_y)
: mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
blk_col)];
// Scale to match transform block unit.
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
if (tx_size == plane_tx_size || plane) {
td->read_coeffs_tx_inter_block_visit(cm, dcb, r, plane, blk_row, blk_col,
tx_size);
td->inverse_tx_inter_block_visit(cm, dcb, r, plane, blk_row, blk_col,
tx_size);
eob_info *eob_data = dcb->eob_data[plane] + dcb->txb_offset[plane];
*eob_total += eob_data->eob;
set_cb_buffer_offsets(dcb, tx_size, plane);
} else {
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
assert(IMPLIES(tx_size <= TX_4X4, sub_txs == tx_size));
assert(IMPLIES(tx_size > TX_4X4, sub_txs < tx_size));
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
const int sub_step = bsw * bsh;
const int row_end =
AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row);
const int col_end =
AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col);
assert(bsw > 0 && bsh > 0);
for (int row = 0; row < row_end; row += bsh) {
const int offsetr = blk_row + row;
for (int col = 0; col < col_end; col += bsw) {
const int offsetc = blk_col + col;
decode_reconstruct_tx(cm, td, r, mbmi, plane, plane_bsize, offsetr,
offsetc, block, sub_txs, eob_total);
block += sub_step;
}
}
}
}
static inline void set_offsets(AV1_COMMON *const cm, MACROBLOCKD *const xd,
BLOCK_SIZE bsize, int mi_row, int mi_col, int bw,
int bh, int x_mis, int y_mis) {
const int num_planes = av1_num_planes(cm);
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const TileInfo *const tile = &xd->tile;
set_mi_offsets(mi_params, xd, mi_row, mi_col);
xd->mi[0]->bsize = bsize;
#if CONFIG_RD_DEBUG
xd->mi[0]->mi_row = mi_row;
xd->mi[0]->mi_col = mi_col;
#endif
assert(x_mis && y_mis);
for (int x = 1; x < x_mis; ++x) xd->mi[x] = xd->mi[0];
int idx = mi_params->mi_stride;
for (int y = 1; y < y_mis; ++y) {
memcpy(&xd->mi[idx], &xd->mi[0], x_mis * sizeof(xd->mi[0]));
idx += mi_params->mi_stride;
}
set_plane_n4(xd, bw, bh, num_planes);
set_entropy_context(xd, mi_row, mi_col, num_planes);
// Distance of Mb to the various image edges. These are specified to 8th pel
// as they are always compared to values that are in 1/8th pel units
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows,
mi_params->mi_cols);
av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row, mi_col, 0,
num_planes);
}
static inline void decode_mbmi_block(AV1Decoder *const pbi,
DecoderCodingBlock *dcb, int mi_row,
int mi_col, aom_reader *r,
PARTITION_TYPE partition,
BLOCK_SIZE bsize) {
AV1_COMMON *const cm = &pbi->common;
const SequenceHeader *const seq_params = cm->seq_params;
const int bw = mi_size_wide[bsize];
const int bh = mi_size_high[bsize];
const int x_mis = AOMMIN(bw, cm->mi_params.mi_cols - mi_col);
const int y_mis = AOMMIN(bh, cm->mi_params.mi_rows - mi_row);
MACROBLOCKD *const xd = &dcb->xd;
#if CONFIG_ACCOUNTING
aom_accounting_set_context(&pbi->accounting, mi_col, mi_row);
#endif
set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis);
xd->mi[0]->partition = partition;
av1_read_mode_info(pbi, dcb, r, x_mis, y_mis);
if (bsize >= BLOCK_8X8 &&
(seq_params->subsampling_x || seq_params->subsampling_y)) {
const BLOCK_SIZE uv_subsize =
av1_ss_size_lookup[bsize][seq_params->subsampling_x]
[seq_params->subsampling_y];
if (uv_subsize == BLOCK_INVALID)
aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
"Invalid block size.");
}
}
typedef struct PadBlock {
int x0;
int x1;
int y0;
int y1;
} PadBlock;
#if CONFIG_AV1_HIGHBITDEPTH
static inline void highbd_build_mc_border(const uint8_t *src8, int src_stride,
uint8_t *dst8, int dst_stride, int x,
int y, int b_w, int b_h, int w,
int h) {
// Get a pointer to the start of the real data for this row.
const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
const uint16_t *ref_row = src - x - y * src_stride;
if (y >= h)
ref_row += (h - 1) * src_stride;
else if (y > 0)
ref_row += y * src_stride;
do {
int right = 0, copy;
int left = x < 0 ? -x : 0;
if (left > b_w) left = b_w;
if (x + b_w > w) right = x + b_w - w;
if (right > b_w) right = b_w;
copy = b_w - left - right;
if (left) aom_memset16(dst, ref_row[0], left);
if (copy) memcpy(dst + left, ref_row + x + left, copy * sizeof(uint16_t));
if (right) aom_memset16(dst + left + copy, ref_row[w - 1], right);
dst += dst_stride;
++y;
if (y > 0 && y < h) ref_row += src_stride;
} while (--b_h);
}
#endif // CONFIG_AV1_HIGHBITDEPTH
static inline void build_mc_border(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride, int x, int y,
int b_w, int b_h, int w, int h) {
// Get a pointer to the start of the real data for this row.
const uint8_t *ref_row = src - x - y * src_stride;
if (y >= h)
ref_row += (h - 1) * src_stride;
else if (y > 0)
ref_row += y * src_stride;
do {
int right = 0, copy;
int left = x < 0 ? -x : 0;
if (left > b_w) left = b_w;
if (x + b_w > w) right = x + b_w - w;
if (right > b_w) right = b_w;
copy = b_w - left - right;
if (left) memset(dst, ref_row[0], left);
if (copy) memcpy(dst + left, ref_row + x + left, copy);
if (right) memset(dst + left + copy, ref_row[w - 1], right);
dst += dst_stride;
++y;
if (y > 0 && y < h) ref_row += src_stride;
} while (--b_h);
}
static inline int update_extend_mc_border_params(
const struct scale_factors *const sf, struct buf_2d *const pre_buf,
MV32 scaled_mv, PadBlock *block, int subpel_x_mv, int subpel_y_mv,
int do_warp, int is_intrabc, int *x_pad, int *y_pad) {
const int is_scaled = av1_is_scaled(sf);
// Get reference width and height.
int frame_width = pre_buf->width;
int frame_height = pre_buf->height;
// Do border extension if there is motion or
// width/height is not a multiple of 8 pixels.
if ((!is_intrabc) && (!do_warp) &&
(is_scaled || scaled_mv.col || scaled_mv.row || (frame_width & 0x7) ||
(frame_height & 0x7))) {
if (subpel_x_mv || (sf->x_step_q4 != SUBPEL_SHIFTS)) {
block->x0 -= AOM_INTERP_EXTEND - 1;
block->x1 += AOM_INTERP_EXTEND;
*x_pad = 1;
}
if (subpel_y_mv || (sf->y_step_q4 != SUBPEL_SHIFTS)) {
block->y0 -= AOM_INTERP_EXTEND - 1;
block->y1 += AOM_INTERP_EXTEND;
*y_pad = 1;
}
// Skip border extension if block is inside the frame.
if (block->x0 < 0 || block->x1 > frame_width - 1 || block->y0 < 0 ||
block->y1 > frame_height - 1) {
return 1;
}
}
return 0;
}
static inline void extend_mc_border(const struct scale_factors *const sf,
struct buf_2d *const pre_buf,
MV32 scaled_mv, PadBlock block,
int subpel_x_mv, int subpel_y_mv,
int do_warp, int is_intrabc, int highbd,
uint8_t *mc_buf, uint8_t **pre,
int *src_stride) {
int x_pad = 0, y_pad = 0;
if (update_extend_mc_border_params(sf, pre_buf, scaled_mv, &block,
subpel_x_mv, subpel_y_mv, do_warp,
is_intrabc, &x_pad, &y_pad)) {
// Get reference block pointer.
const uint8_t *const buf_ptr =
pre_buf->buf0 + block.y0 * pre_buf->stride + block.x0;
int buf_stride = pre_buf->stride;
const int b_w = block.x1 - block.x0;
const int b_h = block.y1 - block.y0;
#if CONFIG_AV1_HIGHBITDEPTH
// Extend the border.
if (highbd) {
highbd_build_mc_border(buf_ptr, buf_stride, mc_buf, b_w, block.x0,
block.y0, b_w, b_h, pre_buf->width,
pre_buf->height);
} else {
build_mc_border(buf_ptr, buf_stride, mc_buf, b_w, block.x0, block.y0, b_w,
b_h, pre_buf->width, pre_buf->height);
}
#else
(void)highbd;
build_mc_border(buf_ptr, buf_stride, mc_buf, b_w, block.x0, block.y0, b_w,
b_h, pre_buf->width, pre_buf->height);
#endif
*src_stride = b_w;
*pre = mc_buf + y_pad * (AOM_INTERP_EXTEND - 1) * b_w +
x_pad * (AOM_INTERP_EXTEND - 1);
}
}
static inline void dec_calc_subpel_params(
const MV *const src_mv, InterPredParams *const inter_pred_params,
const MACROBLOCKD *const xd, int mi_x, int mi_y, uint8_t **pre,
SubpelParams *subpel_params, int *src_stride, PadBlock *block,
MV32 *scaled_mv, int *subpel_x_mv, int *subpel_y_mv) {
const struct scale_factors *sf = inter_pred_params->scale_factors;
struct buf_2d *pre_buf = &inter_pred_params->ref_frame_buf;
const int bw = inter_pred_params->block_width;
const int bh = inter_pred_params->block_height;
const int is_scaled = av1_is_scaled(sf);
if (is_scaled) {
int ssx = inter_pred_params->subsampling_x;
int ssy = inter_pred_params->subsampling_y;
int orig_pos_y = inter_pred_params->pix_row << SUBPEL_BITS;
orig_pos_y += src_mv->row * (1 << (1 - ssy));
int orig_pos_x = inter_pred_params->pix_col << SUBPEL_BITS;
orig_pos_x += src_mv->col * (1 << (1 - ssx));
int pos_y = av1_scaled_y(orig_pos_y, sf);
int pos_x = av1_scaled_x(orig_pos_x, sf);
pos_x += SCALE_EXTRA_OFF;
pos_y += SCALE_EXTRA_OFF;
const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy);
const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx);
const int bottom = (pre_buf->height + AOM_INTERP_EXTEND)
<< SCALE_SUBPEL_BITS;
const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS;
pos_y = clamp(pos_y, top, bottom);
pos_x = clamp(pos_x, left, right);
subpel_params->subpel_x = pos_x & SCALE_SUBPEL_MASK;
subpel_params->subpel_y = pos_y & SCALE_SUBPEL_MASK;
subpel_params->xs = sf->x_step_q4;
subpel_params->ys = sf->y_step_q4;
// Get reference block top left coordinate.
block->x0 = pos_x >> SCALE_SUBPEL_BITS;
block->y0 = pos_y >> SCALE_SUBPEL_BITS;
// Get reference block bottom right coordinate.
block->x1 =
((pos_x + (bw - 1) * subpel_params->xs) >> SCALE_SUBPEL_BITS) + 1;
block->y1 =
((pos_y + (bh - 1) * subpel_params->ys) >> SCALE_SUBPEL_BITS) + 1;
MV temp_mv;
temp_mv = clamp_mv_to_umv_border_sb(xd, src_mv, bw, bh,
inter_pred_params->subsampling_x,
inter_pred_params->subsampling_y);
*scaled_mv = av1_scale_mv(&temp_mv, mi_x, mi_y, sf);
scaled_mv->row += SCALE_EXTRA_OFF;
scaled_mv->col += SCALE_EXTRA_OFF;
*subpel_x_mv = scaled_mv->col & SCALE_SUBPEL_MASK;
*subpel_y_mv = scaled_mv->row & SCALE_SUBPEL_MASK;
} else {
// Get block position in current frame.
int pos_x = inter_pred_params->pix_col << SUBPEL_BITS;
int pos_y = inter_pred_params->pix_row << SUBPEL_BITS;
const MV mv_q4 = clamp_mv_to_umv_border_sb(
xd, src_mv, bw, bh, inter_pred_params->subsampling_x,
inter_pred_params->subsampling_y);
subpel_params->xs = subpel_params->ys = SCALE_SUBPEL_SHIFTS;
subpel_params->subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS;
subpel_params->subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS;
// Get reference block top left coordinate.
pos_x += mv_q4.col;
pos_y += mv_q4.row;
block->x0 = pos_x >> SUBPEL_BITS;
block->y0 = pos_y >> SUBPEL_BITS;
// Get reference block bottom right coordinate.
block->x1 = (pos_x >> SUBPEL_BITS) + (bw - 1) + 1;
block->y1 = (pos_y >> SUBPEL_BITS) + (bh - 1) + 1;
scaled_mv->row = mv_q4.row;
scaled_mv->col = mv_q4.col;
*subpel_x_mv = scaled_mv->col & SUBPEL_MASK;
*subpel_y_mv = scaled_mv->row & SUBPEL_MASK;
}
*pre = pre_buf->buf0 + block->y0 * pre_buf->stride + block->x0;
*src_stride = pre_buf->stride;
}
static inline void dec_calc_subpel_params_and_extend(
const MV *const src_mv, InterPredParams *const inter_pred_params,
MACROBLOCKD *const xd, int mi_x, int mi_y, int ref, uint8_t **mc_buf,
uint8_t **pre, SubpelParams *subpel_params, int *src_stride) {
PadBlock block;
MV32 scaled_mv;
int subpel_x_mv, subpel_y_mv;
dec_calc_subpel_params(src_mv, inter_pred_params, xd, mi_x, mi_y, pre,
subpel_params, src_stride, &block, &scaled_mv,
&subpel_x_mv, &subpel_y_mv);
extend_mc_border(
inter_pred_params->scale_factors, &inter_pred_params->ref_frame_buf,
scaled_mv, block, subpel_x_mv, subpel_y_mv,
inter_pred_params->mode == WARP_PRED, inter_pred_params->is_intrabc,
inter_pred_params->use_hbd_buf, mc_buf[ref], pre, src_stride);
}
#define IS_DEC 1
#include "av1/common/reconinter_template.inc"
#undef IS_DEC
static void dec_build_inter_predictors(const AV1_COMMON *cm,
DecoderCodingBlock *dcb, int plane,
const MB_MODE_INFO *mi,
int build_for_obmc, int bw, int bh,
int mi_x, int mi_y) {
build_inter_predictors(cm, &dcb->xd, plane, mi, build_for_obmc, bw, bh, mi_x,
mi_y, dcb->mc_buf);
}
static inline void dec_build_inter_predictor(const AV1_COMMON *cm,
DecoderCodingBlock *dcb,
int mi_row, int mi_col,
BLOCK_SIZE bsize) {
MACROBLOCKD *const xd = &dcb->xd;
const int num_planes = av1_num_planes(cm);
for (int plane = 0; plane < num_planes; ++plane) {
if (plane && !xd->is_chroma_ref) break;
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
dec_build_inter_predictors(cm, dcb, plane, xd->mi[0], 0,
xd->plane[plane].width, xd->plane[plane].height,
mi_x, mi_y);
if (is_interintra_pred(xd->mi[0])) {
BUFFER_SET ctx = { { xd->plane[0].dst.buf, xd->plane[1].dst.buf,
xd->plane[2].dst.buf },
{ xd->plane[0].dst.stride, xd->plane[1].dst.stride,
xd->plane[2].dst.stride } };
av1_build_interintra_predictor(cm, xd, xd->plane[plane].dst.buf,
xd->plane[plane].dst.stride, &ctx, plane,
bsize);
}
}
}
static inline void dec_build_prediction_by_above_pred(
MACROBLOCKD *const xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size,
int dir, MB_MODE_INFO *above_mbmi, void *fun_ctxt, const int num_planes) {
struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt;
const int above_mi_col = xd->mi_col + rel_mi_col;
int mi_x, mi_y;
MB_MODE_INFO backup_mbmi = *above_mbmi;
(void)rel_mi_row;
(void)dir;
av1_setup_build_prediction_by_above_pred(xd, rel_mi_col, op_mi_size,
&backup_mbmi, ctxt, num_planes);
mi_x = above_mi_col << MI_SIZE_LOG2;
mi_y = xd->mi_row << MI_SIZE_LOG2;
const BLOCK_SIZE bsize = xd->mi[0]->bsize;
for (int j = 0; j < num_planes; ++j) {
const struct macroblockd_plane *pd = &xd->plane[j];
int bw = (op_mi_size * MI_SIZE) >> pd->subsampling_x;
int bh = clamp(block_size_high[bsize] >> (pd->subsampling_y + 1), 4,
block_size_high[BLOCK_64X64] >> (pd->subsampling_y + 1));
if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue;
dec_build_inter_predictors(ctxt->cm, (DecoderCodingBlock *)ctxt->dcb, j,
&backup_mbmi, 1, bw, bh, mi_x, mi_y);
}
}
static inline void dec_build_prediction_by_above_preds(
const AV1_COMMON *cm, DecoderCodingBlock *dcb,
uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE],
int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) {
MACROBLOCKD *const xd = &dcb->xd;
if (!xd->up_available) return;
// Adjust mb_to_bottom_edge to have the correct value for the OBMC
// prediction block. This is half the height of the original block,
// except for 128-wide blocks, where we only use a height of 32.
const int this_height = xd->height * MI_SIZE;
const int pred_height = AOMMIN(this_height / 2, 32);
xd->mb_to_bottom_edge += GET_MV_SUBPEL(this_height - pred_height);
struct build_prediction_ctxt ctxt = {
cm, tmp_buf, tmp_width, tmp_height, tmp_stride, xd->mb_to_right_edge, dcb
};
const BLOCK_SIZE bsize = xd->mi[0]->bsize;
foreach_overlappable_nb_above(cm, xd,
max_neighbor_obmc[mi_size_wide_log2[bsize]],
dec_build_prediction_by_above_pred, &ctxt);
xd->mb_to_left_edge = -GET_MV_SUBPEL(xd->mi_col * MI_SIZE);
xd->mb_to_right_edge = ctxt.mb_to_far_edge;
xd->mb_to_bottom_edge -= GET_MV_SUBPEL(this_height - pred_height);
}
static inline void dec_build_prediction_by_left_pred(
MACROBLOCKD *const xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size,
int dir, MB_MODE_INFO *left_mbmi, void *fun_ctxt, const int num_planes) {
struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt;
const int left_mi_row = xd->mi_row + rel_mi_row;
int mi_x, mi_y;
MB_MODE_INFO backup_mbmi = *left_mbmi;
(void)rel_mi_col;
(void)dir;
av1_setup_build_prediction_by_left_pred(xd, rel_mi_row, op_mi_size,
&backup_mbmi, ctxt, num_planes);
mi_x = xd->mi_col << MI_SIZE_LOG2;
mi_y = left_mi_row << MI_SIZE_LOG2;
const BLOCK_SIZE bsize = xd->mi[0]->bsize;
for (int j = 0; j < num_planes; ++j) {
const struct macroblockd_plane *pd = &xd->plane[j];
int bw = clamp(block_size_wide[bsize] >> (pd->subsampling_x + 1), 4,
block_size_wide[BLOCK_64X64] >> (pd->subsampling_x + 1));
int bh = (op_mi_size << MI_SIZE_LOG2) >> pd->subsampling_y;
if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue;
dec_build_inter_predictors(ctxt->cm, (DecoderCodingBlock *)ctxt->dcb, j,
&backup_mbmi, 1, bw, bh, mi_x, mi_y);
}
}
static inline void dec_build_prediction_by_left_preds(
const AV1_COMMON *cm, DecoderCodingBlock *dcb,
uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE],
int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) {
MACROBLOCKD *const xd = &dcb->xd;
if (!xd->left_available) return;
// Adjust mb_to_right_edge to have the correct value for the OBMC
// prediction block. This is half the width of the original block,
// except for 128-wide blocks, where we only use a width of 32.
const int this_width = xd->width * MI_SIZE;
const int pred_width = AOMMIN(this_width / 2, 32);
xd->mb_to_right_edge += GET_MV_SUBPEL(this_width - pred_width);
struct build_prediction_ctxt ctxt = {
cm, tmp_buf, tmp_width, tmp_height, tmp_stride, xd->mb_to_bottom_edge, dcb
};
const BLOCK_SIZE bsize = xd->mi[0]->bsize;
foreach_overlappable_nb_left(cm, xd,
max_neighbor_obmc[mi_size_high_log2[bsize]],
dec_build_prediction_by_left_pred, &ctxt);
xd->mb_to_top_edge = -GET_MV_SUBPEL(xd->mi_row * MI_SIZE);
xd->mb_to_right_edge -= GET_MV_SUBPEL(this_width - pred_width);
xd->mb_to_bottom_edge = ctxt.mb_to_far_edge;
}
static inline void dec_build_obmc_inter_predictors_sb(const AV1_COMMON *cm,
DecoderCodingBlock *dcb) {
const int num_planes = av1_num_planes(cm);
uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE];
int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
MACROBLOCKD *const xd = &dcb->xd;
av1_setup_obmc_dst_bufs(xd, dst_buf1, dst_buf2);
dec_build_prediction_by_above_preds(cm, dcb, dst_buf1, dst_width1,
dst_height1, dst_stride1);
dec_build_prediction_by_left_preds(cm, dcb, dst_buf2, dst_width2, dst_height2,
dst_stride2);
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
av1_setup_dst_planes(xd->plane, xd->mi[0]->bsize, &cm->cur_frame->buf, mi_row,
mi_col, 0, num_planes);
av1_build_obmc_inter_prediction(cm, xd, dst_buf1, dst_stride1, dst_buf2,
dst_stride2);
}
static inline void cfl_store_inter_block(AV1_COMMON *const cm,
MACROBLOCKD *const xd) {
MB_MODE_INFO *mbmi = xd->mi[0];
if (store_cfl_required(cm, xd)) {
cfl_store_block(xd, mbmi->bsize, mbmi->tx_size);
}
}
static inline void predict_inter_block(AV1_COMMON *const cm,
DecoderCodingBlock *dcb,
BLOCK_SIZE bsize) {
MACROBLOCKD *const xd = &dcb->xd;
MB_MODE_INFO *mbmi = xd->mi[0];
const int num_planes = av1_num_planes(cm);
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref];
if (frame < LAST_FRAME) {
assert(is_intrabc_block(mbmi));
assert(frame == INTRA_FRAME);
assert(ref == 0);
} else {
const RefCntBuffer *ref_buf = get_ref_frame_buf(cm, frame);
const struct scale_factors *ref_scale_factors =
get_ref_scale_factors_const(cm, frame);
xd->block_ref_scale_factors[ref] = ref_scale_factors;
av1_setup_pre_planes(xd, ref, &ref_buf->buf, mi_row, mi_col,
ref_scale_factors, num_planes);
}
}
dec_build_inter_predictor(cm, dcb, mi_row, mi_col, bsize);
if (mbmi->motion_mode == OBMC_CAUSAL) {
dec_build_obmc_inter_predictors_sb(cm, dcb);
}
#if CONFIG_MISMATCH_DEBUG
for (int plane = 0; plane < num_planes; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
int pixel_c, pixel_r;
mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0, pd->subsampling_x,
pd->subsampling_y);
if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x,
pd->subsampling_y))
continue;
mismatch_check_block_pre(pd->dst.buf, pd->dst.stride,
cm->current_frame.order_hint, plane, pixel_c,
pixel_r, pd->width, pd->height,
xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH);
}
#endif
}
static inline void set_color_index_map_offset(MACROBLOCKD *const xd, int plane,
aom_reader *r) {
(void)r;
Av1ColorMapParam params;
const MB_MODE_INFO *const mbmi = xd->mi[0];
av1_get_block_dimensions(mbmi->bsize, plane, xd, ¶ms.plane_width,
¶ms.plane_height, NULL, NULL);
xd->color_index_map_offset[plane] += params.plane_width * params.plane_height;
}
static inline void decode_token_recon_block(AV1Decoder *const pbi,
ThreadData *const td, aom_reader *r,
BLOCK_SIZE bsize) {
AV1_COMMON *const cm = &pbi->common;
DecoderCodingBlock *const dcb = &td->dcb;
MACROBLOCKD *const xd = &dcb->xd;
const int num_planes = av1_num_planes(cm);
MB_MODE_INFO *mbmi = xd->mi[0];
if (!is_inter_block(mbmi)) {
int row, col;
assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x,
xd->plane[0].subsampling_y));
const int max_blocks_wide = max_block_wide(xd, bsize, 0);
const int max_blocks_high = max_block_high(xd, bsize, 0);
const BLOCK_SIZE max_unit_bsize = BLOCK_64X64;
int mu_blocks_wide = mi_size_wide[max_unit_bsize];
int mu_blocks_high = mi_size_high[max_unit_bsize];
mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide);
mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high);
for (row = 0; row < max_blocks_high; row += mu_blocks_high) {
for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) {
for (int plane = 0; plane < num_planes; ++plane) {
if (plane && !xd->is_chroma_ref) break;
const struct macroblockd_plane *const pd = &xd->plane[plane];
const TX_SIZE tx_size = av1_get_tx_size(plane, xd);
const int stepr = tx_size_high_unit[tx_size];
const int stepc = tx_size_wide_unit[tx_size];
const int unit_height = ROUND_POWER_OF_TWO(
AOMMIN(mu_blocks_high + row, max_blocks_high), pd->subsampling_y);
const int unit_width = ROUND_POWER_OF_TWO(
AOMMIN(mu_blocks_wide + col, max_blocks_wide), pd->subsampling_x);
for (int blk_row = row >> pd->subsampling_y; blk_row < unit_height;
blk_row += stepr) {
for (int blk_col = col >> pd->subsampling_x; blk_col < unit_width;
blk_col += stepc) {
td->read_coeffs_tx_intra_block_visit(cm, dcb, r, plane, blk_row,
blk_col, tx_size);
td->predict_and_recon_intra_block_visit(
cm, dcb, r, plane, blk_row, blk_col, tx_size);
set_cb_buffer_offsets(dcb, tx_size, plane);
}
}
}
}
}
} else {
td->predict_inter_block_visit(cm, dcb, bsize);
// Reconstruction
if (!mbmi->skip_txfm) {
int eobtotal = 0;
const int max_blocks_wide = max_block_wide(xd, bsize, 0);
const int max_blocks_high = max_block_high(xd, bsize, 0);
int row, col;
const BLOCK_SIZE max_unit_bsize = BLOCK_64X64;
assert(max_unit_bsize ==
get_plane_block_size(BLOCK_64X64, xd->plane[0].subsampling_x,
xd->plane[0].subsampling_y));
int mu_blocks_wide = mi_size_wide[max_unit_bsize];
int mu_blocks_high = mi_size_high[max_unit_bsize];
mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide);
mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high);
for (row = 0; row < max_blocks_high; row += mu_blocks_high) {
for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) {
for (int plane = 0; plane < num_planes; ++plane) {
if (plane && !xd->is_chroma_ref) break;
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
const BLOCK_SIZE plane_bsize =
get_plane_block_size(bsize, ss_x, ss_y);
const TX_SIZE max_tx_size =
get_vartx_max_txsize(xd, plane_bsize, plane);
const int bh_var_tx = tx_size_high_unit[max_tx_size];
const int bw_var_tx = tx_size_wide_unit[max_tx_size];
int block = 0;
int step =
tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
int blk_row, blk_col;
const int unit_height = ROUND_POWER_OF_TWO(
AOMMIN(mu_blocks_high + row, max_blocks_high), ss_y);
const int unit_width = ROUND_POWER_OF_TWO(
AOMMIN(mu_blocks_wide + col, max_blocks_wide), ss_x);
for (blk_row = row >> ss_y; blk_row < unit_height;
blk_row += bh_var_tx) {
for (blk_col = col >> ss_x; blk_col < unit_width;
blk_col += bw_var_tx) {
decode_reconstruct_tx(cm, td, r, mbmi, plane, plane_bsize,
blk_row, blk_col, block, max_tx_size,
&eobtotal);
block += step;
}
}
}
}
}
}
td->cfl_store_inter_block_visit(cm, xd);
}
av1_visit_palette(pbi, xd, r, set_color_index_map_offset);
}
static inline void set_inter_tx_size(MB_MODE_INFO *mbmi, int stride_log2,
int tx_w_log2, int tx_h_log2, int min_txs,
int split_size, int txs, int blk_row,
int blk_col) {
for (int idy = 0; idy < tx_size_high_unit[split_size];
idy += tx_size_high_unit[min_txs]) {
for (int idx = 0; idx < tx_size_wide_unit[split_size];
idx += tx_size_wide_unit[min_txs]) {
const int index = (((blk_row + idy) >> tx_h_log2) << stride_log2) +
((blk_col + idx) >> tx_w_log2);
mbmi->inter_tx_size[index] = txs;
}
}
}
static inline void read_tx_size_vartx(MACROBLOCKD *xd, MB_MODE_INFO *mbmi,
TX_SIZE tx_size, int depth, int blk_row,
int blk_col, aom_reader *r) {
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
int is_split = 0;
const BLOCK_SIZE bsize = mbmi->bsize;
const int max_blocks_high = max_block_high(xd, bsize, 0);
const int max_blocks_wide = max_block_wide(xd, bsize, 0);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
assert(tx_size > TX_4X4);
TX_SIZE txs = max_txsize_rect_lookup[bsize];
for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level)
txs = sub_tx_size_map[txs];
const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
const int bw_log2 = mi_size_wide_log2[bsize];
const int stride_log2 = bw_log2 - tx_w_log2;
if (depth == MAX_VARTX_DEPTH) {
set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, tx_size,
tx_size, blk_row, blk_col);
mbmi->tx_size = tx_size;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
return;
}
const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row,
mbmi->bsize, tx_size);
is_split = aom_read_symbol(r, ec_ctx->txfm_partition_cdf[ctx], 2, ACCT_STR);
if (is_split) {
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
if (sub_txs == TX_4X4) {
set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, tx_size,
sub_txs, blk_row, blk_col);
mbmi->tx_size = sub_txs;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, sub_txs, tx_size);
return;
}
assert(bsw > 0 && bsh > 0);
for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
int offsetr = blk_row + row;
int offsetc = blk_col + col;
read_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, offsetr, offsetc, r);
}
}
} else {
set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, tx_size,
tx_size, blk_row, blk_col);
mbmi->tx_size = tx_size;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
}
}
static TX_SIZE read_selected_tx_size(const MACROBLOCKD *const xd,
aom_reader *r) {
// TODO(debargha): Clean up the logic here. This function should only
// be called for intra.
const BLOCK_SIZE bsize = xd->mi[0]->bsize;
const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize);
const int max_depths = bsize_to_max_depth(bsize);
const int ctx = get_tx_size_context(xd);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const int depth = aom_read_symbol(r, ec_ctx->tx_size_cdf[tx_size_cat][ctx],
max_depths + 1, ACCT_STR);
assert(depth >= 0 && depth <= max_depths);
const TX_SIZE tx_size = depth_to_tx_size(depth, bsize);
return tx_size;
}
static TX_SIZE read_tx_size(const MACROBLOCKD *const xd, TX_MODE tx_mode,
int is_inter, int allow_select_inter,
aom_reader *r) {
const BLOCK_SIZE bsize = xd->mi[0]->bsize;
if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4;
if (block_signals_txsize(bsize)) {
if ((!is_inter || allow_select_inter) && tx_mode == TX_MODE_SELECT) {
const TX_SIZE coded_tx_size = read_selected_tx_size(xd, r);
return coded_tx_size;
} else {
return tx_size_from_tx_mode(bsize, tx_mode);
}
} else {
assert(IMPLIES(tx_mode == ONLY_4X4, bsize == BLOCK_4X4));
return max_txsize_rect_lookup[bsize];
}
}
static inline void parse_decode_block(AV1Decoder *const pbi,
ThreadData *const td, int mi_row,
int mi_col, aom_reader *r,
PARTITION_TYPE partition,
BLOCK_SIZE bsize) {
DecoderCodingBlock *const dcb = &td->dcb;
MACROBLOCKD *const xd = &dcb->xd;
decode_mbmi_block(pbi, dcb, mi_row, mi_col, r, partition, bsize);
av1_visit_palette(pbi, xd, r, av1_decode_palette_tokens);
AV1_COMMON *cm = &pbi->common;
const int num_planes = av1_num_planes(cm);
MB_MODE_INFO *mbmi = xd->mi[0];
int inter_block_tx = is_inter_block(mbmi) || is_intrabc_block(mbmi);
if (cm->features.tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) &&
!mbmi->skip_txfm && inter_block_tx && !xd->lossless[mbmi->segment_id]) {
const TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
const int bh = tx_size_high_unit[max_tx_size];
const int bw = tx_size_wide_unit[max_tx_size];
const int width = mi_size_wide[bsize];
const int height = mi_size_high[bsize];
for (int idy = 0; idy < height; idy += bh)
for (int idx = 0; idx < width; idx += bw)
read_tx_size_vartx(xd, mbmi, max_tx_size, 0, idy, idx, r);
} else {
mbmi->tx_size = read_tx_size(xd, cm->features.tx_mode, inter_block_tx,
!mbmi->skip_txfm, r);
if (inter_block_tx)
memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size));
set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height,
mbmi->skip_txfm && is_inter_block(mbmi), xd);
}
if (cm->delta_q_info.delta_q_present_flag) {
for (int i = 0; i < MAX_SEGMENTS; i++) {
const int current_qindex =
av1_get_qindex(&cm->seg, i, xd->current_base_qindex);
const CommonQuantParams *const quant_params = &cm->quant_params;
for (int j = 0; j < num_planes; ++j) {
const int dc_delta_q = j == 0 ? quant_params->y_dc_delta_q
: (j == 1 ? quant_params->u_dc_delta_q
: quant_params->v_dc_delta_q);
const int ac_delta_q = j == 0 ? 0
: (j == 1 ? quant_params->u_ac_delta_q
: quant_params->v_ac_delta_q);
xd->plane[j].seg_dequant_QTX[i][0] = av1_dc_quant_QTX(
current_qindex, dc_delta_q, cm->seq_params->bit_depth);
xd->plane[j].seg_dequant_QTX[i][1] = av1_ac_quant_QTX(
current_qindex, ac_delta_q, cm->seq_params->bit_depth);
}
}
}
if (mbmi->skip_txfm) av1_reset_entropy_context(xd, bsize, num_planes);
decode_token_recon_block(pbi, td, r, bsize);
}
static inline void set_offsets_for_pred_and_recon(AV1Decoder *const pbi,
ThreadData *const td,
int mi_row, int mi_col,
BLOCK_SIZE bsize) {
AV1_COMMON *const cm = &pbi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
DecoderCodingBlock *const dcb = &td->dcb;
MACROBLOCKD *const xd = &dcb->xd;
const int bw = mi_size_wide[bsize];
const int bh = mi_size_high[bsize];
const int num_planes = av1_num_planes(cm);
const int offset = mi_row * mi_params->mi_stride + mi_col;
const TileInfo *const tile = &xd->tile;
xd->mi = mi_params->mi_grid_base + offset;
xd->tx_type_map =
&mi_params->tx_type_map[mi_row * mi_params->mi_stride + mi_col];
xd->tx_type_map_stride = mi_params->mi_stride;
set_plane_n4(xd, bw, bh, num_planes);
// Distance of Mb to the various image edges. These are specified to 8th pel
// as they are always compared to values that are in 1/8th pel units
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows,
mi_params->mi_cols);
av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row, mi_col, 0,
num_planes);
}
static inline void decode_block(AV1Decoder *const pbi, ThreadData *const td,
int mi_row, int mi_col, aom_reader *r,
PARTITION_TYPE partition, BLOCK_SIZE bsize) {
(void)partition;
set_offsets_for_pred_and_recon(pbi, td, mi_row, mi_col, bsize);
decode_token_recon_block(pbi, td, r, bsize);
}
static PARTITION_TYPE read_partition(MACROBLOCKD *xd, int mi_row, int mi_col,
aom_reader *r, int has_rows, int has_cols,
BLOCK_SIZE bsize) {
const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
if (!has_rows && !has_cols) return PARTITION_SPLIT;
assert(ctx >= 0);
aom_cdf_prob *partition_cdf = ec_ctx->partition_cdf[ctx];
if (has_rows && has_cols) {
return (PARTITION_TYPE)aom_read_symbol(
r, partition_cdf, partition_cdf_length(bsize), ACCT_STR);
} else if (!has_rows && has_cols) {
assert(bsize > BLOCK_8X8);
aom_cdf_prob cdf[2];
partition_gather_vert_alike(cdf, partition_cdf, bsize);
assert(cdf[1] == AOM_ICDF(CDF_PROB_TOP));
return aom_read_cdf(r, cdf, 2, ACCT_STR) ? PARTITION_SPLIT : PARTITION_HORZ;
} else {
assert(has_rows && !has_cols);
assert(bsize > BLOCK_8X8);
aom_cdf_prob cdf[2];
partition_gather_horz_alike(cdf, partition_cdf, bsize);
assert(cdf[1] == AOM_ICDF(CDF_PROB_TOP));
return aom_read_cdf(r, cdf, 2, ACCT_STR) ? PARTITION_SPLIT : PARTITION_VERT;
}
}
// TODO(slavarnway): eliminate bsize and subsize in future commits
static inline void decode_partition(AV1Decoder *const pbi, ThreadData *const td,
int mi_row, int mi_col, aom_reader *reader,
BLOCK_SIZE bsize, int parse_decode_flag) {
assert(bsize < BLOCK_SIZES_ALL);
AV1_COMMON *const cm = &pbi->common;
DecoderCodingBlock *const dcb = &td->dcb;
MACROBLOCKD *const xd = &dcb->xd;
const int bw = mi_size_wide[bsize];
const int hbs = bw >> 1;
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
const int quarter_step = bw / 4;
BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
const int has_rows = (mi_row + hbs) < cm->mi_params.mi_rows;
const int has_cols = (mi_col + hbs) < cm->mi_params.mi_cols;
if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols)
return;
// parse_decode_flag takes the following values :
// 01 - do parse only
// 10 - do decode only
// 11 - do parse and decode
static const block_visitor_fn_t block_visit[4] = { NULL, parse_decode_block,
decode_block,
parse_decode_block };
if (parse_decode_flag & 1) {
const int num_planes = av1_num_planes(cm);
for (int plane = 0; plane < num_planes; ++plane) {
int rcol0, rcol1, rrow0, rrow1;
// Skip some unnecessary work if loop restoration is disabled
if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
if (av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize,
&rcol0, &rcol1, &rrow0, &rrow1)) {
const int rstride = cm->rst_info[plane].horz_units;
for (int rrow = rrow0; rrow < rrow1; ++rrow) {
for (int rcol = rcol0; rcol < rcol1; ++rcol) {
const int runit_idx = rcol + rrow * rstride;
loop_restoration_read_sb_coeffs(cm, xd, reader, plane, runit_idx);
}
}
}
}
partition = (bsize < BLOCK_8X8) ? PARTITION_NONE
: read_partition(xd, mi_row, mi_col, reader,
has_rows, has_cols, bsize);
} else {
partition = get_partition(cm, mi_row, mi_col, bsize);
}
subsize = get_partition_subsize(bsize, partition);
if (subsize == BLOCK_INVALID) {
// When an internal error occurs ensure that xd->mi_row is set appropriately
// w.r.t. current tile, which is used to signal processing of current row is
// done.
xd->mi_row = mi_row;
aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
"Partition is invalid for block size %dx%d",
block_size_wide[bsize], block_size_high[bsize]);
}
// Check the bitstream is conformant: if there is subsampling on the
// chroma planes, subsize must subsample to a valid block size.
const struct macroblockd_plane *const pd_u = &xd->plane[1];
if (get_plane_block_size(subsize, pd_u->subsampling_x, pd_u->subsampling_y) ==
BLOCK_INVALID) {
// When an internal error occurs ensure that xd->mi_row is set appropriately
// w.r.t. current tile, which is used to signal processing of current row is
// done.
xd->mi_row = mi_row;
aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
"Block size %dx%d invalid with this subsampling mode",
block_size_wide[subsize], block_size_high[subsize]);
}
#define DEC_BLOCK_STX_ARG
#define DEC_BLOCK_EPT_ARG partition,
#define DEC_BLOCK(db_r, db_c, db_subsize) \
block_visit[parse_decode_flag](pbi, td, DEC_BLOCK_STX_ARG(db_r), (db_c), \
reader, DEC_BLOCK_EPT_ARG(db_subsize))
#define DEC_PARTITION(db_r, db_c, db_subsize) \
decode_partition(pbi, td, DEC_BLOCK_STX_ARG(db_r), (db_c), reader, \
(db_subsize), parse_decode_flag)
switch (partition) {
case PARTITION_NONE: DEC_BLOCK(mi_row, mi_col, subsize); break;
case PARTITION_HORZ:
DEC_BLOCK(mi_row, mi_col, subsize);
if (has_rows) DEC_BLOCK(mi_row + hbs, mi_col, subsize);
break;
case PARTITION_VERT:
DEC_BLOCK(mi_row, mi_col, subsize);
if (has_cols) DEC_BLOCK(mi_row, mi_col + hbs, subsize);
break;
case PARTITION_SPLIT:
DEC_PARTITION(mi_row, mi_col, subsize);
DEC_PARTITION(mi_row, mi_col + hbs, subsize);
DEC_PARTITION(mi_row + hbs, mi_col, subsize);
DEC_PARTITION(mi_row + hbs, mi_col + hbs, subsize);
break;
case PARTITION_HORZ_A:
DEC_BLOCK(mi_row, mi_col, bsize2);
DEC_BLOCK(mi_row, mi_col + hbs, bsize2);
DEC_BLOCK(mi_row + hbs, mi_col, subsize);
break;
case PARTITION_HORZ_B:
DEC_BLOCK(mi_row, mi_col, subsize);
DEC_BLOCK(mi_row + hbs, mi_col, bsize2);
DEC_BLOCK(mi_row + hbs, mi_col + hbs, bsize2);
break;
case PARTITION_VERT_A:
DEC_BLOCK(mi_row, mi_col, bsize2);
DEC_BLOCK(mi_row + hbs, mi_col, bsize2);
DEC_BLOCK(mi_row, mi_col + hbs, subsize);
break;
case PARTITION_VERT_B:
DEC_BLOCK(mi_row, mi_col, subsize);
DEC_BLOCK(mi_row, mi_col + hbs, bsize2);
DEC_BLOCK(mi_row + hbs, mi_col + hbs, bsize2);
break;
case PARTITION_HORZ_4:
for (int i = 0; i < 4; ++i) {
int this_mi_row = mi_row + i * quarter_step;
if (i > 0 && this_mi_row >= cm->mi_params.mi_rows) break;
DEC_BLOCK(this_mi_row, mi_col, subsize);
}
break;
case PARTITION_VERT_4:
for (int i = 0; i < 4; ++i) {
int this_mi_col = mi_col + i * quarter_step;
if (i > 0 && this_mi_col >= cm->mi_params.mi_cols) break;
DEC_BLOCK(mi_row, this_mi_col, subsize);
}
break;
default: assert(0 && "Invalid partition type");
}
#undef DEC_PARTITION
#undef DEC_BLOCK
#undef DEC_BLOCK_EPT_ARG
#undef DEC_BLOCK_STX_ARG
if (parse_decode_flag & 1)
update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
}
static inline void setup_bool_decoder(
MACROBLOCKD *const xd, const uint8_t *data, const uint8_t *data_end,
const size_t read_size, struct aom_internal_error_info *error_info,
aom_reader *r, uint8_t allow_update_cdf) {
// Validate the calculated partition length. If the buffer
// described by the partition can't be fully read, then restrict
// it to the portion that can be (for EC mode) or throw an error.
if (!read_is_valid(data, read_size, data_end)) {
// When internal error occurs ensure that xd->mi_row is set appropriately
// w.r.t. current tile, which is used to signal processing of current row is
// done in row-mt decoding.
xd->mi_row = xd->tile.mi_row_start;
aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile length");
}
if (aom_reader_init(r, data, read_size)) {
// When internal error occurs ensure that xd->mi_row is set appropriately
// w.r.t. current tile, which is used to signal processing of current row is
// done in row-mt decoding.
xd->mi_row = xd->tile.mi_row_start;
aom_internal_error(error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate bool decoder %d", 1);
}
r->allow_update_cdf = allow_update_cdf;
}
static inline void setup_segmentation(AV1_COMMON *const cm,
struct aom_read_bit_buffer *rb) {
struct segmentation *const seg = &cm->seg;
seg->update_map = 0;
seg->update_data = 0;
seg->temporal_update = 0;
seg->enabled = aom_rb_read_bit(rb);
if (!seg->enabled) {
if (cm->cur_frame->seg_map) {
memset(cm->cur_frame->seg_map, 0,
(cm->cur_frame->mi_rows * cm->cur_frame->mi_cols));
}
memset(seg, 0, sizeof(*seg));
segfeatures_copy(&cm->cur_frame->seg, seg);
return;
}
if (cm->seg.enabled && cm->prev_frame &&
(cm->mi_params.mi_rows == cm->prev_frame->mi_rows) &&
(cm->mi_params.mi_cols == cm->prev_frame->mi_cols)) {
cm->last_frame_seg_map = cm->prev_frame->seg_map;
} else {
cm->last_frame_seg_map = NULL;
}
// Read update flags
if (cm->features.primary_ref_frame == PRIMARY_REF_NONE) {
// These frames can't use previous frames, so must signal map + features
seg->update_map = 1;
seg->temporal_update = 0;
seg->update_data = 1;
} else {
seg->update_map = aom_rb_read_bit(rb);
if (seg->update_map) {
seg->temporal_update = aom_rb_read_bit(rb);
} else {
seg->temporal_update = 0;
}
seg->update_data = aom_rb_read_bit(rb);
}
// Segmentation data update
if (seg->update_data) {
av1_clearall_segfeatures(seg);
for (int i = 0; i < MAX_SEGMENTS; i++) {
for (int j = 0; j < SEG_LVL_MAX; j++) {
int data = 0;
const int feature_enabled = aom_rb_read_bit(rb);
if (feature_enabled) {
av1_enable_segfeature(seg, i, j);
const int data_max = av1_seg_feature_data_max(j);
const int data_min = -data_max;
const int ubits = get_unsigned_bits(data_max);
if (av1_is_segfeature_signed(j)) {
data = aom_rb_read_inv_signed_literal(rb, ubits);
} else {
data = aom_rb_read_literal(rb, ubits);
}
data = clamp(data, data_min, data_max);
}
av1_set_segdata(seg, i, j, data);
}
}
av1_calculate_segdata(seg);
} else if (cm->prev_frame) {
segfeatures_copy(seg, &cm->prev_frame->seg);
}
segfeatures_copy(&cm->cur_frame->seg, seg);
}
static inline void decode_restoration_mode(AV1_COMMON *cm,
struct aom_read_bit_buffer *rb) {
assert(!cm->features.all_lossless);
const int num_planes = av1_num_planes(cm);
if (cm->features.allow_intrabc) return;
int all_none = 1, chroma_none = 1;
for (int p = 0; p < num_planes; ++p) {
RestorationInfo *rsi = &cm->rst_info[p];
if (aom_rb_read_bit(rb)) {
rsi->frame_restoration_type =
aom_rb_read_bit(rb) ? RESTORE_SGRPROJ : RESTORE_WIENER;
} else {
rsi->frame_restoration_type =
aom_rb_read_bit(rb) ? RESTORE_SWITCHABLE : RESTORE_NONE;
}
if (rsi->frame_restoration_type != RESTORE_NONE) {
all_none = 0;
chroma_none &= p == 0;
}
}
if (!all_none) {
assert(cm->seq_params->sb_size == BLOCK_64X64 ||
cm->seq_params->sb_size == BLOCK_128X128);
const int sb_size = cm->seq_params->sb_size == BLOCK_128X128 ? 128 : 64;
for (int p = 0; p < num_planes; ++p)
cm->rst_info[p].restoration_unit_size = sb_size;
RestorationInfo *rsi = &cm->rst_info[0];
if (sb_size == 64) {
rsi->restoration_unit_size <<= aom_rb_read_bit(rb);
}
if (rsi->restoration_unit_size > 64) {
rsi->restoration_unit_size <<= aom_rb_read_bit(rb);
}
} else {
const int size = RESTORATION_UNITSIZE_MAX;
for (int p = 0; p < num_planes; ++p)
cm->rst_info[p].restoration_unit_size = size;
}
if (num_planes > 1) {
int s =
AOMMIN(cm->seq_params->subsampling_x, cm->seq_params->subsampling_y);
if (s && !chroma_none) {
cm->rst_info[1].restoration_unit_size =
cm->rst_info[0].restoration_unit_size >> (aom_rb_read_bit(rb) * s);
} else {
cm->rst_info[1].restoration_unit_size =
cm->rst_info[0].restoration_unit_size;
}
cm->rst_info[2].restoration_unit_size =
cm->rst_info[1].restoration_unit_size;
}
}
static inline void read_wiener_filter(int wiener_win, WienerInfo *wiener_info,
WienerInfo *ref_wiener_info,
aom_reader *rb) {
memset(wiener_info->vfilter, 0, sizeof(wiener_info->vfilter));
memset(wiener_info->hfilter, 0, sizeof(wiener_info->hfilter));
if (wiener_win == WIENER_WIN)
wiener_info->vfilter[0] = wiener_info->vfilter[WIENER_WIN - 1] =
aom_read_primitive_refsubexpfin(
rb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
WIENER_FILT_TAP0_SUBEXP_K,
ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV, ACCT_STR) +
WIENER_FILT_TAP0_MINV;
else
wiener_info->vfilter[0] = wiener_info->vfilter[WIENER_WIN - 1] = 0;
wiener_info->vfilter[1] = wiener_info->vfilter[WIENER_WIN - 2] =
aom_read_primitive_refsubexpfin(
rb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
WIENER_FILT_TAP1_SUBEXP_K,
ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV, ACCT_STR) +
WIENER_FILT_TAP1_MINV;
wiener_info->vfilter[2] = wiener_info->vfilter[WIENER_WIN - 3] =
aom_read_primitive_refsubexpfin(
rb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
WIENER_FILT_TAP2_SUBEXP_K,
ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV, ACCT_STR) +
WIENER_FILT_TAP2_MINV;
// The central element has an implicit +WIENER_FILT_STEP
wiener_info->vfilter[WIENER_HALFWIN] =
-2 * (wiener_info->vfilter[0] + wiener_info->vfilter[1] +
wiener_info->vfilter[2]);
if (wiener_win == WIENER_WIN)
wiener_info->hfilter[0] = wiener_info->hfilter[WIENER_WIN - 1] =
aom_read_primitive_refsubexpfin(
rb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
WIENER_FILT_TAP0_SUBEXP_K,
ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV, ACCT_STR) +
WIENER_FILT_TAP0_MINV;
else
wiener_info->hfilter[0] = wiener_info->hfilter[WIENER_WIN - 1] = 0;
wiener_info->hfilter[1] = wiener_info->hfilter[WIENER_WIN - 2] =
aom_read_primitive_refsubexpfin(
rb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
WIENER_FILT_TAP1_SUBEXP_K,
ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV, ACCT_STR) +
WIENER_FILT_TAP1_MINV;
wiener_info->hfilter[2] = wiener_info->hfilter[WIENER_WIN - 3] =
aom_read_primitive_refsubexpfin(
rb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
WIENER_FILT_TAP2_SUBEXP_K,
ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV, ACCT_STR) +
WIENER_FILT_TAP2_MINV;
// The central element has an implicit +WIENER_FILT_STEP
wiener_info->hfilter[WIENER_HALFWIN] =
-2 * (wiener_info->hfilter[0] + wiener_info->hfilter[1] +
wiener_info->hfilter[2]);
*ref_wiener_info = *wiener_info;
}
static inline void read_sgrproj_filter(SgrprojInfo *sgrproj_info,
SgrprojInfo *ref_sgrproj_info,
aom_reader *rb) {
sgrproj_info->ep = aom_read_literal(rb, SGRPROJ_PARAMS_BITS, ACCT_STR);
const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep];
if (params->r[0] == 0) {
sgrproj_info->xqd[0] = 0;
sgrproj_info->xqd[1] =
aom_read_primitive_refsubexpfin(
rb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, ACCT_STR) +
SGRPROJ_PRJ_MIN1;
} else if (params->r[1] == 0) {
sgrproj_info->xqd[0] =
aom_read_primitive_refsubexpfin(
rb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, ACCT_STR) +
SGRPROJ_PRJ_MIN0;
sgrproj_info->xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - sgrproj_info->xqd[0],
SGRPROJ_PRJ_MIN1, SGRPROJ_PRJ_MAX1);
} else {
sgrproj_info->xqd[0] =
aom_read_primitive_refsubexpfin(
rb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, ACCT_STR) +
SGRPROJ_PRJ_MIN0;
sgrproj_info->xqd[1] =
aom_read_primitive_refsubexpfin(
rb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, ACCT_STR) +
SGRPROJ_PRJ_MIN1;
}
*ref_sgrproj_info = *sgrproj_info;
}
static inline void loop_restoration_read_sb_coeffs(const AV1_COMMON *const cm,
MACROBLOCKD *xd,
aom_reader *const r,
int plane, int runit_idx) {
const RestorationInfo *rsi = &cm->rst_info[plane];
RestorationUnitInfo *rui = &rsi->unit_info[runit_idx];
assert(rsi->frame_restoration_type != RESTORE_NONE);
assert(!cm->features.all_lossless);
const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN;
WienerInfo *wiener_info = xd->wiener_info + plane;
SgrprojInfo *sgrproj_info = xd->sgrproj_info + plane;
if (rsi->frame_restoration_type == RESTORE_SWITCHABLE) {
rui->restoration_type =
aom_read_symbol(r, xd->tile_ctx->switchable_restore_cdf,
RESTORE_SWITCHABLE_TYPES, ACCT_STR);
switch (rui->restoration_type) {
case RESTORE_WIENER:
read_wiener_filter(wiener_win, &rui->wiener_info, wiener_info, r);
break;
case RESTORE_SGRPROJ:
read_sgrproj_filter(&rui->sgrproj_info, sgrproj_info, r);
break;
default: assert(rui->restoration_type == RESTORE_NONE); break;
}
} else if (rsi->frame_restoration_type == RESTORE_WIENER) {
if (aom_read_symbol(r, xd->tile_ctx->wiener_restore_cdf, 2, ACCT_STR)) {
rui->restoration_type = RESTORE_WIENER;
read_wiener_filter(wiener_win, &rui->wiener_info, wiener_info, r);
} else {
rui->restoration_type = RESTORE_NONE;
}
} else if (rsi->frame_restoration_type == RESTORE_SGRPROJ) {
if (aom_read_symbol(r, xd->tile_ctx->sgrproj_restore_cdf, 2, ACCT_STR)) {
rui->restoration_type = RESTORE_SGRPROJ;
read_sgrproj_filter(&rui->sgrproj_info, sgrproj_info, r);
} else {
rui->restoration_type = RESTORE_NONE;
}
}
}
static inline void setup_loopfilter(AV1_COMMON *cm,
struct aom_read_bit_buffer *rb) {
const int num_planes = av1_num_planes(cm);
struct loopfilter *lf = &cm->lf;
if (cm->features.allow_intrabc || cm->features.coded_lossless) {
// write default deltas to frame buffer
av1_set_default_ref_deltas(cm->cur_frame->ref_deltas);
av1_set_default_mode_deltas(cm->cur_frame->mode_deltas);
return;
}
assert(!cm->features.coded_lossless);
if (cm->prev_frame) {
// write deltas to frame buffer
memcpy(lf->ref_deltas, cm->prev_frame->ref_deltas, REF_FRAMES);
memcpy(lf->mode_deltas, cm->prev_frame->mode_deltas, MAX_MODE_LF_DELTAS);
} else {
av1_set_default_ref_deltas(lf->ref_deltas);
av1_set_default_mode_deltas(lf->mode_deltas);
}
lf->filter_level[0] = aom_rb_read_literal(rb, 6);
lf->filter_level[1] = aom_rb_read_literal(rb, 6);
if (num_planes > 1) {
if (lf->filter_level[0] || lf->filter_level[1]) {
lf->filter_level_u = aom_rb_read_literal(rb, 6);
lf->filter_level_v = aom_rb_read_literal(rb, 6);
}
}
lf->sharpness_level = aom_rb_read_literal(rb, 3);
// Read in loop filter deltas applied at the MB level based on mode or ref
// frame.
lf->mode_ref_delta_update = 0;
lf->mode_ref_delta_enabled = aom_rb_read_bit(rb);
if (lf->mode_ref_delta_enabled) {
lf->mode_ref_delta_update = aom_rb_read_bit(rb);
if (lf->mode_ref_delta_update) {
for (int i = 0; i < REF_FRAMES; i++)
if (aom_rb_read_bit(rb))
lf->ref_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6);
for (int i = 0; i < MAX_MODE_LF_DELTAS; i++)
if (aom_rb_read_bit(rb))
lf->mode_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6);
}
}
// write deltas to frame buffer
memcpy(cm->cur_frame->ref_deltas, lf->ref_deltas, REF_FRAMES);
memcpy(cm->cur_frame->mode_deltas, lf->mode_deltas, MAX_MODE_LF_DELTAS);
}
static inline void setup_cdef(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
const int num_planes = av1_num_planes(cm);
CdefInfo *const cdef_info = &cm->cdef_info;
if (cm->features.allow_intrabc) return;
cdef_info->cdef_damping = aom_rb_read_literal(rb, 2) + 3;
cdef_info->cdef_bits = aom_rb_read_literal(rb, 2);
cdef_info->nb_cdef_strengths = 1 << cdef_info->cdef_bits;
for (int i = 0; i < cdef_info->nb_cdef_strengths; i++) {
cdef_info->cdef_strengths[i] = aom_rb_read_literal(rb, CDEF_STRENGTH_BITS);
cdef_info->cdef_uv_strengths[i] =
num_planes > 1 ? aom_rb_read_literal(rb, CDEF_STRENGTH_BITS) : 0;
}
}
static inline int read_delta_q(struct aom_read_bit_buffer *rb) {
return aom_rb_read_bit(rb) ? aom_rb_read_inv_signed_literal(rb, 6) : 0;
}
static inline void setup_quantization(CommonQuantParams *quant_params,
int num_planes, bool separate_uv_delta_q,
struct aom_read_bit_buffer *rb) {
quant_params->base_qindex = aom_rb_read_literal(rb, QINDEX_BITS);
quant_params->y_dc_delta_q = read_delta_q(rb);
if (num_planes > 1) {
int diff_uv_delta = 0;
if (separate_uv_delta_q) diff_uv_delta = aom_rb_read_bit(rb);
quant_params->u_dc_delta_q = read_delta_q(rb);
quant_params->u_ac_delta_q = read_delta_q(rb);
if (diff_uv_delta) {
quant_params->v_dc_delta_q = read_delta_q(rb);
quant_params->v_ac_delta_q = read_delta_q(rb);
} else {
quant_params->v_dc_delta_q = quant_params->u_dc_delta_q;
quant_params->v_ac_delta_q = quant_params->u_ac_delta_q;
}
} else {
quant_params->u_dc_delta_q = 0;
quant_params->u_ac_delta_q = 0;
quant_params->v_dc_delta_q = 0;
quant_params->v_ac_delta_q = 0;
}
quant_params->using_qmatrix = aom_rb_read_bit(rb);
if (quant_params->using_qmatrix) {
quant_params->qmatrix_level_y = aom_rb_read_literal(rb, QM_LEVEL_BITS);
quant_params->qmatrix_level_u = aom_rb_read_literal(rb, QM_LEVEL_BITS);
if (!separate_uv_delta_q)
quant_params->qmatrix_level_v = quant_params->qmatrix_level_u;
else
quant_params->qmatrix_level_v = aom_rb_read_literal(rb, QM_LEVEL_BITS);
} else {
quant_params->qmatrix_level_y = 0;
quant_params->qmatrix_level_u = 0;
quant_params->qmatrix_level_v = 0;
}
}
// Get global dequant matrix.
static const qm_val_t *get_iqmatrix(const CommonQuantParams *quant_params,
int qmlevel, int plane, TX_SIZE tx_size) {
assert(quant_params->giqmatrix[qmlevel][plane][tx_size] != NULL ||
qmlevel == NUM_QM_LEVELS - 1);
return quant_params->giqmatrix[qmlevel][plane][tx_size];
}
// Build y/uv dequant values based on segmentation.
static inline void setup_segmentation_dequant(AV1_COMMON *const cm,
MACROBLOCKD *const xd) {
const int bit_depth = cm->seq_params->bit_depth;
// When segmentation is disabled, only the first value is used. The
// remaining are don't cares.
const int max_segments = cm->seg.enabled ? MAX_SEGMENTS : 1;
CommonQuantParams *const quant_params = &cm->quant_params;
for (int i = 0; i < max_segments; ++i) {
const int qindex = xd->qindex[i];
quant_params->y_dequant_QTX[i][0] =
av1_dc_quant_QTX(qindex, quant_params->y_dc_delta_q, bit_depth);
quant_params->y_dequant_QTX[i][1] = av1_ac_quant_QTX(qindex, 0, bit_depth);
quant_params->u_dequant_QTX[i][0] =
av1_dc_quant_QTX(qindex, quant_params->u_dc_delta_q, bit_depth);
quant_params->u_dequant_QTX[i][1] =
av1_ac_quant_QTX(qindex, quant_params->u_ac_delta_q, bit_depth);
quant_params->v_dequant_QTX[i][0] =
av1_dc_quant_QTX(qindex, quant_params->v_dc_delta_q, bit_depth);
quant_params->v_dequant_QTX[i][1] =
av1_ac_quant_QTX(qindex, quant_params->v_ac_delta_q, bit_depth);
const int use_qmatrix = av1_use_qmatrix(quant_params, xd, i);
// NB: depends on base index so there is only 1 set per frame
// No quant weighting when lossless or signalled not using QM
const int qmlevel_y =
use_qmatrix ? quant_params->qmatrix_level_y : NUM_QM_LEVELS - 1;
for (int j = 0; j < TX_SIZES_ALL; ++j) {
quant_params->y_iqmatrix[i][j] =
get_iqmatrix(quant_params, qmlevel_y, AOM_PLANE_Y, j);
}
const int qmlevel_u =
use_qmatrix ? quant_params->qmatrix_level_u : NUM_QM_LEVELS - 1;
for (int j = 0; j < TX_SIZES_ALL; ++j) {
quant_params->u_iqmatrix[i][j] =
get_iqmatrix(quant_params, qmlevel_u, AOM_PLANE_U, j);
}
const int qmlevel_v =
use_qmatrix ? quant_params->qmatrix_level_v : NUM_QM_LEVELS - 1;
for (int j = 0; j < TX_SIZES_ALL; ++j) {
quant_params->v_iqmatrix[i][j] =
get_iqmatrix(quant_params, qmlevel_v, AOM_PLANE_V, j);
}
}
}
static InterpFilter read_frame_interp_filter(struct aom_read_bit_buffer *rb) {
return aom_rb_read_bit(rb) ? SWITCHABLE
: aom_rb_read_literal(rb, LOG_SWITCHABLE_FILTERS);
}
static void read_frame_size(struct aom_read_bit_buffer *rb, int num_bits_width,
int num_bits_height, int *width, int *height) {
*width = aom_rb_read_literal(rb, num_bits_width) + 1;
*height = aom_rb_read_literal(rb, num_bits_height) + 1;
}
static inline void setup_render_size(AV1_COMMON *cm,
struct aom_read_bit_buffer *rb) {
cm->render_width = cm->superres_upscaled_width;
cm->render_height = cm->superres_upscaled_height;
if (aom_rb_read_bit(rb))
read_frame_size(rb, 16, 16, &cm->render_width, &cm->render_height);
}
// TODO(afergs): make "struct aom_read_bit_buffer *const rb"?
static inline void setup_superres(AV1_COMMON *const cm,
struct aom_read_bit_buffer *rb, int *width,
int *height) {
cm->superres_upscaled_width = *width;
cm->superres_upscaled_height = *height;
const SequenceHeader *const seq_params = cm->seq_params;
if (!seq_params->enable_superres) return;
if (aom_rb_read_bit(rb)) {
cm->superres_scale_denominator =
(uint8_t)aom_rb_read_literal(rb, SUPERRES_SCALE_BITS);
cm->superres_scale_denominator += SUPERRES_SCALE_DENOMINATOR_MIN;
// Don't edit cm->width or cm->height directly, or the buffers won't get
// resized correctly
av1_calculate_scaled_superres_size(width, height,
cm->superres_scale_denominator);
} else {
// 1:1 scaling - ie. no scaling, scale not provided
cm->superres_scale_denominator = SCALE_NUMERATOR;
}
}
static inline void resize_context_buffers(AV1_COMMON *cm, int width,
int height) {
#if CONFIG_SIZE_LIMIT
if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT)
aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME,
"Dimensions of %dx%d beyond allowed size of %dx%d.",
width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT);
#endif
if (cm->width != width || cm->height != height) {
const int new_mi_rows = CEIL_POWER_OF_TWO(height, MI_SIZE_LOG2);
const int new_mi_cols = CEIL_POWER_OF_TWO(width, MI_SIZE_LOG2);
// Allocations in av1_alloc_context_buffers() depend on individual
// dimensions as well as the overall size.
if (new_mi_cols > cm->mi_params.mi_cols ||
new_mi_rows > cm->mi_params.mi_rows) {
if (av1_alloc_context_buffers(cm, width, height, BLOCK_4X4)) {
// The cm->mi_* values have been cleared and any existing context
// buffers have been freed. Clear cm->width and cm->height to be
// consistent and to force a realloc next time.
cm->width = 0;
cm->height = 0;
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate context buffers");
}
} else {
cm->mi_params.set_mb_mi(&cm->mi_params, width, height, BLOCK_4X4);
}
av1_init_mi_buffers(&cm->mi_params);
cm->width = width;
cm->height = height;
}
ensure_mv_buffer(cm->cur_frame, cm);
cm->cur_frame->width = cm->width;
cm->cur_frame->height = cm->height;
}
static inline void setup_buffer_pool(AV1_COMMON *cm) {
BufferPool *const pool = cm->buffer_pool;
const SequenceHeader *const seq_params = cm->seq_params;
lock_buffer_pool(pool);
if (aom_realloc_frame_buffer(
&cm->cur_frame->buf, cm->width, cm->height, seq_params->subsampling_x,
seq_params->subsampling_y, seq_params->use_highbitdepth,
AOM_DEC_BORDER_IN_PIXELS, cm->features.byte_alignment,
&cm->cur_frame->raw_frame_buffer, pool->get_fb_cb, pool->cb_priv,
false, 0)) {
unlock_buffer_pool(pool);
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
}
unlock_buffer_pool(pool);
cm->cur_frame->buf.bit_depth = (unsigned int)seq_params->bit_depth;
cm->cur_frame->buf.color_primaries = seq_params->color_primaries;
cm->cur_frame->buf.transfer_characteristics =
seq_params->transfer_characteristics;
cm->cur_frame->buf.matrix_coefficients = seq_params->matrix_coefficients;
cm->cur_frame->buf.monochrome = seq_params->monochrome;
cm->cur_frame->buf.chroma_sample_position =
seq_params->chroma_sample_position;
cm->cur_frame->buf.color_range = seq_params->color_range;
cm->cur_frame->buf.render_width = cm->render_width;
cm->cur_frame->buf.render_height = cm->render_height;
}
static inline void setup_frame_size(AV1_COMMON *cm,
int frame_size_override_flag,
struct aom_read_bit_buffer *rb) {
const SequenceHeader *const seq_params = cm->seq_params;
int width, height;
if (frame_size_override_flag) {
int num_bits_width = seq_params->num_bits_width;
int num_bits_height = seq_params->num_bits_height;
read_frame_size(rb, num_bits_width, num_bits_height, &width, &height);
if (width > seq_params->max_frame_width ||
height > seq_params->max_frame_height) {
aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME,
"Frame dimensions are larger than the maximum values");
}
} else {
width = seq_params->max_frame_width;
height = seq_params->max_frame_height;
}
setup_superres(cm, rb, &width, &height);
resize_context_buffers(cm, width, height);
setup_render_size(cm, rb);
setup_buffer_pool(cm);
}
static inline void setup_sb_size(SequenceHeader *seq_params,
struct aom_read_bit_buffer *rb) {
set_sb_size(seq_params, aom_rb_read_bit(rb) ? BLOCK_128X128 : BLOCK_64X64);
}
static inline int valid_ref_frame_img_fmt(aom_bit_depth_t ref_bit_depth,
int ref_xss, int ref_yss,
aom_bit_depth_t this_bit_depth,
int this_xss, int this_yss) {
return ref_bit_depth == this_bit_depth && ref_xss == this_xss &&
ref_yss == this_yss;
}
static inline void setup_frame_size_with_refs(AV1_COMMON *cm,
struct aom_read_bit_buffer *rb) {
int width, height;
int found = 0;
int has_valid_ref_frame = 0;
for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
if (aom_rb_read_bit(rb)) {
const RefCntBuffer *const ref_buf = get_ref_frame_buf(cm, i);
// This will never be NULL in a normal stream, as streams are required to
// have a shown keyframe before any inter frames, which would refresh all
// the reference buffers. However, it might be null if we're starting in
// the middle of a stream, and static analysis will error if we don't do
// a null check here.
if (ref_buf == NULL) {
aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME,
"Invalid condition: invalid reference buffer");
} else {
const YV12_BUFFER_CONFIG *const buf = &ref_buf->buf;
width = buf->y_crop_width;
height = buf->y_crop_height;
cm->render_width = buf->render_width;
cm->render_height = buf->render_height;
setup_superres(cm, rb, &width, &height);
resize_context_buffers(cm, width, height);
found = 1;
break;
}
}
}
const SequenceHeader *const seq_params = cm->seq_params;
if (!found) {
int num_bits_width = seq_params->num_bits_width;
int num_bits_height = seq_params->num_bits_height;
read_frame_size(rb, num_bits_width, num_bits_height, &width, &height);
setup_superres(cm, rb, &width, &height);
resize_context_buffers(cm, width, height);
setup_render_size(cm, rb);
}
if (width <= 0 || height <= 0)
aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME,
"Invalid frame size");
// Check to make sure at least one of frames that this frame references
// has valid dimensions.
for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
const RefCntBuffer *const ref_frame = get_ref_frame_buf(cm, i);
has_valid_ref_frame |=
valid_ref_frame_size(ref_frame->buf.y_crop_width,
ref_frame->buf.y_crop_height, width, height);
}
if (!has_valid_ref_frame)
aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME,
"Referenced frame has invalid size");
for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
const RefCntBuffer *const ref_frame = get_ref_frame_buf(cm, i);
if (!valid_ref_frame_img_fmt(
ref_frame->buf.bit_depth, ref_frame->buf.subsampling_x,
ref_frame->buf.subsampling_y, seq_params->bit_depth,
seq_params->subsampling_x, seq_params->subsampling_y))
aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME,
"Referenced frame has incompatible color format");
}
setup_buffer_pool(cm);
}
// Same function as av1_read_uniform but reading from uncompresses header wb
static int rb_read_uniform(struct aom_read_bit_buffer *const rb, int n) {
const int l = get_unsigned_bits(n);
const int m = (1 << l) - n;
const int v = aom_rb_read_literal(rb, l - 1);
assert(l != 0);
if (v < m)
return v;
else
return (v << 1) - m + aom_rb_read_bit(rb);
}
static inline void read_tile_info_max_tile(
AV1_COMMON *const cm, struct aom_read_bit_buffer *const rb) {
const SequenceHeader *const seq_params = cm->seq_params;
CommonTileParams *const tiles = &cm->tiles;
int width_sb =
CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, seq_params->mib_size_log2);
int height_sb =
CEIL_POWER_OF_TWO(cm->mi_params.mi_rows, seq_params->mib_size_log2);
av1_get_tile_limits(cm);
tiles->uniform_spacing = aom_rb_read_bit(rb);
// Read tile columns
if (tiles->uniform_spacing) {
tiles->log2_cols = tiles->min_log2_cols;
while (tiles->log2_cols < tiles->max_log2_cols) {
if (!aom_rb_read_bit(rb)) {
break;
}
tiles->log2_cols++;
}
} else {
int i;
int start_sb;
for (i = 0, start_sb = 0; width_sb > 0 && i < MAX_TILE_COLS; i++) {
const int size_sb =
1 + rb_read_uniform(rb, AOMMIN(width_sb, tiles->max_width_sb));
tiles->col_start_sb[i] = start_sb;
start_sb += size_sb;
width_sb -= size_sb;
}
tiles->cols = i;
tiles->col_start_sb[i] = start_sb + width_sb;
}
av1_calculate_tile_cols(seq_params, cm->mi_params.mi_rows,
cm->mi_params.mi_cols, tiles);
// Read tile rows
if (tiles->uniform_spacing) {
tiles->log2_rows = tiles->min_log2_rows;
while (tiles->log2_rows < tiles->max_log2_rows) {
if (!aom_rb_read_bit(rb)) {
break;
}
tiles->log2_rows++;
}
} else {
int i;
int start_sb;
for (i = 0, start_sb = 0; height_sb > 0 && i < MAX_TILE_ROWS; i++) {
const int size_sb =
1 + rb_read_uniform(rb, AOMMIN(height_sb, tiles->max_height_sb));
tiles->row_start_sb[i] = start_sb;
start_sb += size_sb;
height_sb -= size_sb;
}
tiles->rows = i;
tiles->row_start_sb[i] = start_sb + height_sb;
}
av1_calculate_tile_rows(seq_params, cm->mi_params.mi_rows, tiles);
}
void av1_set_single_tile_decoding_mode(AV1_COMMON *const cm) {
cm->tiles.single_tile_decoding = 0;
if (cm->tiles.large_scale) {
struct loopfilter *lf = &cm->lf;
RestorationInfo *const rst_info = cm->rst_info;
const CdefInfo *const cdef_info = &cm->cdef_info;
// Figure out single_tile_decoding by loopfilter_level.
const int no_loopfilter = !(lf->filter_level[0] || lf->filter_level[1]);
const int no_cdef = cdef_info->cdef_bits == 0 &&
cdef_info->cdef_strengths[0] == 0 &&
cdef_info->cdef_uv_strengths[0] == 0;
const int no_restoration =
rst_info[0].frame_restoration_type == RESTORE_NONE &&
rst_info[1].frame_restoration_type == RESTORE_NONE &&
rst_info[2].frame_restoration_type == RESTORE_NONE;
assert(IMPLIES(cm->features.coded_lossless, no_loopfilter && no_cdef));
assert(IMPLIES(cm->features.all_lossless, no_restoration));
cm->tiles.single_tile_decoding = no_loopfilter && no_cdef && no_restoration;
}
}
static inline void read_tile_info(AV1Decoder *const pbi,
struct aom_read_bit_buffer *const rb) {
AV1_COMMON *const cm = &pbi->common;
read_tile_info_max_tile(cm, rb);
pbi->context_update_tile_id = 0;
if (cm->tiles.rows * cm->tiles.cols > 1) {
// tile to use for cdf update
pbi->context_update_tile_id =
aom_rb_read_literal(rb, cm->tiles.log2_rows + cm->tiles.log2_cols);
if (pbi->context_update_tile_id >= cm->tiles.rows * cm->tiles.cols) {
aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
"Invalid context_update_tile_id");
}
// tile size magnitude
pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1;
}
}
#if EXT_TILE_DEBUG
static inline void read_ext_tile_info(AV1Decoder *const pbi,
struct aom_read_bit_buffer *const rb) {
AV1_COMMON *const cm = &pbi->common;
// This information is stored as a separate byte.
int mod = rb->bit_offset % CHAR_BIT;
if (mod > 0) aom_rb_read_literal(rb, CHAR_BIT - mod);
assert(rb->bit_offset % CHAR_BIT == 0);
if (cm->tiles.cols * cm->tiles.rows > 1) {
// Read the number of bytes used to store tile size
pbi->tile_col_size_bytes = aom_rb_read_literal(rb, 2) + 1;
pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1;
}
}
#endif // EXT_TILE_DEBUG
static size_t mem_get_varsize(const uint8_t *src, int sz) {
switch (sz) {
case 1: return src[0];
case 2: return mem_get_le16(src);
case 3: return mem_get_le24(src);
case 4: return mem_get_le32(src);
default: assert(0 && "Invalid size"); return -1;
}
}
#if EXT_TILE_DEBUG
// Reads the next tile returning its size and adjusting '*data' accordingly
// based on 'is_last'. On return, '*data' is updated to point to the end of the
// raw tile buffer in the bit stream.
static inline void get_ls_tile_buffer(
const uint8_t *const data_end, struct aom_internal_error_info *error_info,
const uint8_t **data, TileBufferDec (*const tile_buffers)[MAX_TILE_COLS],
int tile_size_bytes, int col, int row, int tile_copy_mode) {
size_t size;
size_t copy_size = 0;
const uint8_t *copy_data = NULL;
if (!read_is_valid(*data, tile_size_bytes, data_end))
aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile length");
size = mem_get_varsize(*data, tile_size_bytes);
// If tile_copy_mode = 1, then the top bit of the tile header indicates copy
// mode.
if (tile_copy_mode && (size >> (tile_size_bytes * 8 - 1)) == 1) {
// The remaining bits in the top byte signal the row offset
int offset = (size >> (tile_size_bytes - 1) * 8) & 0x7f;
if (offset > row) {
aom_internal_error(
error_info, AOM_CODEC_CORRUPT_FRAME,
"Invalid row offset in tile copy mode: row=%d offset=%d", row,
offset);
}
// Currently, only use tiles in same column as reference tiles.
copy_data = tile_buffers[row - offset][col].data;
copy_size = tile_buffers[row - offset][col].size;
size = 0;
} else {
size += AV1_MIN_TILE_SIZE_BYTES;
}
*data += tile_size_bytes;
if (size > (size_t)(data_end - *data))
aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile size");
if (size > 0) {
tile_buffers[row][col].data = *data;
tile_buffers[row][col].size = size;
} else {
tile_buffers[row][col].data = copy_data;
tile_buffers[row][col].size = copy_size;
}
*data += size;
}
// Returns the end of the last tile buffer
// (tile_buffers[cm->tiles.rows - 1][cm->tiles.cols - 1]).
static const uint8_t *get_ls_tile_buffers(
AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end,
TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) {
AV1_COMMON *const cm = &pbi->common;
const int tile_cols = cm->tiles.cols;
const int tile_rows = cm->tiles.rows;
const int have_tiles = tile_cols * tile_rows > 1;
const uint8_t *raw_data_end; // The end of the last tile buffer
if (!have_tiles) {
const size_t tile_size = data_end - data;
tile_buffers[0][0].data = data;
tile_buffers[0][0].size = tile_size;
raw_data_end = NULL;
} else {
// We locate only the tile buffers that are required, which are the ones
// specified by pbi->dec_tile_col and pbi->dec_tile_row. Also, we always
// need the last (bottom right) tile buffer, as we need to know where the
// end of the compressed frame buffer is for proper superframe decoding.
const uint8_t *tile_col_data_end[MAX_TILE_COLS] = { NULL };
const uint8_t *const data_start = data;
const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows);
const int single_row = pbi->dec_tile_row >= 0;
const int tile_rows_start = single_row ? dec_tile_row : 0;
const int tile_rows_end = single_row ? tile_rows_start + 1 : tile_rows;
const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols);
const int single_col = pbi->dec_tile_col >= 0;
const int tile_cols_start = single_col ? dec_tile_col : 0;
const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols;
const int tile_col_size_bytes = pbi->tile_col_size_bytes;
const int tile_size_bytes = pbi->tile_size_bytes;
int tile_width, tile_height;
if (!av1_get_uniform_tile_size(cm, &tile_width, &tile_height)) {
aom_internal_error(
&pbi->error, AOM_CODEC_CORRUPT_FRAME,
"Not all the tiles in the tile list have the same size.");
}
const int tile_copy_mode =
((AOMMAX(tile_width, tile_height) << MI_SIZE_LOG2) <= 256) ? 1 : 0;
// Read tile column sizes for all columns (we need the last tile buffer)
for (int c = 0; c < tile_cols; ++c) {
const int is_last = c == tile_cols - 1;
size_t tile_col_size;
if (!is_last) {
if (tile_col_size_bytes > data_end - data) {
aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
"Not enough data to read tile_col_size");
}
tile_col_size = mem_get_varsize(data, tile_col_size_bytes);
data += tile_col_size_bytes;
if (tile_col_size > (size_t)(data_end - data)) {
aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
"tile_col_data_end[%d] is out of bound", c);
}
tile_col_data_end[c] = data + tile_col_size;
} else {
tile_col_size = data_end - data;
tile_col_data_end[c] = data_end;
}
data += tile_col_size;
}
data = data_start;
// Read the required tile sizes.
for (int c = tile_cols_start; c < tile_cols_end; ++c) {
const int is_last = c == tile_cols - 1;
if (c > 0) data = tile_col_data_end[c - 1];
if (!is_last) data += tile_col_size_bytes;
// Get the whole of the last column, otherwise stop at the required tile.
for (int r = 0; r < (is_last ? tile_rows : tile_rows_end); ++r) {
get_ls_tile_buffer(tile_col_data_end[c], &pbi->error, &data,
tile_buffers, tile_size_bytes, c, r, tile_copy_mode);
}
}
// If we have not read the last column, then read it to get the last tile.
if (tile_cols_end != tile_cols) {
const int c = tile_cols - 1;
data = tile_col_data_end[c - 1];
for (int r = 0; r < tile_rows; ++r) {
get_ls_tile_buffer(tile_col_data_end[c], &pbi->error, &data,
tile_buffers, tile_size_bytes, c, r, tile_copy_mode);
}
}
raw_data_end = data;
}
return raw_data_end;
}
#endif // EXT_TILE_DEBUG
static const uint8_t *get_ls_single_tile_buffer(
AV1Decoder *pbi, const uint8_t *data,
TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) {
assert(pbi->dec_tile_row >= 0 && pbi->dec_tile_col >= 0);
tile_buffers[pbi->dec_tile_row][pbi->dec_tile_col].data = data;
tile_buffers[pbi->dec_tile_row][pbi->dec_tile_col].size =
(size_t)pbi->coded_tile_data_size;
return data + pbi->coded_tile_data_size;
}
// Reads the next tile returning its size and adjusting '*data' accordingly
// based on 'is_last'.
static inline void get_tile_buffer(const uint8_t *const data_end,
const int tile_size_bytes, int is_last,
struct aom_internal_error_info *error_info,
const uint8_t **data,
TileBufferDec *const buf) {
size_t size;
if (!is_last) {
if (!read_is_valid(*data, tile_size_bytes, data_end))
aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
"Not enough data to read tile size");
size = mem_get_varsize(*data, tile_size_bytes) + AV1_MIN_TILE_SIZE_BYTES;
*data += tile_size_bytes;
if (size > (size_t)(data_end - *data))
aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile size");
} else {
size = data_end - *data;
}
buf->data = *data;
buf->size = size;
*data += size;
}
static inline void get_tile_buffers(
AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end,
TileBufferDec (*const tile_buffers)[MAX_TILE_COLS], int start_tile,
int end_tile) {
AV1_COMMON *const cm = &pbi->common;
const int tile_cols = cm->tiles.cols;
const int tile_rows = cm->tiles.rows;
int tc = 0;
for (int r = 0; r < tile_rows; ++r) {
for (int c = 0; c < tile_cols; ++c, ++tc) {
TileBufferDec *const buf = &tile_buffers[r][c];
const int is_last = (tc == end_tile);
const size_t hdr_offset = 0;
if (tc < start_tile || tc > end_tile) continue;
if (data + hdr_offset >= data_end)
aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
"Data ended before all tiles were read.");
data += hdr_offset;
get_tile_buffer(data_end, pbi->tile_size_bytes, is_last, &pbi->error,
&data, buf);
}
}
}
static inline void set_cb_buffer(AV1Decoder *pbi, DecoderCodingBlock *dcb,
CB_BUFFER *cb_buffer_base,
const int num_planes, int mi_row, int mi_col) {
AV1_COMMON *const cm = &pbi->common;
int mib_size_log2 = cm->seq_params->mib_size_log2;
int stride = (cm->mi_params.mi_cols >> mib_size_log2) + 1;
int offset = (mi_row >> mib_size_log2) * stride + (mi_col >> mib_size_log2);
CB_BUFFER *cb_buffer = cb_buffer_base + offset;
for (int plane = 0; plane < num_planes; ++plane) {
dcb->dqcoeff_block[plane] = cb_buffer->dqcoeff[plane];
dcb->eob_data[plane] = cb_buffer->eob_data[plane];
dcb->cb_offset[plane] = 0;
dcb->txb_offset[plane] = 0;
}
MACROBLOCKD *const xd = &dcb->xd;
xd->plane[0].color_index_map = cb_buffer->color_index_map[0];
xd->plane[1].color_index_map = cb_buffer->color_index_map[1];
xd->color_index_map_offset[0] = 0;
xd->color_index_map_offset[1] = 0;
}
static inline void decoder_alloc_tile_data(AV1Decoder *pbi, const int n_tiles) {
AV1_COMMON *const cm = &pbi->common;
aom_free(pbi->tile_data);
pbi->allocated_tiles = 0;
CHECK_MEM_ERROR(cm, pbi->tile_data,
aom_memalign(32, n_tiles * sizeof(*pbi->tile_data)));
pbi->allocated_tiles = n_tiles;
for (int i = 0; i < n_tiles; i++) {
TileDataDec *const tile_data = pbi->tile_data + i;
av1_zero(tile_data->dec_row_mt_sync);
}
pbi->allocated_row_mt_sync_rows = 0;
}
// Set up nsync by width.
static inline int get_sync_range(int width) {
// nsync numbers are picked by testing.
#if 0
if (width < 640)
return 1;
else if (width <= 1280)
return 2;
else if (width <= 4096)
return 4;
else
return 8;
#else
(void)width;
#endif
return 1;
}
// Allocate memory for decoder row synchronization
static inline void dec_row_mt_alloc(AV1DecRowMTSync *dec_row_mt_sync,
AV1_COMMON *cm, int rows) {
dec_row_mt_sync->allocated_sb_rows = rows;
#if CONFIG_MULTITHREAD
{
int i;
CHECK_MEM_ERROR(cm, dec_row_mt_sync->mutex_,
aom_malloc(sizeof(*(dec_row_mt_sync->mutex_)) * rows));
if (dec_row_mt_sync->mutex_) {
for (i = 0; i < rows; ++i) {
pthread_mutex_init(&dec_row_mt_sync->mutex_[i], NULL);
}
}
CHECK_MEM_ERROR(cm, dec_row_mt_sync->cond_,
aom_malloc(sizeof(*(dec_row_mt_sync->cond_)) * rows));
if (dec_row_mt_sync->cond_) {
for (i = 0; i < rows; ++i) {
pthread_cond_init(&dec_row_mt_sync->cond_[i], NULL);
}
}
}
#endif // CONFIG_MULTITHREAD
CHECK_MEM_ERROR(cm, dec_row_mt_sync->cur_sb_col,
aom_malloc(sizeof(*(dec_row_mt_sync->cur_sb_col)) * rows));
// Set up nsync.
dec_row_mt_sync->sync_range = get_sync_range(cm->width);
}
// Deallocate decoder row synchronization related mutex and data
void av1_dec_row_mt_dealloc(AV1DecRowMTSync *dec_row_mt_sync) {
if (dec_row_mt_sync != NULL) {
#if CONFIG_MULTITHREAD
int i;
if (dec_row_mt_sync->mutex_ != NULL) {
for (i = 0; i < dec_row_mt_sync->allocated_sb_rows; ++i) {
pthread_mutex_destroy(&dec_row_mt_sync->mutex_[i]);
}
aom_free(dec_row_mt_sync->mutex_);
}
if (dec_row_mt_sync->cond_ != NULL) {
for (i = 0; i < dec_row_mt_sync->allocated_sb_rows; ++i) {
pthread_cond_destroy(&dec_row_mt_sync->cond_[i]);
}
aom_free(dec_row_mt_sync->cond_);
}
#endif // CONFIG_MULTITHREAD
aom_free(dec_row_mt_sync->cur_sb_col);
// clear the structure as the source of this call may be a resize in which
// case this call will be followed by an _alloc() which may fail.
av1_zero(*dec_row_mt_sync);
}
}
static inline void sync_read(AV1DecRowMTSync *const dec_row_mt_sync, int r,
int c) {
#if CONFIG_MULTITHREAD
const int nsync = dec_row_mt_sync->sync_range;
if (r && !(c & (nsync - 1))) {
pthread_mutex_t *const mutex = &dec_row_mt_sync->mutex_[r - 1];
pthread_mutex_lock(mutex);
while (c > dec_row_mt_sync->cur_sb_col[r - 1] - nsync -
dec_row_mt_sync->intrabc_extra_top_right_sb_delay) {
pthread_cond_wait(&dec_row_mt_sync->cond_[r - 1], mutex);
}
pthread_mutex_unlock(mutex);
}
#else
(void)dec_row_mt_sync;
(void)r;
(void)c;
#endif // CONFIG_MULTITHREAD
}
static inline void sync_write(AV1DecRowMTSync *const dec_row_mt_sync, int r,
int c, const int sb_cols) {
#if CONFIG_MULTITHREAD
const int nsync = dec_row_mt_sync->sync_range;
int cur;
int sig = 1;
if (c < sb_cols - 1) {
cur = c;
if (c % nsync) sig = 0;
} else {
cur = sb_cols + nsync + dec_row_mt_sync->intrabc_extra_top_right_sb_delay;
}
if (sig) {
pthread_mutex_lock(&dec_row_mt_sync->mutex_[r]);
dec_row_mt_sync->cur_sb_col[r] = cur;
pthread_cond_signal(&dec_row_mt_sync->cond_[r]);
pthread_mutex_unlock(&dec_row_mt_sync->mutex_[r]);
}
#else
(void)dec_row_mt_sync;
(void)r;
(void)c;
(void)sb_cols;
#endif // CONFIG_MULTITHREAD
}
static inline void signal_decoding_done_for_erroneous_row(
AV1Decoder *const pbi, const MACROBLOCKD *const xd) {
AV1_COMMON *const cm = &pbi->common;
const TileInfo *const tile = &xd->tile;
const int sb_row_in_tile =
((xd->mi_row - tile->mi_row_start) >> cm->seq_params->mib_size_log2);
const int sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile);
TileDataDec *const tile_data =
pbi->tile_data + tile->tile_row * cm->tiles.cols + tile->tile_col;
AV1DecRowMTSync *dec_row_mt_sync = &tile_data->dec_row_mt_sync;
sync_write(dec_row_mt_sync, sb_row_in_tile, sb_cols_in_tile - 1,
sb_cols_in_tile);
}
static inline void decode_tile_sb_row(AV1Decoder *pbi, ThreadData *const td,
const TileInfo *tile_info,
const int mi_row) {
AV1_COMMON *const cm = &pbi->common;
const int num_planes = av1_num_planes(cm);
TileDataDec *const tile_data = pbi->tile_data +
tile_info->tile_row * cm->tiles.cols +
tile_info->tile_col;
const int sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_info);
const int sb_row_in_tile =
(mi_row - tile_info->mi_row_start) >> cm->seq_params->mib_size_log2;
int sb_col_in_tile = 0;
int row_mt_exit = 0;
for (int mi_col = tile_info->mi_col_start; mi_col < tile_info->mi_col_end;
mi_col += cm->seq_params->mib_size, sb_col_in_tile++) {
set_cb_buffer(pbi, &td->dcb, pbi->cb_buffer_base, num_planes, mi_row,
mi_col);
sync_read(&tile_data->dec_row_mt_sync, sb_row_in_tile, sb_col_in_tile);
#if CONFIG_MULTITHREAD
pthread_mutex_lock(pbi->row_mt_mutex_);
#endif
row_mt_exit = pbi->frame_row_mt_info.row_mt_exit;
#if CONFIG_MULTITHREAD
pthread_mutex_unlock(pbi->row_mt_mutex_);
#endif
if (!row_mt_exit) {
// Decoding of the super-block
decode_partition(pbi, td, mi_row, mi_col, td->bit_reader,
cm->seq_params->sb_size, 0x2);
}
sync_write(&tile_data->dec_row_mt_sync, sb_row_in_tile, sb_col_in_tile,
sb_cols_in_tile);
}
}
static int check_trailing_bits_after_symbol_coder(aom_reader *r) {
if (aom_reader_has_overflowed(r)) return -1;
uint32_t nb_bits = aom_reader_tell(r);
uint32_t nb_bytes = (nb_bits + 7) >> 3;
const uint8_t *p = aom_reader_find_begin(r) + nb_bytes;
// aom_reader_tell() returns 1 for a newly initialized decoder, and the
// return value only increases as values are decoded. So nb_bits > 0, and
// thus p > p_begin. Therefore accessing p[-1] is safe.
uint8_t last_byte = p[-1];
uint8_t pattern = 128 >> ((nb_bits - 1) & 7);
if ((last_byte & (2 * pattern - 1)) != pattern) return -1;
// Make sure that all padding bytes are zero as required by the spec.
const uint8_t *p_end = aom_reader_find_end(r);
while (p < p_end) {
if (*p != 0) return -1;
p++;
}
return 0;
}
static inline void set_decode_func_pointers(ThreadData *td,
int parse_decode_flag) {
td->read_coeffs_tx_intra_block_visit = decode_block_void;
td->predict_and_recon_intra_block_visit = decode_block_void;
td->read_coeffs_tx_inter_block_visit = decode_block_void;
td->inverse_tx_inter_block_visit = decode_block_void;
td->predict_inter_block_visit = predict_inter_block_void;
td->cfl_store_inter_block_visit = cfl_store_inter_block_void;
if (parse_decode_flag & 0x1) {
td->read_coeffs_tx_intra_block_visit = read_coeffs_tx_intra_block;
td->read_coeffs_tx_inter_block_visit = av1_read_coeffs_txb;
}
if (parse_decode_flag & 0x2) {
td->predict_and_recon_intra_block_visit =
predict_and_reconstruct_intra_block;
td->inverse_tx_inter_block_visit = inverse_transform_inter_block;
td->predict_inter_block_visit = predict_inter_block;
td->cfl_store_inter_block_visit = cfl_store_inter_block;
}
}
static inline void decode_tile(AV1Decoder *pbi, ThreadData *const td,
int tile_row, int tile_col) {
TileInfo tile_info;
AV1_COMMON *const cm = &pbi->common;
const int num_planes = av1_num_planes(cm);
av1_tile_set_row(&tile_info, cm, tile_row);
av1_tile_set_col(&tile_info, cm, tile_col);
DecoderCodingBlock *const dcb = &td->dcb;
MACROBLOCKD *const xd = &dcb->xd;
av1_zero_above_context(cm, xd, tile_info.mi_col_start, tile_info.mi_col_end,
tile_row);
av1_reset_loop_filter_delta(xd, num_planes);
av1_reset_loop_restoration(xd, num_planes);
for (int mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end;
mi_row += cm->seq_params->mib_size) {
av1_zero_left_context(xd);
for (int mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end;
mi_col += cm->seq_params->mib_size) {
set_cb_buffer(pbi, dcb, &td->cb_buffer_base, num_planes, 0, 0);
// Bit-stream parsing and decoding of the superblock
decode_partition(pbi, td, mi_row, mi_col, td->bit_reader,
cm->seq_params->sb_size, 0x3);
if (aom_reader_has_overflowed(td->bit_reader)) {
aom_merge_corrupted_flag(&dcb->corrupted, 1);
return;
}
}
}
int corrupted =
(check_trailing_bits_after_symbol_coder(td->bit_reader)) ? 1 : 0;
aom_merge_corrupted_flag(&dcb->corrupted, corrupted);
}
static const uint8_t *decode_tiles(AV1Decoder *pbi, const uint8_t *data,
const uint8_t *data_end, int start_tile,
int end_tile) {
AV1_COMMON *const cm = &pbi->common;
ThreadData *const td = &pbi->td;
CommonTileParams *const tiles = &cm->tiles;
const int tile_cols = tiles->cols;
const int tile_rows = tiles->rows;
const int n_tiles = tile_cols * tile_rows;
TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers;
const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows);
const int single_row = pbi->dec_tile_row >= 0;
const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols);
const int single_col = pbi->dec_tile_col >= 0;
int tile_rows_start;
int tile_rows_end;
int tile_cols_start;
int tile_cols_end;
int inv_col_order;
int inv_row_order;
int tile_row, tile_col;
uint8_t allow_update_cdf;
const uint8_t *raw_data_end = NULL;
if (tiles->large_scale) {
tile_rows_start = single_row ? dec_tile_row : 0;
tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows;
tile_cols_start = single_col ? dec_tile_col : 0;
tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols;
inv_col_order = pbi->inv_tile_order && !single_col;
inv_row_order = pbi->inv_tile_order && !single_row;
allow_update_cdf = 0;
} else {
tile_rows_start = 0;
tile_rows_end = tile_rows;
tile_cols_start = 0;
tile_cols_end = tile_cols;
inv_col_order = pbi->inv_tile_order;
inv_row_order = pbi->inv_tile_order;
allow_update_cdf = 1;
}
// No tiles to decode.
if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start ||
// First tile is larger than end_tile.
tile_rows_start * tiles->cols + tile_cols_start > end_tile ||
// Last tile is smaller than start_tile.
(tile_rows_end - 1) * tiles->cols + tile_cols_end - 1 < start_tile)
return data;
allow_update_cdf = allow_update_cdf && !cm->features.disable_cdf_update;
assert(tile_rows <= MAX_TILE_ROWS);
assert(tile_cols <= MAX_TILE_COLS);
#if EXT_TILE_DEBUG
if (tiles->large_scale && !pbi->ext_tile_debug)
raw_data_end = get_ls_single_tile_buffer(pbi, data, tile_buffers);
else if (tiles->large_scale && pbi->ext_tile_debug)
raw_data_end = get_ls_tile_buffers(pbi, data, data_end, tile_buffers);
else
#endif // EXT_TILE_DEBUG
get_tile_buffers(pbi, data, data_end, tile_buffers, start_tile, end_tile);
if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) {
decoder_alloc_tile_data(pbi, n_tiles);
}
if (pbi->dcb.xd.seg_mask == NULL)
CHECK_MEM_ERROR(cm, pbi->dcb.xd.seg_mask,
(uint8_t *)aom_memalign(
16, 2 * MAX_SB_SQUARE * sizeof(*pbi->dcb.xd.seg_mask)));
#if CONFIG_ACCOUNTING
if (pbi->acct_enabled) {
aom_accounting_reset(&pbi->accounting);
}
#endif
set_decode_func_pointers(&pbi->td, 0x3);
// Load all tile information into thread_data.
td->dcb = pbi->dcb;
td->dcb.corrupted = 0;
td->dcb.mc_buf[0] = td->mc_buf[0];
td->dcb.mc_buf[1] = td->mc_buf[1];
td->dcb.xd.tmp_conv_dst = td->tmp_conv_dst;
for (int j = 0; j < 2; ++j) {
td->dcb.xd.tmp_obmc_bufs[j] = td->tmp_obmc_bufs[j];
}
for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) {
const int row = inv_row_order ? tile_rows - 1 - tile_row : tile_row;
for (tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) {
const int col = inv_col_order ? tile_cols - 1 - tile_col : tile_col;
TileDataDec *const tile_data = pbi->tile_data + row * tiles->cols + col;
const TileBufferDec *const tile_bs_buf = &tile_buffers[row][col];
if (row * tiles->cols + col < start_tile ||
row * tiles->cols + col > end_tile)
continue;
td->bit_reader = &tile_data->bit_reader;
av1_zero(td->cb_buffer_base.dqcoeff);
av1_tile_init(&td->dcb.xd.tile, cm, row, col);
td->dcb.xd.current_base_qindex = cm->quant_params.base_qindex;
setup_bool_decoder(&td->dcb.xd, tile_bs_buf->data, data_end,
tile_bs_buf->size, &pbi->error, td->bit_reader,
allow_update_cdf);
#if CONFIG_ACCOUNTING
if (pbi->acct_enabled) {
td->bit_reader->accounting = &pbi->accounting;
td->bit_reader->accounting->last_tell_frac =
aom_reader_tell_frac(td->bit_reader);
} else {
td->bit_reader->accounting = NULL;
}
#endif
av1_init_macroblockd(cm, &td->dcb.xd);
av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), row,
&td->dcb.xd);
// Initialise the tile context from the frame context
tile_data->tctx = *cm->fc;
td->dcb.xd.tile_ctx = &tile_data->tctx;
// decode tile
decode_tile(pbi, td, row, col);
aom_merge_corrupted_flag(&pbi->dcb.corrupted, td->dcb.corrupted);
if (pbi->dcb.corrupted)
aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
"Failed to decode tile data");
}
}
if (tiles->large_scale) {
if (n_tiles == 1) {
// Find the end of the single tile buffer
return aom_reader_find_end(&pbi->tile_data->bit_reader);
}
// Return the end of the last tile buffer
return raw_data_end;
}
TileDataDec *const tile_data = pbi->tile_data + end_tile;
return aom_reader_find_end(&tile_data->bit_reader);
}
static TileJobsDec *get_dec_job_info(AV1DecTileMT *tile_mt_info) {
TileJobsDec *cur_job_info = NULL;
#if CONFIG_MULTITHREAD
pthread_mutex_lock(tile_mt_info->job_mutex);
if (tile_mt_info->jobs_dequeued < tile_mt_info->jobs_enqueued) {
cur_job_info = tile_mt_info->job_queue + tile_mt_info->jobs_dequeued;
tile_mt_info->jobs_dequeued++;
}
pthread_mutex_unlock(tile_mt_info->job_mutex);
#else
(void)tile_mt_info;
#endif
return cur_job_info;
}
static inline void tile_worker_hook_init(AV1Decoder *const pbi,
DecWorkerData *const thread_data,
const TileBufferDec *const tile_buffer,
TileDataDec *const tile_data,
uint8_t allow_update_cdf) {
AV1_COMMON *cm = &pbi->common;
ThreadData *const td = thread_data->td;
int tile_row = tile_data->tile_info.tile_row;
int tile_col = tile_data->tile_info.tile_col;
td->bit_reader = &tile_data->bit_reader;
av1_zero(td->cb_buffer_base.dqcoeff);
MACROBLOCKD *const xd = &td->dcb.xd;
av1_tile_init(&xd->tile, cm, tile_row, tile_col);
xd->current_base_qindex = cm->quant_params.base_qindex;
setup_bool_decoder(xd, tile_buffer->data, thread_data->data_end,
tile_buffer->size, &thread_data->error_info,
td->bit_reader, allow_update_cdf);
#if CONFIG_ACCOUNTING
if (pbi->acct_enabled) {
td->bit_reader->accounting = &pbi->accounting;
td->bit_reader->accounting->last_tell_frac =
aom_reader_tell_frac(td->bit_reader);
} else {
td->bit_reader->accounting = NULL;
}
#endif
av1_init_macroblockd(cm, xd);
xd->error_info = &thread_data->error_info;
av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), tile_row, xd);
// Initialise the tile context from the frame context
tile_data->tctx = *cm->fc;
xd->tile_ctx = &tile_data->tctx;
#if CONFIG_ACCOUNTING
if (pbi->acct_enabled) {
tile_data->bit_reader.accounting->last_tell_frac =
aom_reader_tell_frac(&tile_data->bit_reader);
}
#endif
}
static int tile_worker_hook(void *arg1, void *arg2) {
DecWorkerData *const thread_data = (DecWorkerData *)arg1;
AV1Decoder *const pbi = (AV1Decoder *)arg2;
AV1_COMMON *cm = &pbi->common;
ThreadData *const td = thread_data->td;
uint8_t allow_update_cdf;
// The jmp_buf is valid only for the duration of the function that calls
// setjmp(). Therefore, this function must reset the 'setjmp' field to 0
// before it returns.
if (setjmp(thread_data->error_info.jmp)) {
thread_data->error_info.setjmp = 0;
thread_data->td->dcb.corrupted = 1;
return 0;
}
thread_data->error_info.setjmp = 1;
allow_update_cdf = cm->tiles.large_scale ? 0 : 1;
allow_update_cdf = allow_update_cdf && !cm->features.disable_cdf_update;
set_decode_func_pointers(td, 0x3);
assert(cm->tiles.cols > 0);
while (!td->dcb.corrupted) {
TileJobsDec *cur_job_info = get_dec_job_info(&pbi->tile_mt_info);
if (cur_job_info != NULL) {
const TileBufferDec *const tile_buffer = cur_job_info->tile_buffer;
TileDataDec *const tile_data = cur_job_info->tile_data;
tile_worker_hook_init(pbi, thread_data, tile_buffer, tile_data,
allow_update_cdf);
// decode tile
int tile_row = tile_data->tile_info.tile_row;
int tile_col = tile_data->tile_info.tile_col;
decode_tile(pbi, td, tile_row, tile_col);
} else {
break;
}
}
thread_data->error_info.setjmp = 0;
return !td->dcb.corrupted;
}
static inline int get_max_row_mt_workers_per_tile(AV1_COMMON *cm,
const TileInfo *tile) {
// NOTE: Currently value of max workers is calculated based
// on the parse and decode time. As per the theoretical estimate
// when percentage of parse time is equal to percentage of decode
// time, number of workers needed to parse + decode a tile can not
// exceed more than 2.
// TODO(any): Modify this value if parsing is optimized in future.
int sb_rows = av1_get_sb_rows_in_tile(cm, tile);
int max_workers =
sb_rows == 1 ? AOM_MIN_THREADS_PER_TILE : AOM_MAX_THREADS_PER_TILE;
return max_workers;
}
// The caller must hold pbi->row_mt_mutex_ when calling this function.
// Returns 1 if either the next job is stored in *next_job_info or 1 is stored
// in *end_of_frame.
// NOTE: The caller waits on pbi->row_mt_cond_ if this function returns 0.
// The return value of this function depends on the following variables:
// - frame_row_mt_info->mi_rows_parse_done
// - frame_row_mt_info->mi_rows_decode_started
// - frame_row_mt_info->row_mt_exit
// Therefore we may need to signal or broadcast pbi->row_mt_cond_ if any of
// these variables is modified.
static int get_next_job_info(AV1Decoder *const pbi,
AV1DecRowMTJobInfo *next_job_info,
int *end_of_frame) {
AV1_COMMON *cm = &pbi->common;
TileDataDec *tile_data;
AV1DecRowMTSync *dec_row_mt_sync;
AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info;
const int tile_rows_start = frame_row_mt_info->tile_rows_start;
const int tile_rows_end = frame_row_mt_info->tile_rows_end;
const int tile_cols_start = frame_row_mt_info->tile_cols_start;
const int tile_cols_end = frame_row_mt_info->tile_cols_end;
const int start_tile = frame_row_mt_info->start_tile;
const int end_tile = frame_row_mt_info->end_tile;
const int sb_mi_size = mi_size_wide[cm->seq_params->sb_size];
int num_mis_to_decode, num_threads_working;
int num_mis_waiting_for_decode;
int min_threads_working = INT_MAX;
int max_mis_to_decode = 0;
int tile_row_idx, tile_col_idx;
int tile_row = -1;
int tile_col = -1;
memset(next_job_info, 0, sizeof(*next_job_info));
// Frame decode is completed or error is encountered.
*end_of_frame = (frame_row_mt_info->mi_rows_decode_started ==
frame_row_mt_info->mi_rows_to_decode) ||
(frame_row_mt_info->row_mt_exit == 1);
if (*end_of_frame) {
return 1;
}
// Decoding cannot start as bit-stream parsing is not complete.
assert(frame_row_mt_info->mi_rows_parse_done >=
frame_row_mt_info->mi_rows_decode_started);
if (frame_row_mt_info->mi_rows_parse_done ==
frame_row_mt_info->mi_rows_decode_started)
return 0;
// Choose the tile to decode.
for (tile_row_idx = tile_rows_start; tile_row_idx < tile_rows_end;
++tile_row_idx) {
for (tile_col_idx = tile_cols_start; tile_col_idx < tile_cols_end;
++tile_col_idx) {
if (tile_row_idx * cm->tiles.cols + tile_col_idx < start_tile ||
tile_row_idx * cm->tiles.cols + tile_col_idx > end_tile)
continue;
tile_data = pbi->tile_data + tile_row_idx * cm->tiles.cols + tile_col_idx;
dec_row_mt_sync = &tile_data->dec_row_mt_sync;
num_threads_working = dec_row_mt_sync->num_threads_working;
num_mis_waiting_for_decode = (dec_row_mt_sync->mi_rows_parse_done -
dec_row_mt_sync->mi_rows_decode_started) *
dec_row_mt_sync->mi_cols;
num_mis_to_decode =
(dec_row_mt_sync->mi_rows - dec_row_mt_sync->mi_rows_decode_started) *
dec_row_mt_sync->mi_cols;
assert(num_mis_to_decode >= num_mis_waiting_for_decode);
// Pick the tile which has minimum number of threads working on it.
if (num_mis_waiting_for_decode > 0) {
if (num_threads_working < min_threads_working) {
min_threads_working = num_threads_working;
max_mis_to_decode = 0;
}
if (num_threads_working == min_threads_working &&
num_mis_to_decode > max_mis_to_decode &&
num_threads_working <
get_max_row_mt_workers_per_tile(cm, &tile_data->tile_info)) {
max_mis_to_decode = num_mis_to_decode;
tile_row = tile_row_idx;
tile_col = tile_col_idx;
}
}
}
}
// No job found to process
if (tile_row == -1 || tile_col == -1) return 0;
tile_data = pbi->tile_data + tile_row * cm->tiles.cols + tile_col;
dec_row_mt_sync = &tile_data->dec_row_mt_sync;
next_job_info->tile_row = tile_row;
next_job_info->tile_col = tile_col;
next_job_info->mi_row = dec_row_mt_sync->mi_rows_decode_started +
tile_data->tile_info.mi_row_start;
dec_row_mt_sync->num_threads_working++;
dec_row_mt_sync->mi_rows_decode_started += sb_mi_size;
frame_row_mt_info->mi_rows_decode_started += sb_mi_size;
assert(frame_row_mt_info->mi_rows_parse_done >=
frame_row_mt_info->mi_rows_decode_started);
#if CONFIG_MULTITHREAD
if (frame_row_mt_info->mi_rows_decode_started ==
frame_row_mt_info->mi_rows_to_decode) {
pthread_cond_broadcast(pbi->row_mt_cond_);
}
#endif
return 1;
}
static inline void signal_parse_sb_row_done(AV1Decoder *const pbi,
TileDataDec *const tile_data,
const int sb_mi_size) {
AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info;
#if CONFIG_MULTITHREAD
pthread_mutex_lock(pbi->row_mt_mutex_);
#endif
assert(frame_row_mt_info->mi_rows_parse_done >=
frame_row_mt_info->mi_rows_decode_started);
tile_data->dec_row_mt_sync.mi_rows_parse_done += sb_mi_size;
frame_row_mt_info->mi_rows_parse_done += sb_mi_size;
#if CONFIG_MULTITHREAD
// A new decode job is available. Wake up one worker thread to handle the
// new decode job.
// NOTE: This assumes we bump mi_rows_parse_done and mi_rows_decode_started
// by the same increment (sb_mi_size).
pthread_cond_signal(pbi->row_mt_cond_);
pthread_mutex_unlock(pbi->row_mt_mutex_);
#endif
}
// This function is very similar to decode_tile(). It would be good to figure
// out how to share code.
static inline void parse_tile_row_mt(AV1Decoder *pbi, ThreadData *const td,
TileDataDec *const tile_data) {
AV1_COMMON *const cm = &pbi->common;
const int sb_mi_size = mi_size_wide[cm->seq_params->sb_size];
const int num_planes = av1_num_planes(cm);
const TileInfo *const tile_info = &tile_data->tile_info;
int tile_row = tile_info->tile_row;
DecoderCodingBlock *const dcb = &td->dcb;
MACROBLOCKD *const xd = &dcb->xd;
av1_zero_above_context(cm, xd, tile_info->mi_col_start, tile_info->mi_col_end,
tile_row);
av1_reset_loop_filter_delta(xd, num_planes);
av1_reset_loop_restoration(xd, num_planes);
for (int mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end;
mi_row += cm->seq_params->mib_size) {
av1_zero_left_context(xd);
for (int mi_col = tile_info->mi_col_start; mi_col < tile_info->mi_col_end;
mi_col += cm->seq_params->mib_size) {
set_cb_buffer(pbi, dcb, pbi->cb_buffer_base, num_planes, mi_row, mi_col);
// Bit-stream parsing of the superblock
decode_partition(pbi, td, mi_row, mi_col, td->bit_reader,
cm->seq_params->sb_size, 0x1);
if (aom_reader_has_overflowed(td->bit_reader)) {
aom_merge_corrupted_flag(&dcb->corrupted, 1);
return;
}
}
signal_parse_sb_row_done(pbi, tile_data, sb_mi_size);
}
int corrupted =
(check_trailing_bits_after_symbol_coder(td->bit_reader)) ? 1 : 0;
aom_merge_corrupted_flag(&dcb->corrupted, corrupted);
}
static int row_mt_worker_hook(void *arg1, void *arg2) {
DecWorkerData *const thread_data = (DecWorkerData *)arg1;
AV1Decoder *const pbi = (AV1Decoder *)arg2;
ThreadData *const td = thread_data->td;
uint8_t allow_update_cdf;
AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info;
td->dcb.corrupted = 0;
// The jmp_buf is valid only for the duration of the function that calls
// setjmp(). Therefore, this function must reset the 'setjmp' field to 0
// before it returns.
if (setjmp(thread_data->error_info.jmp)) {
thread_data->error_info.setjmp = 0;
thread_data->td->dcb.corrupted = 1;
#if CONFIG_MULTITHREAD
pthread_mutex_lock(pbi->row_mt_mutex_);
#endif
frame_row_mt_info->row_mt_exit = 1;
#if CONFIG_MULTITHREAD
pthread_cond_broadcast(pbi->row_mt_cond_);
pthread_mutex_unlock(pbi->row_mt_mutex_);
#endif
// If any SB row (erroneous row) processed by a thread encounters an
// internal error, there is a need to indicate other threads that decoding
// of the erroneous row is complete. This ensures that other threads which
// wait upon the completion of SB's present in erroneous row are not waiting
// indefinitely.
signal_decoding_done_for_erroneous_row(pbi, &thread_data->td->dcb.xd);
return 0;
}
thread_data->error_info.setjmp = 1;
AV1_COMMON *cm = &pbi->common;
allow_update_cdf = cm->tiles.large_scale ? 0 : 1;
allow_update_cdf = allow_update_cdf && !cm->features.disable_cdf_update;
set_decode_func_pointers(td, 0x1);
assert(cm->tiles.cols > 0);
while (!td->dcb.corrupted) {
TileJobsDec *cur_job_info = get_dec_job_info(&pbi->tile_mt_info);
if (cur_job_info != NULL) {
const TileBufferDec *const tile_buffer = cur_job_info->tile_buffer;
TileDataDec *const tile_data = cur_job_info->tile_data;
tile_worker_hook_init(pbi, thread_data, tile_buffer, tile_data,
allow_update_cdf);
#if CONFIG_MULTITHREAD
pthread_mutex_lock(pbi->row_mt_mutex_);
#endif
tile_data->dec_row_mt_sync.num_threads_working++;
#if CONFIG_MULTITHREAD
pthread_mutex_unlock(pbi->row_mt_mutex_);
#endif
// decode tile
parse_tile_row_mt(pbi, td, tile_data);
#if CONFIG_MULTITHREAD
pthread_mutex_lock(pbi->row_mt_mutex_);
#endif
tile_data->dec_row_mt_sync.num_threads_working--;
#if CONFIG_MULTITHREAD
pthread_mutex_unlock(pbi->row_mt_mutex_);
#endif
} else {
break;
}
}
if (td->dcb.corrupted) {
thread_data->error_info.setjmp = 0;
#if CONFIG_MULTITHREAD
pthread_mutex_lock(pbi->row_mt_mutex_);
#endif
frame_row_mt_info->row_mt_exit = 1;
#if CONFIG_MULTITHREAD
pthread_cond_broadcast(pbi->row_mt_cond_);
pthread_mutex_unlock(pbi->row_mt_mutex_);
#endif
return 0;
}
set_decode_func_pointers(td, 0x2);
while (1) {
AV1DecRowMTJobInfo next_job_info;
int end_of_frame = 0;
#if CONFIG_MULTITHREAD
pthread_mutex_lock(pbi->row_mt_mutex_);
#endif
while (!get_next_job_info(pbi, &next_job_info, &end_of_frame)) {
#if CONFIG_MULTITHREAD
pthread_cond_wait(pbi->row_mt_cond_, pbi->row_mt_mutex_);
#endif
}
#if CONFIG_MULTITHREAD
pthread_mutex_unlock(pbi->row_mt_mutex_);
#endif
if (end_of_frame) break;
int tile_row = next_job_info.tile_row;
int tile_col = next_job_info.tile_col;
int mi_row = next_job_info.mi_row;
TileDataDec *tile_data =
pbi->tile_data + tile_row * cm->tiles.cols + tile_col;
AV1DecRowMTSync *dec_row_mt_sync = &tile_data->dec_row_mt_sync;
av1_tile_init(&td->dcb.xd.tile, cm, tile_row, tile_col);
av1_init_macroblockd(cm, &td->dcb.xd);
td->dcb.xd.error_info = &thread_data->error_info;
decode_tile_sb_row(pbi, td, &tile_data->tile_info, mi_row);
#if CONFIG_MULTITHREAD
pthread_mutex_lock(pbi->row_mt_mutex_);
#endif
dec_row_mt_sync->num_threads_working--;
#if CONFIG_MULTITHREAD
pthread_mutex_unlock(pbi->row_mt_mutex_);
#endif
}
thread_data->error_info.setjmp = 0;
return !td->dcb.corrupted;
}
// sorts in descending order
static int compare_tile_buffers(const void *a, const void *b) {
const TileJobsDec *const buf1 = (const TileJobsDec *)a;
const TileJobsDec *const buf2 = (const TileJobsDec *)b;
return (((int)buf2->tile_buffer->size) - ((int)buf1->tile_buffer->size));
}
static inline void enqueue_tile_jobs(AV1Decoder *pbi, AV1_COMMON *cm,
int tile_rows_start, int tile_rows_end,
int tile_cols_start, int tile_cols_end,
int start_tile, int end_tile) {
AV1DecTileMT *tile_mt_info = &pbi->tile_mt_info;
TileJobsDec *tile_job_queue = tile_mt_info->job_queue;
tile_mt_info->jobs_enqueued = 0;
tile_mt_info->jobs_dequeued = 0;
for (int row = tile_rows_start; row < tile_rows_end; row++) {
for (int col = tile_cols_start; col < tile_cols_end; col++) {
if (row * cm->tiles.cols + col < start_tile ||
row * cm->tiles.cols + col > end_tile)
continue;
tile_job_queue->tile_buffer = &pbi->tile_buffers[row][col];
tile_job_queue->tile_data = pbi->tile_data + row * cm->tiles.cols + col;
tile_job_queue++;
tile_mt_info->jobs_enqueued++;
}
}
}
static inline void alloc_dec_jobs(AV1DecTileMT *tile_mt_info, AV1_COMMON *cm,
int tile_rows, int tile_cols) {
tile_mt_info->alloc_tile_rows = tile_rows;
tile_mt_info->alloc_tile_cols = tile_cols;
int num_tiles = tile_rows * tile_cols;
#if CONFIG_MULTITHREAD
{
CHECK_MEM_ERROR(cm, tile_mt_info->job_mutex,
aom_malloc(sizeof(*tile_mt_info->job_mutex) * num_tiles));
for (int i = 0; i < num_tiles; i++) {
pthread_mutex_init(&tile_mt_info->job_mutex[i], NULL);
}
}
#endif
CHECK_MEM_ERROR(cm, tile_mt_info->job_queue,
aom_malloc(sizeof(*tile_mt_info->job_queue) * num_tiles));
}
void av1_free_mc_tmp_buf(ThreadData *thread_data) {
int ref;
for (ref = 0; ref < 2; ref++) {
if (thread_data->mc_buf_use_highbd)
aom_free(CONVERT_TO_SHORTPTR(thread_data->mc_buf[ref]));
else
aom_free(thread_data->mc_buf[ref]);
thread_data->mc_buf[ref] = NULL;
}
thread_data->mc_buf_size = 0;
thread_data->mc_buf_use_highbd = 0;
aom_free(thread_data->tmp_conv_dst);
thread_data->tmp_conv_dst = NULL;
aom_free(thread_data->seg_mask);
thread_data->seg_mask = NULL;
for (int i = 0; i < 2; ++i) {
aom_free(thread_data->tmp_obmc_bufs[i]);
thread_data->tmp_obmc_bufs[i] = NULL;
}
}
static inline void allocate_mc_tmp_buf(AV1_COMMON *const cm,
ThreadData *thread_data, int buf_size,
int use_highbd) {
for (int ref = 0; ref < 2; ref++) {
// The mc_buf/hbd_mc_buf must be zeroed to fix a intermittent valgrind error
// 'Conditional jump or move depends on uninitialised value' from the loop
// filter. Uninitialized reads in convolve function (e.g. horiz_4tap path in
// av1_convolve_2d_sr_avx2()) from mc_buf/hbd_mc_buf are seen to be the
// potential reason for this issue.
if (use_highbd) {
uint16_t *hbd_mc_buf;
CHECK_MEM_ERROR(cm, hbd_mc_buf, (uint16_t *)aom_memalign(16, buf_size));
memset(hbd_mc_buf, 0, buf_size);
thread_data->mc_buf[ref] = CONVERT_TO_BYTEPTR(hbd_mc_buf);
} else {
CHECK_MEM_ERROR(cm, thread_data->mc_buf[ref],
(uint8_t *)aom_memalign(16, buf_size));
memset(thread_data->mc_buf[ref], 0, buf_size);
}
}
thread_data->mc_buf_size = buf_size;
thread_data->mc_buf_use_highbd = use_highbd;
CHECK_MEM_ERROR(cm, thread_data->tmp_conv_dst,
aom_memalign(32, MAX_SB_SIZE * MAX_SB_SIZE *
sizeof(*thread_data->tmp_conv_dst)));
CHECK_MEM_ERROR(cm, thread_data->seg_mask,
(uint8_t *)aom_memalign(
16, 2 * MAX_SB_SQUARE * sizeof(*thread_data->seg_mask)));
for (int i = 0; i < 2; ++i) {
CHECK_MEM_ERROR(
cm, thread_data->tmp_obmc_bufs[i],
aom_memalign(16, 2 * MAX_MB_PLANE * MAX_SB_SQUARE *
sizeof(*thread_data->tmp_obmc_bufs[i])));
}
}
static inline void reset_dec_workers(AV1Decoder *pbi, AVxWorkerHook worker_hook,
int num_workers) {
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
// Reset tile decoding hook
for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) {
AVxWorker *const worker = &pbi->tile_workers[worker_idx];
DecWorkerData *const thread_data = pbi->thread_data + worker_idx;
thread_data->td->dcb = pbi->dcb;
thread_data->td->dcb.corrupted = 0;
thread_data->td->dcb.mc_buf[0] = thread_data->td->mc_buf[0];
thread_data->td->dcb.mc_buf[1] = thread_data->td->mc_buf[1];
thread_data->td->dcb.xd.tmp_conv_dst = thread_data->td->tmp_conv_dst;
if (worker_idx)
thread_data->td->dcb.xd.seg_mask = thread_data->td->seg_mask;
for (int j = 0; j < 2; ++j) {
thread_data->td->dcb.xd.tmp_obmc_bufs[j] =
thread_data->td->tmp_obmc_bufs[j];
}
winterface->sync(worker);
worker->hook = worker_hook;
worker->data1 = thread_data;
worker->data2 = pbi;
}
#if CONFIG_ACCOUNTING
if (pbi->acct_enabled) {
aom_accounting_reset(&pbi->accounting);
}
#endif
}
static inline void launch_dec_workers(AV1Decoder *pbi, const uint8_t *data_end,
int num_workers) {
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
for (int worker_idx = num_workers - 1; worker_idx >= 0; --worker_idx) {
AVxWorker *const worker = &pbi->tile_workers[worker_idx];
DecWorkerData *const thread_data = (DecWorkerData *)worker->data1;
thread_data->data_end = data_end;
worker->had_error = 0;
if (worker_idx == 0) {
winterface->execute(worker);
} else {
winterface->launch(worker);
}
}
}
static inline void sync_dec_workers(AV1Decoder *pbi, int num_workers) {
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
int corrupted = 0;
for (int worker_idx = num_workers; worker_idx > 0; --worker_idx) {
AVxWorker *const worker = &pbi->tile_workers[worker_idx - 1];
aom_merge_corrupted_flag(&corrupted, !winterface->sync(worker));
}
pbi->dcb.corrupted = corrupted;
}
static inline void decode_mt_init(AV1Decoder *pbi) {
AV1_COMMON *const cm = &pbi->common;
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
int worker_idx;
// Create workers and thread_data
if (pbi->num_workers == 0) {
const int num_threads = pbi->max_threads;
CHECK_MEM_ERROR(cm, pbi->tile_workers,
aom_malloc(num_threads * sizeof(*pbi->tile_workers)));
CHECK_MEM_ERROR(cm, pbi->thread_data,
aom_calloc(num_threads, sizeof(*pbi->thread_data)));
for (worker_idx = 0; worker_idx < num_threads; ++worker_idx) {
AVxWorker *const worker = &pbi->tile_workers[worker_idx];
DecWorkerData *const thread_data = pbi->thread_data + worker_idx;
winterface->init(worker);
worker->thread_name = "aom tile worker";
if (worker_idx != 0 && !winterface->reset(worker)) {
aom_internal_error(&pbi->error, AOM_CODEC_ERROR,
"Tile decoder thread creation failed");
}
++pbi->num_workers;
if (worker_idx != 0) {
// Allocate thread data.
CHECK_MEM_ERROR(cm, thread_data->td,
aom_memalign(32, sizeof(*thread_data->td)));
av1_zero(*thread_data->td);
} else {
// Main thread acts as a worker and uses the thread data in pbi
thread_data->td = &pbi->td;
}
thread_data->error_info.error_code = AOM_CODEC_OK;
thread_data->error_info.setjmp = 0;
}
}
const int use_highbd = cm->seq_params->use_highbitdepth;
const int buf_size = MC_TEMP_BUF_PELS << use_highbd;
for (worker_idx = 1; worker_idx < pbi->max_threads; ++worker_idx) {
DecWorkerData *const thread_data = pbi->thread_data + worker_idx;
if (thread_data->td->mc_buf_size != buf_size) {
av1_free_mc_tmp_buf(thread_data->td);
allocate_mc_tmp_buf(cm, thread_data->td, buf_size, use_highbd);
}
}
}
static inline void tile_mt_queue(AV1Decoder *pbi, int tile_cols, int tile_rows,
int tile_rows_start, int tile_rows_end,
int tile_cols_start, int tile_cols_end,
int start_tile, int end_tile) {
AV1_COMMON *const cm = &pbi->common;
if (pbi->tile_mt_info.alloc_tile_cols != tile_cols ||
pbi->tile_mt_info.alloc_tile_rows != tile_rows) {
av1_dealloc_dec_jobs(&pbi->tile_mt_info);
alloc_dec_jobs(&pbi->tile_mt_info, cm, tile_rows, tile_cols);
}
enqueue_tile_jobs(pbi, cm, tile_rows_start, tile_rows_end, tile_cols_start,
tile_cols_end, start_tile, end_tile);
qsort(pbi->tile_mt_info.job_queue, pbi->tile_mt_info.jobs_enqueued,
sizeof(pbi->tile_mt_info.job_queue[0]), compare_tile_buffers);
}
static const uint8_t *decode_tiles_mt(AV1Decoder *pbi, const uint8_t *data,
const uint8_t *data_end, int start_tile,
int end_tile) {
AV1_COMMON *const cm = &pbi->common;
CommonTileParams *const tiles = &cm->tiles;
const int tile_cols = tiles->cols;
const int tile_rows = tiles->rows;
const int n_tiles = tile_cols * tile_rows;
TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers;
const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows);
const int single_row = pbi->dec_tile_row >= 0;
const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols);
const int single_col = pbi->dec_tile_col >= 0;
int tile_rows_start;
int tile_rows_end;
int tile_cols_start;
int tile_cols_end;
int tile_count_tg;
int num_workers;
const uint8_t *raw_data_end = NULL;
if (tiles->large_scale) {
tile_rows_start = single_row ? dec_tile_row : 0;
tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows;
tile_cols_start = single_col ? dec_tile_col : 0;
tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols;
} else {
tile_rows_start = 0;
tile_rows_end = tile_rows;
tile_cols_start = 0;
tile_cols_end = tile_cols;
}
tile_count_tg = end_tile - start_tile + 1;
num_workers = AOMMIN(pbi->max_threads, tile_count_tg);
// No tiles to decode.
if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start ||
// First tile is larger than end_tile.
tile_rows_start * tile_cols + tile_cols_start > end_tile ||
// Last tile is smaller than start_tile.
(tile_rows_end - 1) * tile_cols + tile_cols_end - 1 < start_tile)
return data;
assert(tile_rows <= MAX_TILE_ROWS);
assert(tile_cols <= MAX_TILE_COLS);
assert(tile_count_tg > 0);
assert(num_workers > 0);
assert(start_tile <= end_tile);
assert(start_tile >= 0 && end_tile < n_tiles);
decode_mt_init(pbi);
// get tile size in tile group
#if EXT_TILE_DEBUG
if (tiles->large_scale) assert(pbi->ext_tile_debug == 1);
if (tiles->large_scale)
raw_data_end = get_ls_tile_buffers(pbi, data, data_end, tile_buffers);
else
#endif // EXT_TILE_DEBUG
get_tile_buffers(pbi, data, data_end, tile_buffers, start_tile, end_tile);
if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) {
decoder_alloc_tile_data(pbi, n_tiles);
}
if (pbi->dcb.xd.seg_mask == NULL)
CHECK_MEM_ERROR(cm, pbi->dcb.xd.seg_mask,
(uint8_t *)aom_memalign(
16, 2 * MAX_SB_SQUARE * sizeof(*pbi->dcb.xd.seg_mask)));
for (int row = 0; row < tile_rows; row++) {
for (int col = 0; col < tile_cols; col++) {
TileDataDec *tile_data = pbi->tile_data + row * tiles->cols + col;
av1_tile_init(&tile_data->tile_info, cm, row, col);
}
}
tile_mt_queue(pbi, tile_cols, tile_rows, tile_rows_start, tile_rows_end,
tile_cols_start, tile_cols_end, start_tile, end_tile);
reset_dec_workers(pbi, tile_worker_hook, num_workers);
launch_dec_workers(pbi, data_end, num_workers);
sync_dec_workers(pbi, num_workers);
if (pbi->dcb.corrupted)
aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
"Failed to decode tile data");
if (tiles->large_scale) {
if (n_tiles == 1) {
// Find the end of the single tile buffer
return aom_reader_find_end(&pbi->tile_data->bit_reader);
}
// Return the end of the last tile buffer
return raw_data_end;
}
TileDataDec *const tile_data = pbi->tile_data + end_tile;
return aom_reader_find_end(&tile_data->bit_reader);
}
static inline void dec_alloc_cb_buf(AV1Decoder *pbi) {
AV1_COMMON *const cm = &pbi->common;
int size = ((cm->mi_params.mi_rows >> cm->seq_params->mib_size_log2) + 1) *
((cm->mi_params.mi_cols >> cm->seq_params->mib_size_log2) + 1);
if (pbi->cb_buffer_alloc_size < size) {
av1_dec_free_cb_buf(pbi);
CHECK_MEM_ERROR(cm, pbi->cb_buffer_base,
aom_memalign(32, sizeof(*pbi->cb_buffer_base) * size));
memset(pbi->cb_buffer_base, 0, sizeof(*pbi->cb_buffer_base) * size);
pbi->cb_buffer_alloc_size = size;
}
}
static inline void row_mt_frame_init(AV1Decoder *pbi, int tile_rows_start,
int tile_rows_end, int tile_cols_start,
int tile_cols_end, int start_tile,
int end_tile, int max_sb_rows) {
AV1_COMMON *const cm = &pbi->common;
AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info;
frame_row_mt_info->tile_rows_start = tile_rows_start;
frame_row_mt_info->tile_rows_end = tile_rows_end;
frame_row_mt_info->tile_cols_start = tile_cols_start;
frame_row_mt_info->tile_cols_end = tile_cols_end;
frame_row_mt_info->start_tile = start_tile;
frame_row_mt_info->end_tile = end_tile;
frame_row_mt_info->mi_rows_to_decode = 0;
frame_row_mt_info->mi_rows_parse_done = 0;
frame_row_mt_info->mi_rows_decode_started = 0;
frame_row_mt_info->row_mt_exit = 0;
for (int tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) {
for (int tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) {
if (tile_row * cm->tiles.cols + tile_col < start_tile ||
tile_row * cm->tiles.cols + tile_col > end_tile)
continue;
TileDataDec *const tile_data =
pbi->tile_data + tile_row * cm->tiles.cols + tile_col;
const TileInfo *const tile_info = &tile_data->tile_info;
tile_data->dec_row_mt_sync.mi_rows_parse_done = 0;
tile_data->dec_row_mt_sync.mi_rows_decode_started = 0;
tile_data->dec_row_mt_sync.num_threads_working = 0;
tile_data->dec_row_mt_sync.mi_rows =
ALIGN_POWER_OF_TWO(tile_info->mi_row_end - tile_info->mi_row_start,
cm->seq_params->mib_size_log2);
tile_data->dec_row_mt_sync.mi_cols =
ALIGN_POWER_OF_TWO(tile_info->mi_col_end - tile_info->mi_col_start,
cm->seq_params->mib_size_log2);
tile_data->dec_row_mt_sync.intrabc_extra_top_right_sb_delay =
av1_get_intrabc_extra_top_right_sb_delay(cm);
frame_row_mt_info->mi_rows_to_decode +=
tile_data->dec_row_mt_sync.mi_rows;
// Initialize cur_sb_col to -1 for all SB rows.
memset(tile_data->dec_row_mt_sync.cur_sb_col, -1,
sizeof(*tile_data->dec_row_mt_sync.cur_sb_col) * max_sb_rows);
}
}
#if CONFIG_MULTITHREAD
if (pbi->row_mt_mutex_ == NULL) {
CHECK_MEM_ERROR(cm, pbi->row_mt_mutex_,
aom_malloc(sizeof(*(pbi->row_mt_mutex_))));
if (pbi->row_mt_mutex_) {
pthread_mutex_init(pbi->row_mt_mutex_, NULL);
}
}
if (pbi->row_mt_cond_ == NULL) {
CHECK_MEM_ERROR(cm, pbi->row_mt_cond_,
aom_malloc(sizeof(*(pbi->row_mt_cond_))));
if (pbi->row_mt_cond_) {
pthread_cond_init(pbi->row_mt_cond_, NULL);
}
}
#endif
}
static const uint8_t *decode_tiles_row_mt(AV1Decoder *pbi, const uint8_t *data,
const uint8_t *data_end,
int start_tile, int end_tile) {
AV1_COMMON *const cm = &pbi->common;
CommonTileParams *const tiles = &cm->tiles;
const int tile_cols = tiles->cols;
const int tile_rows = tiles->rows;
const int n_tiles = tile_cols * tile_rows;
TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers;
const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows);
const int single_row = pbi->dec_tile_row >= 0;
const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols);
const int single_col = pbi->dec_tile_col >= 0;
int tile_rows_start;
int tile_rows_end;
int tile_cols_start;
int tile_cols_end;
int tile_count_tg;
int num_workers = 0;
int max_threads;
const uint8_t *raw_data_end = NULL;
int max_sb_rows = 0;
if (tiles->large_scale) {
tile_rows_start = single_row ? dec_tile_row : 0;
tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows;
tile_cols_start = single_col ? dec_tile_col : 0;
tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols;
} else {
tile_rows_start = 0;
tile_rows_end = tile_rows;
tile_cols_start = 0;
tile_cols_end = tile_cols;
}
tile_count_tg = end_tile - start_tile + 1;
max_threads = pbi->max_threads;
// No tiles to decode.
if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start ||
// First tile is larger than end_tile.
tile_rows_start * tile_cols + tile_cols_start > end_tile ||
// Last tile is smaller than start_tile.
(tile_rows_end - 1) * tile_cols + tile_cols_end - 1 < start_tile)
return data;
assert(tile_rows <= MAX_TILE_ROWS);
assert(tile_cols <= MAX_TILE_COLS);
assert(tile_count_tg > 0);
assert(max_threads > 0);
assert(start_tile <= end_tile);
assert(start_tile >= 0 && end_tile < n_tiles);
(void)tile_count_tg;
decode_mt_init(pbi);
// get tile size in tile group
#if EXT_TILE_DEBUG
if (tiles->large_scale) assert(pbi->ext_tile_debug == 1);
if (tiles->large_scale)
raw_data_end = get_ls_tile_buffers(pbi, data, data_end, tile_buffers);
else
#endif // EXT_TILE_DEBUG
get_tile_buffers(pbi, data, data_end, tile_buffers, start_tile, end_tile);
if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) {
if (pbi->tile_data != NULL) {
for (int i = 0; i < pbi->allocated_tiles; i++) {
TileDataDec *const tile_data = pbi->tile_data + i;
av1_dec_row_mt_dealloc(&tile_data->dec_row_mt_sync);
}
}
decoder_alloc_tile_data(pbi, n_tiles);
}
if (pbi->dcb.xd.seg_mask == NULL)
CHECK_MEM_ERROR(cm, pbi->dcb.xd.seg_mask,
(uint8_t *)aom_memalign(
16, 2 * MAX_SB_SQUARE * sizeof(*pbi->dcb.xd.seg_mask)));
for (int row = 0; row < tile_rows; row++) {
for (int col = 0; col < tile_cols; col++) {
TileDataDec *tile_data = pbi->tile_data + row * tiles->cols + col;
av1_tile_init(&tile_data->tile_info, cm, row, col);
max_sb_rows = AOMMAX(max_sb_rows,
av1_get_sb_rows_in_tile(cm, &tile_data->tile_info));
num_workers += get_max_row_mt_workers_per_tile(cm, &tile_data->tile_info);
}
}
num_workers = AOMMIN(num_workers, max_threads);
if (pbi->allocated_row_mt_sync_rows != max_sb_rows) {
for (int i = 0; i < n_tiles; ++i) {
TileDataDec *const tile_data = pbi->tile_data + i;
av1_dec_row_mt_dealloc(&tile_data->dec_row_mt_sync);
dec_row_mt_alloc(&tile_data->dec_row_mt_sync, cm, max_sb_rows);
}
pbi->allocated_row_mt_sync_rows = max_sb_rows;
}
tile_mt_queue(pbi, tile_cols, tile_rows, tile_rows_start, tile_rows_end,
tile_cols_start, tile_cols_end, start_tile, end_tile);
dec_alloc_cb_buf(pbi);
row_mt_frame_init(pbi, tile_rows_start, tile_rows_end, tile_cols_start,
tile_cols_end, start_tile, end_tile, max_sb_rows);
reset_dec_workers(pbi, row_mt_worker_hook, num_workers);
launch_dec_workers(pbi, data_end, num_workers);
sync_dec_workers(pbi, num_workers);
if (pbi->dcb.corrupted)
aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
"Failed to decode tile data");
if (tiles->large_scale) {
if (n_tiles == 1) {
// Find the end of the single tile buffer
return aom_reader_find_end(&pbi->tile_data->bit_reader);
}
// Return the end of the last tile buffer
return raw_data_end;
}
TileDataDec *const tile_data = pbi->tile_data + end_tile;
return aom_reader_find_end(&tile_data->bit_reader);
}
static inline void error_handler(void *data) {
AV1_COMMON *const cm = (AV1_COMMON *)data;
aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME, "Truncated packet");
}
// Reads the high_bitdepth and twelve_bit fields in color_config() and sets
// seq_params->bit_depth based on the values of those fields and
// seq_params->profile. Reports errors by calling rb->error_handler() or
// aom_internal_error().
static inline void read_bitdepth(struct aom_read_bit_buffer *rb,
SequenceHeader *seq_params,
struct aom_internal_error_info *error_info) {
const int high_bitdepth = aom_rb_read_bit(rb);
if (seq_params->profile == PROFILE_2 && high_bitdepth) {
const int twelve_bit = aom_rb_read_bit(rb);
seq_params->bit_depth = twelve_bit ? AOM_BITS_12 : AOM_BITS_10;
} else if (seq_params->profile <= PROFILE_2) {
seq_params->bit_depth = high_bitdepth ? AOM_BITS_10 : AOM_BITS_8;
} else {
aom_internal_error(error_info, AOM_CODEC_UNSUP_BITSTREAM,
"Unsupported profile/bit-depth combination");
}
#if !CONFIG_AV1_HIGHBITDEPTH
if (seq_params->bit_depth > AOM_BITS_8) {
aom_internal_error(error_info, AOM_CODEC_UNSUP_BITSTREAM,
"Bit-depth %d not supported", seq_params->bit_depth);
}
#endif
}
static void read_film_grain_params(AV1_COMMON *cm,
struct aom_read_bit_buffer *rb) {
aom_film_grain_t *pars = &cm->film_grain_params;
const SequenceHeader *const seq_params = cm->seq_params;
pars->apply_grain = aom_rb_read_bit(rb);
if (!pars->apply_grain) {
memset(pars, 0, sizeof(*pars));
return;
}
pars->random_seed = aom_rb_read_literal(rb, 16);
if (cm->current_frame.frame_type == INTER_FRAME)
pars->update_parameters = aom_rb_read_bit(rb);
else
pars->update_parameters = 1;
pars->bit_depth = seq_params->bit_depth;
if (!pars->update_parameters) {
// inherit parameters from a previous reference frame
int film_grain_params_ref_idx = aom_rb_read_literal(rb, 3);
// Section 6.8.20: It is a requirement of bitstream conformance that
// film_grain_params_ref_idx is equal to ref_frame_idx[ j ] for some value
// of j in the range 0 to REFS_PER_FRAME - 1.
int found = 0;
for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
if (film_grain_params_ref_idx == cm->remapped_ref_idx[i]) {
found = 1;
break;
}
}
if (!found) {
aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Invalid film grain reference idx %d. ref_frame_idx = "
"{%d, %d, %d, %d, %d, %d, %d}",
film_grain_params_ref_idx, cm->remapped_ref_idx[0],
cm->remapped_ref_idx[1], cm->remapped_ref_idx[2],
cm->remapped_ref_idx[3], cm->remapped_ref_idx[4],
cm->remapped_ref_idx[5], cm->remapped_ref_idx[6]);
}
RefCntBuffer *const buf = cm->ref_frame_map[film_grain_params_ref_idx];
if (buf == NULL) {
aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Invalid Film grain reference idx");
}
if (!buf->film_grain_params_present) {
aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Film grain reference parameters not available");
}
uint16_t random_seed = pars->random_seed;
*pars = buf->film_grain_params; // inherit paramaters
pars->random_seed = random_seed; // with new random seed
return;
}
// Scaling functions parameters
pars->num_y_points = aom_rb_read_literal(rb, 4); // max 14
if (pars->num_y_points > 14)
aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Number of points for film grain luma scaling function "
"exceeds the maximum value.");
for (int i = 0; i < pars->num_y_points; i++) {
pars->scaling_points_y[i][0] = aom_rb_read_literal(rb, 8);
if (i && pars->scaling_points_y[i - 1][0] >= pars->scaling_points_y[i][0])
aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"First coordinate of the scaling function points "
"shall be increasing.");
pars->scaling_points_y[i][1] = aom_rb_read_literal(rb, 8);
}
if (!seq_params->monochrome)
pars->chroma_scaling_from_luma = aom_rb_read_bit(rb);
else
pars->chroma_scaling_from_luma = 0;
if (seq_params->monochrome || pars->chroma_scaling_from_luma ||
((seq_params->subsampling_x == 1) && (seq_params->subsampling_y == 1) &&
(pars->num_y_points == 0))) {
pars->num_cb_points = 0;
pars->num_cr_points = 0;
} else {
pars->num_cb_points = aom_rb_read_literal(rb, 4); // max 10
if (pars->num_cb_points > 10)
aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Number of points for film grain cb scaling function "
"exceeds the maximum value.");
for (int i = 0; i < pars->num_cb_points; i++) {
pars->scaling_points_cb[i][0] = aom_rb_read_literal(rb, 8);
if (i &&
pars->scaling_points_cb[i - 1][0] >= pars->scaling_points_cb[i][0])
aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"First coordinate of the scaling function points "
"shall be increasing.");
pars->scaling_points_cb[i][1] = aom_rb_read_literal(rb, 8);
}
pars->num_cr_points = aom_rb_read_literal(rb, 4); // max 10
if (pars->num_cr_points > 10)
aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Number of points for film grain cr scaling function "
"exceeds the maximum value.");
for (int i = 0; i < pars->num_cr_points; i++) {
pars->scaling_points_cr[i][0] = aom_rb_read_literal(rb, 8);
if (i &&
pars->scaling_points_cr[i - 1][0] >= pars->scaling_points_cr[i][0])
aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"First coordinate of the scaling function points "
"shall be increasing.");
pars->scaling_points_cr[i][1] = aom_rb_read_literal(rb, 8);
}
if ((seq_params->subsampling_x == 1) && (seq_params->subsampling_y == 1) &&
(((pars->num_cb_points == 0) && (pars->num_cr_points != 0)) ||
((pars->num_cb_points != 0) && (pars->num_cr_points == 0))))
aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"In YCbCr 4:2:0, film grain shall be applied "
"to both chroma components or neither.");
}
pars->scaling_shift = aom_rb_read_literal(rb, 2) + 8; // 8 + value
// AR coefficients
// Only sent if the corresponsing scaling function has
// more than 0 points
pars->ar_coeff_lag = aom_rb_read_literal(rb, 2);
int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1);
int num_pos_chroma = num_pos_luma;
if (pars->num_y_points > 0) ++num_pos_chroma;
if (pars->num_y_points)
for (int i = 0; i < num_pos_luma; i++)
pars->ar_coeffs_y[i] = aom_rb_read_literal(rb, 8) - 128;
if (pars->num_cb_points || pars->chroma_scaling_from_luma)
for (int i = 0; i < num_pos_chroma; i++)
pars->ar_coeffs_cb[i] = aom_rb_read_literal(rb, 8) - 128;
if (pars->num_cr_points || pars->chroma_scaling_from_luma)
for (int i = 0; i < num_pos_chroma; i++)
pars->ar_coeffs_cr[i] = aom_rb_read_literal(rb, 8) - 128;
pars->ar_coeff_shift = aom_rb_read_literal(rb, 2) + 6; // 6 + value
pars->grain_scale_shift = aom_rb_read_literal(rb, 2);
if (pars->num_cb_points) {
pars->cb_mult = aom_rb_read_literal(rb, 8);
pars->cb_luma_mult = aom_rb_read_literal(rb, 8);
pars->cb_offset = aom_rb_read_literal(rb, 9);
}
if (pars->num_cr_points) {
pars->cr_mult = aom_rb_read_literal(rb, 8);
pars->cr_luma_mult = aom_rb_read_literal(rb, 8);
pars->cr_offset = aom_rb_read_literal(rb, 9);
}
pars->overlap_flag = aom_rb_read_bit(rb);
pars->clip_to_restricted_range = aom_rb_read_bit(rb);
}
static inline void read_film_grain(AV1_COMMON *cm,
struct aom_read_bit_buffer *rb) {
if (cm->seq_params->film_grain_params_present &&
(cm->show_frame || cm->showable_frame)) {
read_film_grain_params(cm, rb);
} else {
memset(&cm->film_grain_params, 0, sizeof(cm->film_grain_params));
}
cm->film_grain_params.bit_depth = cm->seq_params->bit_depth;
cm->cur_frame->film_grain_params = cm->film_grain_params;
}
void av1_read_color_config(struct aom_read_bit_buffer *rb,
int allow_lowbitdepth, SequenceHeader *seq_params,
struct aom_internal_error_info *error_info) {
read_bitdepth(rb, seq_params, error_info);
seq_params->use_highbitdepth =
seq_params->bit_depth > AOM_BITS_8 || !allow_lowbitdepth;
// monochrome bit (not needed for PROFILE_1)
const int is_monochrome =
seq_params->profile != PROFILE_1 ? aom_rb_read_bit(rb) : 0;
seq_params->monochrome = is_monochrome;
int color_description_present_flag = aom_rb_read_bit(rb);
if (color_description_present_flag) {
seq_params->color_primaries = aom_rb_read_literal(rb, 8);
seq_params->transfer_characteristics = aom_rb_read_literal(rb, 8);
seq_params->matrix_coefficients = aom_rb_read_literal(rb, 8);
} else {
seq_params->color_primaries = AOM_CICP_CP_UNSPECIFIED;
seq_params->transfer_characteristics = AOM_CICP_TC_UNSPECIFIED;
seq_params->matrix_coefficients = AOM_CICP_MC_UNSPECIFIED;
}
if (is_monochrome) {
// [16,235] (including xvycc) vs [0,255] range
seq_params->color_range = aom_rb_read_bit(rb);
seq_params->subsampling_y = seq_params->subsampling_x = 1;
seq_params->chroma_sample_position = AOM_CSP_UNKNOWN;
seq_params->separate_uv_delta_q = 0;
return;
}
if (seq_params->color_primaries == AOM_CICP_CP_BT_709 &&
seq_params->transfer_characteristics == AOM_CICP_TC_SRGB &&
seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) {
seq_params->subsampling_y = seq_params->subsampling_x = 0;
seq_params->color_range = 1; // assume full color-range
if (!(seq_params->profile == PROFILE_1 ||
(seq_params->profile == PROFILE_2 &&
seq_params->bit_depth == AOM_BITS_12))) {
aom_internal_error(
error_info, AOM_CODEC_UNSUP_BITSTREAM,
"sRGB colorspace not compatible with specified profile");
}
} else {
// [16,235] (including xvycc) vs [0,255] range
seq_params->color_range = aom_rb_read_bit(rb);
if (seq_params->profile == PROFILE_0) {
// 420 only
seq_params->subsampling_x = seq_params->subsampling_y = 1;
} else if (seq_params->profile == PROFILE_1) {
// 444 only
seq_params->subsampling_x = seq_params->subsampling_y = 0;
} else {
assert(seq_params->profile == PROFILE_2);
if (seq_params->bit_depth == AOM_BITS_12) {
seq_params->subsampling_x = aom_rb_read_bit(rb);
if (seq_params->subsampling_x)
seq_params->subsampling_y = aom_rb_read_bit(rb); // 422 or 420
else
seq_params->subsampling_y = 0; // 444
} else {
// 422
seq_params->subsampling_x = 1;
seq_params->subsampling_y = 0;
}
}
if (seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY &&
(seq_params->subsampling_x || seq_params->subsampling_y)) {
aom_internal_error(
error_info, AOM_CODEC_UNSUP_BITSTREAM,
"Identity CICP Matrix incompatible with non 4:4:4 color sampling");
}
if (seq_params->subsampling_x && seq_params->subsampling_y) {
seq_params->chroma_sample_position = aom_rb_read_literal(rb, 2);
}
}
seq_params->separate_uv_delta_q = aom_rb_read_bit(rb);
}
void av1_read_timing_info_header(aom_timing_info_t *timing_info,
struct aom_internal_error_info *error,
struct aom_read_bit_buffer *rb) {
timing_info->num_units_in_display_tick =
aom_rb_read_unsigned_literal(rb,
32); // Number of units in a display tick
timing_info->time_scale = aom_rb_read_unsigned_literal(rb, 32); // Time scale
if (timing_info->num_units_in_display_tick == 0 ||
timing_info->time_scale == 0) {
aom_internal_error(
error, AOM_CODEC_UNSUP_BITSTREAM,
"num_units_in_display_tick and time_scale must be greater than 0.");
}
timing_info->equal_picture_interval =
aom_rb_read_bit(rb); // Equal picture interval bit
if (timing_info->equal_picture_interval) {
const uint32_t num_ticks_per_picture_minus_1 = aom_rb_read_uvlc(rb);
if (num_ticks_per_picture_minus_1 == UINT32_MAX) {
aom_internal_error(
error, AOM_CODEC_UNSUP_BITSTREAM,
"num_ticks_per_picture_minus_1 cannot be (1 << 32) - 1.");
}
timing_info->num_ticks_per_picture = num_ticks_per_picture_minus_1 + 1;
}
}
void av1_read_decoder_model_info(aom_dec_model_info_t *decoder_model_info,
struct aom_read_bit_buffer *rb) {
decoder_model_info->encoder_decoder_buffer_delay_length =
aom_rb_read_literal(rb, 5) + 1;
decoder_model_info->num_units_in_decoding_tick =
aom_rb_read_unsigned_literal(rb,
32); // Number of units in a decoding tick
decoder_model_info->buffer_removal_time_length =
aom_rb_read_literal(rb, 5) + 1;
decoder_model_info->frame_presentation_time_length =
aom_rb_read_literal(rb, 5) + 1;
}
void av1_read_op_parameters_info(aom_dec_model_op_parameters_t *op_params,
int buffer_delay_length,
struct aom_read_bit_buffer *rb) {
op_params->decoder_buffer_delay =
aom_rb_read_unsigned_literal(rb, buffer_delay_length);
op_params->encoder_buffer_delay =
aom_rb_read_unsigned_literal(rb, buffer_delay_length);
op_params->low_delay_mode_flag = aom_rb_read_bit(rb);
}
static inline void read_temporal_point_info(AV1_COMMON *const cm,
struct aom_read_bit_buffer *rb) {
cm->frame_presentation_time = aom_rb_read_unsigned_literal(
rb, cm->seq_params->decoder_model_info.frame_presentation_time_length);
}
void av1_read_sequence_header(AV1_COMMON *cm, struct aom_read_bit_buffer *rb,
SequenceHeader *seq_params) {
const int num_bits_width = aom_rb_read_literal(rb, 4) + 1;
const int num_bits_height = aom_rb_read_literal(rb, 4) + 1;
const int max_frame_width = aom_rb_read_literal(rb, num_bits_width) + 1;
const int max_frame_height = aom_rb_read_literal(rb, num_bits_height) + 1;
seq_params->num_bits_width = num_bits_width;
seq_params->num_bits_height = num_bits_height;
seq_params->max_frame_width = max_frame_width;
seq_params->max_frame_height = max_frame_height;
if (seq_params->reduced_still_picture_hdr) {
seq_params->frame_id_numbers_present_flag = 0;
} else {
seq_params->frame_id_numbers_present_flag = aom_rb_read_bit(rb);
}
if (seq_params->frame_id_numbers_present_flag) {
// We must always have delta_frame_id_length < frame_id_length,
// in order for a frame to be referenced with a unique delta.
// Avoid wasting bits by using a coding that enforces this restriction.
seq_params->delta_frame_id_length = aom_rb_read_literal(rb, 4) + 2;
seq_params->frame_id_length =
aom_rb_read_literal(rb, 3) + seq_params->delta_frame_id_length + 1;
if (seq_params->frame_id_length > 16)
aom_internal_error(cm->error, AOM_CODEC_CORRUPT_FRAME,
"Invalid frame_id_length");
}
setup_sb_size(seq_params, rb);
seq_params->enable_filter_intra = aom_rb_read_bit(rb);
seq_params->enable_intra_edge_filter = aom_rb_read_bit(rb);
if (seq_params->reduced_still_picture_hdr) {
seq_params->enable_interintra_compound = 0;
seq_params->enable_masked_compound = 0;
seq_params->enable_warped_motion = 0;
seq_params->enable_dual_filter = 0;
seq_params->order_hint_info.enable_order_hint = 0;
seq_params->order_hint_info.enable_dist_wtd_comp = 0;
seq_params->order_hint_info.enable_ref_frame_mvs = 0;
seq_params->force_screen_content_tools = 2; // SELECT_SCREEN_CONTENT_TOOLS
seq_params->force_integer_mv = 2; // SELECT_INTEGER_MV
seq_params->order_hint_info.order_hint_bits_minus_1 = -1;
} else {
seq_params->enable_interintra_compound = aom_rb_read_bit(rb);
seq_params->enable_masked_compound = aom_rb_read_bit(rb);
seq_params->enable_warped_motion = aom_rb_read_bit(rb);
seq_params->enable_dual_filter = aom_rb_read_bit(rb);
seq_params->order_hint_info.enable_order_hint = aom_rb_read_bit(rb);
seq_params->order_hint_info.enable_dist_wtd_comp =
seq_params->order_hint_info.enable_order_hint ? aom_rb_read_bit(rb) : 0;
seq_params->order_hint_info.enable_ref_frame_mvs =
seq_params->order_hint_info.enable_order_hint ? aom_rb_read_bit(rb) : 0;
if (aom_rb_read_bit(rb)) {
seq_params->force_screen_content_tools =
2; // SELECT_SCREEN_CONTENT_TOOLS
} else {
seq_params->force_screen_content_tools = aom_rb_read_bit(rb);
}
if (seq_params->force_screen_content_tools > 0) {
if (aom_rb_read_bit(rb)) {
seq_params->force_integer_mv = 2; // SELECT_INTEGER_MV
} else {
seq_params->force_integer_mv = aom_rb_read_bit(rb);
}
} else {
seq_params->force_integer_mv = 2; // SELECT_INTEGER_MV
}
seq_params->order_hint_info.order_hint_bits_minus_1 =
seq_params->order_hint_info.enable_order_hint
? aom_rb_read_literal(rb, 3)
: -1;
}
seq_params->enable_superres = aom_rb_read_bit(rb);
seq_params->enable_cdef = aom_rb_read_bit(rb);
seq_params->enable_restoration = aom_rb_read_bit(rb);
}
static int read_global_motion_params(WarpedMotionParams *params,
const WarpedMotionParams *ref_params,
struct aom_read_bit_buffer *rb,
int allow_hp) {
TransformationType type = aom_rb_read_bit(rb);
if (type != IDENTITY) {
if (aom_rb_read_bit(rb))
type = ROTZOOM;
else
type = aom_rb_read_bit(rb) ? TRANSLATION : AFFINE;
}
*params = default_warp_params;
params->wmtype = type;
if (type >= ROTZOOM) {
params->wmmat[2] = aom_rb_read_signed_primitive_refsubexpfin(
rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) -
(1 << GM_ALPHA_PREC_BITS)) *
GM_ALPHA_DECODE_FACTOR +
(1 << WARPEDMODEL_PREC_BITS);
params->wmmat[3] = aom_rb_read_signed_primitive_refsubexpfin(
rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF)) *
GM_ALPHA_DECODE_FACTOR;
}
if (type >= AFFINE) {
params->wmmat[4] = aom_rb_read_signed_primitive_refsubexpfin(
rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF)) *
GM_ALPHA_DECODE_FACTOR;
params->wmmat[5] = aom_rb_read_signed_primitive_refsubexpfin(
rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) -
(1 << GM_ALPHA_PREC_BITS)) *
GM_ALPHA_DECODE_FACTOR +
(1 << WARPEDMODEL_PREC_BITS);
} else {
params->wmmat[4] = -params->wmmat[3];
params->wmmat[5] = params->wmmat[2];
}
if (type >= TRANSLATION) {
const int trans_bits = (type == TRANSLATION)
? GM_ABS_TRANS_ONLY_BITS - !allow_hp
: GM_ABS_TRANS_BITS;
const int trans_dec_factor =
(type == TRANSLATION) ? GM_TRANS_ONLY_DECODE_FACTOR * (1 << !allow_hp)
: GM_TRANS_DECODE_FACTOR;
const int trans_prec_diff = (type == TRANSLATION)
? GM_TRANS_ONLY_PREC_DIFF + !allow_hp
: GM_TRANS_PREC_DIFF;
params->wmmat[0] = aom_rb_read_signed_primitive_refsubexpfin(
rb, (1 << trans_bits) + 1, SUBEXPFIN_K,
(ref_params->wmmat[0] >> trans_prec_diff)) *
trans_dec_factor;
params->wmmat[1] = aom_rb_read_signed_primitive_refsubexpfin(
rb, (1 << trans_bits) + 1, SUBEXPFIN_K,
(ref_params->wmmat[1] >> trans_prec_diff)) *
trans_dec_factor;
}
int good_shear_params = av1_get_shear_params(params);
if (!good_shear_params) return 0;
return 1;
}
static inline void read_global_motion(AV1_COMMON *cm,
struct aom_read_bit_buffer *rb) {
for (int frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) {
const WarpedMotionParams *ref_params =
cm->prev_frame ? &cm->prev_frame->global_motion[frame]
: &default_warp_params;
int good_params =
read_global_motion_params(&cm->global_motion[frame], ref_params, rb,
cm->features.allow_high_precision_mv);
if (!good_params) {
#if WARPED_MOTION_DEBUG
printf("Warning: unexpected global motion shear params from aomenc\n");
#endif
cm->global_motion[frame].invalid = 1;
}
// TODO(sarahparker, debargha): The logic in the commented out code below
// does not work currently and causes mismatches when resize is on. Fix it
// before turning the optimization back on.
/*
YV12_BUFFER_CONFIG *ref_buf = get_ref_frame(cm, frame);
if (cm->width == ref_buf->y_crop_width &&
cm->height == ref_buf->y_crop_height) {
read_global_motion_params(&cm->global_motion[frame],
&cm->prev_frame->global_motion[frame], rb,
cm->features.allow_high_precision_mv);
} else {
cm->global_motion[frame] = default_warp_params;
}
*/
/*
printf("Dec Ref %d [%d/%d]: %d %d %d %d\n",
frame, cm->current_frame.frame_number, cm->show_frame,
cm->global_motion[frame].wmmat[0],
cm->global_motion[frame].wmmat[1],
cm->global_motion[frame].wmmat[2],
cm->global_motion[frame].wmmat[3]);
*/
}
memcpy(cm->cur_frame->global_motion, cm->global_motion,
REF_FRAMES * sizeof(WarpedMotionParams));
}
// Release the references to the frame buffers in cm->ref_frame_map and reset
// all elements of cm->ref_frame_map to NULL.
static inline void reset_ref_frame_map(AV1_COMMON *const cm) {
BufferPool *const pool = cm->buffer_pool;
for (int i = 0; i < REF_FRAMES; i++) {
decrease_ref_count(cm->ref_frame_map[i], pool);
cm->ref_frame_map[i] = NULL;
}
}
// If the refresh_frame_flags bitmask is set, update reference frame id values
// and mark frames as valid for reference.
static inline void update_ref_frame_id(AV1Decoder *const pbi) {
AV1_COMMON *const cm = &pbi->common;
int refresh_frame_flags = cm->current_frame.refresh_frame_flags;
for (int i = 0; i < REF_FRAMES; i++) {
if ((refresh_frame_flags >> i) & 1) {
cm->ref_frame_id[i] = cm->current_frame_id;
pbi->valid_for_referencing[i] = 1;
}
}
}
static inline void show_existing_frame_reset(AV1Decoder *const pbi,
int existing_frame_idx) {
AV1_COMMON *const cm = &pbi->common;
assert(cm->show_existing_frame);
cm->current_frame.frame_type = KEY_FRAME;
cm->current_frame.refresh_frame_flags = (1 << REF_FRAMES) - 1;
for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
cm->remapped_ref_idx[i] = INVALID_IDX;
}
if (pbi->need_resync) {
reset_ref_frame_map(cm);
pbi->need_resync = 0;
}
// Note that the displayed frame must be valid for referencing in order to
// have been selected.
cm->current_frame_id = cm->ref_frame_id[existing_frame_idx];
update_ref_frame_id(pbi);
cm->features.refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED;
}
static inline void reset_frame_buffers(AV1_COMMON *cm) {
RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
int i;
lock_buffer_pool(cm->buffer_pool);
reset_ref_frame_map(cm);
assert(cm->cur_frame->ref_count == 1);
for (i = 0; i < cm->buffer_pool->num_frame_bufs; ++i) {
// Reset all unreferenced frame buffers. We can also reset cm->cur_frame
// because we are the sole owner of cm->cur_frame.
if (frame_bufs[i].ref_count > 0 && &frame_bufs[i] != cm->cur_frame) {
continue;
}
frame_bufs[i].order_hint = 0;
av1_zero(frame_bufs[i].ref_order_hints);
}
av1_zero_unused_internal_frame_buffers(&cm->buffer_pool->int_frame_buffers);
unlock_buffer_pool(cm->buffer_pool);
}
// On success, returns 0. On failure, calls aom_internal_error and does not
// return.
static int read_uncompressed_header(AV1Decoder *pbi,
struct aom_read_bit_buffer *rb) {
AV1_COMMON *const cm = &pbi->common;
const SequenceHeader *const seq_params = cm->seq_params;
CurrentFrame *const current_frame = &cm->current_frame;
FeatureFlags *const features = &cm->features;
MACROBLOCKD *const xd = &pbi->dcb.xd;
BufferPool *const pool = cm->buffer_pool;
RefCntBuffer *const frame_bufs = pool->frame_bufs;
aom_s_frame_info *sframe_info = &pbi->sframe_info;
sframe_info->is_s_frame = 0;
sframe_info->is_s_frame_at_altref = 0;
if (!pbi->sequence_header_ready) {
aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
"No sequence header");
}
if (seq_params->reduced_still_picture_hdr) {
cm->show_existing_frame = 0;
cm->show_frame = 1;
current_frame->frame_type = KEY_FRAME;
if (pbi->sequence_header_changed) {
// This is the start of a new coded video sequence.
pbi->sequence_header_changed = 0;
pbi->decoding_first_frame = 1;
reset_frame_buffers(cm);
}
features->error_resilient_mode = 1;
} else {
cm->show_existing_frame = aom_rb_read_bit(rb);
pbi->reset_decoder_state = 0;
if (cm->show_existing_frame) {
if (pbi->sequence_header_changed) {
aom_internal_error(
&pbi->error, AOM_CODEC_CORRUPT_FRAME,
"New sequence header starts with a show_existing_frame.");
}
// Show an existing frame directly.
const int existing_frame_idx = aom_rb_read_literal(rb, 3);
RefCntBuffer *const frame_to_show = cm->ref_frame_map[existing_frame_idx];
if (frame_to_show == NULL) {
aom_internal_error(&pbi->error, AOM_CODEC_UNSUP_BITSTREAM,
"Buffer does not contain a decoded frame");
}
if (seq_params->decoder_model_info_present_flag &&
seq_params->timing_info.equal_picture_interval == 0) {
read_temporal_point_info(cm, rb);
}
if (seq_params->frame_id_numbers_present_flag) {
int frame_id_length = seq_params->frame_id_length;
int display_frame_id = aom_rb_read_literal(rb, frame_id_length);
/* Compare display_frame_id with ref_frame_id and check valid for
* referencing */
if (display_frame_id != cm->ref_frame_id[existing_frame_idx] ||
pbi->valid_for_referencing[existing_frame_idx] == 0)
aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
"Reference buffer frame ID mismatch");
}
lock_buffer_pool(pool);
assert(frame_to_show->ref_count > 0);
// cm->cur_frame should be the buffer referenced by the return value
// of the get_free_fb() call in assign_cur_frame_new_fb() (called by
// av1_receive_compressed_data()), so the ref_count should be 1.
assert(cm->cur_frame->ref_count == 1);
// assign_frame_buffer_p() decrements ref_count directly rather than
// call decrease_ref_count(). If cm->cur_frame->raw_frame_buffer has
// already been allocated, it will not be released by
// assign_frame_buffer_p()!
assert(!cm->cur_frame->raw_frame_buffer.data);
assign_frame_buffer_p(&cm->cur_frame, frame_to_show);
pbi->reset_decoder_state = frame_to_show->frame_type == KEY_FRAME;
unlock_buffer_pool(pool);
cm->lf.filter_level[0] = 0;
cm->lf.filter_level[1] = 0;
cm->show_frame = 1;
current_frame->order_hint = frame_to_show->order_hint;
// Section 6.8.2: It is a requirement of bitstream conformance that when
// show_existing_frame is used to show a previous frame, that the value
// of showable_frame for the previous frame was equal to 1.
if (!frame_to_show->showable_frame) {
aom_internal_error(&pbi->error, AOM_CODEC_UNSUP_BITSTREAM,
"Buffer does not contain a showable frame");
}
// Section 6.8.2: It is a requirement of bitstream conformance that when
// show_existing_frame is used to show a previous frame with
// RefFrameType[ frame_to_show_map_idx ] equal to KEY_FRAME, that the
// frame is output via the show_existing_frame mechanism at most once.
if (pbi->reset_decoder_state) frame_to_show->showable_frame = 0;
cm->film_grain_params = frame_to_show->film_grain_params;
if (pbi->reset_decoder_state) {
show_existing_frame_reset(pbi, existing_frame_idx);
} else {
current_frame->refresh_frame_flags = 0;
}
return 0;
}
current_frame->frame_type = (FRAME_TYPE)aom_rb_read_literal(rb, 2);
if (pbi->sequence_header_changed) {
if (current_frame->frame_type == KEY_FRAME) {
// This is the start of a new coded video sequence.
pbi->sequence_header_changed = 0;
pbi->decoding_first_frame = 1;
reset_frame_buffers(cm);
} else {
aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
"Sequence header has changed without a keyframe.");
}
}
cm->show_frame = aom_rb_read_bit(rb);
if (cm->show_frame == 0) pbi->is_arf_frame_present = 1;
if (cm->show_frame == 0 && cm->current_frame.frame_type == KEY_FRAME)
pbi->is_fwd_kf_present = 1;
if (cm->current_frame.frame_type == S_FRAME) {
sframe_info->is_s_frame = 1;
sframe_info->is_s_frame_at_altref = cm->show_frame ? 0 : 1;
}
if (seq_params->still_picture &&
(current_frame->frame_type != KEY_FRAME || !cm->show_frame)) {
aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
"Still pictures must be coded as shown keyframes");
}
cm->showable_frame = current_frame->frame_type != KEY_FRAME;
if (cm->show_frame) {
if (seq_params->decoder_model_info_present_flag &&
seq_params->timing_info.equal_picture_interval == 0)
read_temporal_point_info(cm, rb);
} else {
// See if this frame can be used as show_existing_frame in future
cm->showable_frame = aom_rb_read_bit(rb);
}
cm->cur_frame->showable_frame = cm->showable_frame;
features->error_resilient_mode =
frame_is_sframe(cm) ||
(current_frame->frame_type == KEY_FRAME && cm->show_frame)
? 1
: aom_rb_read_bit(rb);
}
if (current_frame->frame_type == KEY_FRAME && cm->show_frame) {
/* All frames need to be marked as not valid for referencing */
for (int i = 0; i < REF_FRAMES; i++) {
pbi->valid_for_referencing[i] = 0;
}
}
features->disable_cdf_update = aom_rb_read_bit(rb);
if (seq_params->force_screen_content_tools == 2) {
features->allow_screen_content_tools = aom_rb_read_bit(rb);
} else {
features->allow_screen_content_tools =
seq_params->force_screen_content_tools;
}
if (features->allow_screen_content_tools) {
if (seq_params->force_integer_mv == 2) {
features->cur_frame_force_integer_mv = aom_rb_read_bit(rb);
} else {
features->cur_frame_force_integer_mv = seq_params->force_integer_mv;
}
} else {
features->cur_frame_force_integer_mv = 0;
}
int frame_size_override_flag = 0;
features->allow_intrabc = 0;
features->primary_ref_frame = PRIMARY_REF_NONE;
if (!seq_params->reduced_still_picture_hdr) {
if (seq_params->frame_id_numbers_present_flag) {
int frame_id_length = seq_params->frame_id_length;
int diff_len = seq_params->delta_frame_id_length;
int prev_frame_id = 0;
int have_prev_frame_id =
!pbi->decoding_first_frame &&
!(current_frame->frame_type == KEY_FRAME && cm->show_frame);
if (have_prev_frame_id) {
prev_frame_id = cm->current_frame_id;
}
cm->current_frame_id = aom_rb_read_literal(rb, frame_id_length);
if (have_prev_frame_id) {
int diff_frame_id;
if (cm->current_frame_id > prev_frame_id) {
diff_frame_id = cm->current_frame_id - prev_frame_id;
} else {
diff_frame_id =
(1 << frame_id_length) + cm->current_frame_id - prev_frame_id;
}
/* Check current_frame_id for conformance */
if (prev_frame_id == cm->current_frame_id ||
diff_frame_id >= (1 << (frame_id_length - 1))) {
aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
"Invalid value of current_frame_id");
}
}
/* Check if some frames need to be marked as not valid for referencing */
for (int i = 0; i < REF_FRAMES; i++) {
if (cm->current_frame_id - (1 << diff_len) > 0) {
if (cm->ref_frame_id[i] > cm->current_frame_id ||
cm->ref_frame_id[i] < cm->current_frame_id - (1 << diff_len))
pbi->valid_for_referencing[i] = 0;
} else {
if (cm->ref_frame_id[i] > cm->current_frame_id &&
cm->ref_frame_id[i] < (1 << frame_id_length) +
cm->current_frame_id - (1 << diff_len))
pbi->valid_for_referencing[i] = 0;
}
}
}
frame_size_override_flag = frame_is_sframe(cm) ? 1 : aom_rb_read_bit(rb);
current_frame->order_hint = aom_rb_read_literal(
rb, seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
if (seq_params->order_hint_info.enable_order_hint)
current_frame->frame_number = current_frame->order_hint;
if (!features->error_resilient_mode && !frame_is_intra_only(cm)) {
features->primary_ref_frame = aom_rb_read_literal(rb, PRIMARY_REF_BITS);
}
}
if (seq_params->decoder_model_info_present_flag) {
pbi->buffer_removal_time_present = aom_rb_read_bit(rb);
if (pbi->buffer_removal_time_present) {
for (int op_num = 0;
op_num < seq_params->operating_points_cnt_minus_1 + 1; op_num++) {
if (seq_params->op_params[op_num].decoder_model_param_present_flag) {
if (seq_params->operating_point_idc[op_num] == 0 ||
(((seq_params->operating_point_idc[op_num] >>
cm->temporal_layer_id) &
0x1) &&
((seq_params->operating_point_idc[op_num] >>
(cm->spatial_layer_id + 8)) &
0x1))) {
cm->buffer_removal_times[op_num] = aom_rb_read_unsigned_literal(
rb, seq_params->decoder_model_info.buffer_removal_time_length);
} else {
cm->buffer_removal_times[op_num] = 0;
}
} else {
cm->buffer_removal_times[op_num] = 0;
}
}
}
}
if (current_frame->frame_type == KEY_FRAME) {
if (!cm->show_frame) { // unshown keyframe (forward keyframe)
current_frame->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES);
} else { // shown keyframe
current_frame->refresh_frame_flags = (1 << REF_FRAMES) - 1;
}
for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
cm->remapped_ref_idx[i] = INVALID_IDX;
}
if (pbi->need_resync) {
reset_ref_frame_map(cm);
pbi->need_resync = 0;
}
} else {
if (current_frame->frame_type == INTRA_ONLY_FRAME) {
current_frame->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES);
if (current_frame->refresh_frame_flags == 0xFF) {
aom_internal_error(&pbi->error, AOM_CODEC_UNSUP_BITSTREAM,
"Intra only frames cannot have refresh flags 0xFF");
}
if (pbi->need_resync) {
reset_ref_frame_map(cm);
pbi->need_resync = 0;
}
} else if (pbi->need_resync != 1) { /* Skip if need resync */
current_frame->refresh_frame_flags =
frame_is_sframe(cm) ? 0xFF : aom_rb_read_literal(rb, REF_FRAMES);
}
}
if (!frame_is_intra_only(cm) || current_frame->refresh_frame_flags != 0xFF) {
// Read all ref frame order hints if error_resilient_mode == 1
if (features->error_resilient_mode &&
seq_params->order_hint_info.enable_order_hint) {
for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) {
// Read order hint from bit stream
unsigned int order_hint = aom_rb_read_literal(
rb, seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
// Get buffer
RefCntBuffer *buf = cm->ref_frame_map[ref_idx];
if (buf == NULL || order_hint != buf->order_hint) {
if (buf != NULL) {
lock_buffer_pool(pool);
decrease_ref_count(buf, pool);
unlock_buffer_pool(pool);
cm->ref_frame_map[ref_idx] = NULL;
}
// If no corresponding buffer exists, allocate a new buffer with all
// pixels set to neutral grey.
int buf_idx = get_free_fb(cm);
if (buf_idx == INVALID_IDX) {
aom_internal_error(&pbi->error, AOM_CODEC_MEM_ERROR,
"Unable to find free frame buffer");
}
buf = &frame_bufs[buf_idx];
lock_buffer_pool(pool);
#if CONFIG_SIZE_LIMIT
if (seq_params->max_frame_width > DECODE_WIDTH_LIMIT ||
seq_params->max_frame_height > DECODE_HEIGHT_LIMIT) {
decrease_ref_count(buf, pool);
unlock_buffer_pool(pool);
aom_internal_error(
cm->error, AOM_CODEC_CORRUPT_FRAME,
"Dimensions of %dx%d beyond allowed size of %dx%d.",
seq_params->max_frame_width, seq_params->max_frame_height,
DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT);
}
#endif
if (aom_realloc_frame_buffer(
&buf->buf, seq_params->max_frame_width,
seq_params->max_frame_height, seq_params->subsampling_x,
seq_params->subsampling_y, seq_params->use_highbitdepth,
AOM_BORDER_IN_PIXELS, features->byte_alignment,
&buf->raw_frame_buffer, pool->get_fb_cb, pool->cb_priv, false,
0)) {
decrease_ref_count(buf, pool);
unlock_buffer_pool(pool);
aom_internal_error(&pbi->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
}
unlock_buffer_pool(pool);
// According to the specification, valid bitstreams are required to
// never use missing reference frames so the filling process for
// missing frames is not normatively defined and RefValid for missing
// frames is set to 0.
// To make libaom more robust when the bitstream has been corrupted
// by the loss of some frames of data, this code adds a neutral grey
// buffer in place of missing frames, i.e.
//
set_planes_to_neutral_grey(seq_params, &buf->buf, 0);
//
// and allows the frames to be used for referencing, i.e.
//
pbi->valid_for_referencing[ref_idx] = 1;
//
// Please note such behavior is not normative and other decoders may
// use a different approach.
cm->ref_frame_map[ref_idx] = buf;
buf->order_hint = order_hint;
}
}
}
}
if (current_frame->frame_type == KEY_FRAME) {
setup_frame_size(cm, frame_size_override_flag, rb);
if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
features->allow_intrabc = aom_rb_read_bit(rb);
features->allow_ref_frame_mvs = 0;
cm->prev_frame = NULL;
} else {
features->allow_ref_frame_mvs = 0;
if (current_frame->frame_type == INTRA_ONLY_FRAME) {
cm->cur_frame->film_grain_params_present =
seq_params->film_grain_params_present;
setup_frame_size(cm, frame_size_override_flag, rb);
if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
features->allow_intrabc = aom_rb_read_bit(rb);
} else if (pbi->need_resync != 1) { /* Skip if need resync */
int frame_refs_short_signaling = 0;
// Frame refs short signaling is off when error resilient mode is on.
if (seq_params->order_hint_info.enable_order_hint)
frame_refs_short_signaling = aom_rb_read_bit(rb);
if (frame_refs_short_signaling) {
// == LAST_FRAME ==
const int lst_ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2);
const RefCntBuffer *const lst_buf = cm->ref_frame_map[lst_ref];
// == GOLDEN_FRAME ==
const int gld_ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2);
const RefCntBuffer *const gld_buf = cm->ref_frame_map[gld_ref];
// Most of the time, streams start with a keyframe. In that case,
// ref_frame_map will have been filled in at that point and will not
// contain any NULLs. However, streams are explicitly allowed to start
// with an intra-only frame, so long as they don't then signal a
// reference to a slot that hasn't been set yet. That's what we are
// checking here.
if (lst_buf == NULL)
aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
"Inter frame requests nonexistent reference");
if (gld_buf == NULL)
aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
"Inter frame requests nonexistent reference");
av1_set_frame_refs(cm, cm->remapped_ref_idx, lst_ref, gld_ref);
}
for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
int ref = 0;
if (!frame_refs_short_signaling) {
ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2);
// Most of the time, streams start with a keyframe. In that case,
// ref_frame_map will have been filled in at that point and will not
// contain any NULLs. However, streams are explicitly allowed to start
// with an intra-only frame, so long as they don't then signal a
// reference to a slot that hasn't been set yet. That's what we are
// checking here.
if (cm->ref_frame_map[ref] == NULL)
aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
"Inter frame requests nonexistent reference");
cm->remapped_ref_idx[i] = ref;
} else {
ref = cm->remapped_ref_idx[i];
}
// Check valid for referencing
if (pbi->valid_for_referencing[ref] == 0)
aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
"Reference frame not valid for referencing");
cm->ref_frame_sign_bias[LAST_FRAME + i] = 0;
if (seq_params->frame_id_numbers_present_flag) {
int frame_id_length = seq_params->frame_id_length;
int diff_len = seq_params->delta_frame_id_length;
int delta_frame_id_minus_1 = aom_rb_read_literal(rb, diff_len);
int ref_frame_id =
((cm->current_frame_id - (delta_frame_id_minus_1 + 1) +
(1 << frame_id_length)) %
(1 << frame_id_length));
// Compare values derived from delta_frame_id_minus_1 and
// refresh_frame_flags.
if (ref_frame_id != cm->ref_frame_id[ref])
aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
"Reference buffer frame ID mismatch");
}
}
if (!features->error_resilient_mode && frame_size_override_flag) {
setup_frame_size_with_refs(cm, rb);
} else {
setup_frame_size(cm, frame_size_override_flag, rb);
}
if (features->cur_frame_force_integer_mv) {
features->allow_high_precision_mv = 0;
} else {
features->allow_high_precision_mv = aom_rb_read_bit(rb);
}
features->interp_filter = read_frame_interp_filter(rb);
features->switchable_motion_mode = aom_rb_read_bit(rb);
}
cm->prev_frame = get_primary_ref_frame_buf(cm);
if (features->primary_ref_frame != PRIMARY_REF_NONE &&
get_primary_ref_frame_buf(cm) == NULL) {
aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
"Reference frame containing this frame's initial "
"frame context is unavailable.");
}
if (!(current_frame->frame_type == INTRA_ONLY_FRAME) &&
pbi->need_resync != 1) {
if (frame_might_allow_ref_frame_mvs(cm))
features->allow_ref_frame_mvs = aom_rb_read_bit(rb);
else
features->allow_ref_frame_mvs = 0;
for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
const RefCntBuffer *const ref_buf = get_ref_frame_buf(cm, i);
struct scale_factors *const ref_scale_factors =
get_ref_scale_factors(cm, i);
av1_setup_scale_factors_for_frame(
ref_scale_factors, ref_buf->buf.y_crop_width,
ref_buf->buf.y_crop_height, cm->width, cm->height);
if ((!av1_is_valid_scale(ref_scale_factors)))
aom_internal_error(&pbi->error, AOM_CODEC_UNSUP_BITSTREAM,
"Reference frame has invalid dimensions");
}
}
}
av1_setup_frame_buf_refs(cm);
av1_setup_frame_sign_bias(cm);
cm->cur_frame->frame_type = current_frame->frame_type;
update_ref_frame_id(pbi);
const int might_bwd_adapt = !(seq_params->reduced_still_picture_hdr) &&
!(features->disable_cdf_update);
if (might_bwd_adapt) {
features->refresh_frame_context = aom_rb_read_bit(rb)
? REFRESH_FRAME_CONTEXT_DISABLED
: REFRESH_FRAME_CONTEXT_BACKWARD;
} else {
features->refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED;
}
cm->cur_frame->buf.bit_depth = seq_params->bit_depth;
cm->cur_frame->buf.color_primaries = seq_params->color_primaries;
cm->cur_frame->buf.transfer_characteristics =
seq_params->transfer_characteristics;
cm->cur_frame->buf.matrix_coefficients = seq_params->matrix_coefficients;
cm->cur_frame->buf.monochrome = seq_params->monochrome;
cm->cur_frame->buf.chroma_sample_position =
seq_params->chroma_sample_position;
cm->cur_frame->buf.color_range = seq_params->color_range;
cm->cur_frame->buf.render_width = cm->render_width;
cm->cur_frame->buf.render_height = cm->render_height;
if (pbi->need_resync) {
aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
"Keyframe / intra-only frame required to reset decoder"
" state");
}
if (features->allow_intrabc) {
// Set parameters corresponding to no filtering.
struct loopfilter *lf = &cm->lf;
lf->filter_level[0] = 0;
lf->filter_level[1] = 0;
cm->cdef_info.cdef_bits = 0;
cm->cdef_info.cdef_strengths[0] = 0;
cm->cdef_info.nb_cdef_strengths = 1;
cm->cdef_info.cdef_uv_strengths[0] = 0;
cm->rst_info[0].frame_restoration_type = RESTORE_NONE;
cm->rst_info[1].frame_restoration_type = RESTORE_NONE;
cm->rst_info[2].frame_restoration_type = RESTORE_NONE;
}
read_tile_info(pbi, rb);
if (!av1_is_min_tile_width_satisfied(cm)) {
aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
"Minimum tile width requirement not satisfied");
}
CommonQuantParams *const quant_params = &cm->quant_params;
setup_quantization(quant_params, av1_num_planes(cm),
cm->seq_params->separate_uv_delta_q, rb);
xd->bd = (int)seq_params->bit_depth;
CommonContexts *const above_contexts = &cm->above_contexts;
if (above_contexts->num_planes < av1_num_planes(cm) ||
above_contexts->num_mi_cols < cm->mi_params.mi_cols ||
above_contexts->num_tile_rows < cm->tiles.rows) {
av1_free_above_context_buffers(above_contexts);
if (av1_alloc_above_context_buffers(above_contexts, cm->tiles.rows,
cm->mi_params.mi_cols,
av1_num_planes(cm))) {
aom_internal_error(&pbi->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate context buffers");
}
}
if (features->primary_ref_frame == PRIMARY_REF_NONE) {
av1_setup_past_independence(cm);
}
setup_segmentation(cm, rb);
cm->delta_q_info.delta_q_res = 1;
cm->delta_q_info.delta_lf_res = 1;
cm->delta_q_info.delta_lf_present_flag = 0;
cm->delta_q_info.delta_lf_multi = 0;
cm->delta_q_info.delta_q_present_flag =
quant_params->base_qindex > 0 ? aom_rb_read_bit(rb) : 0;
if (cm->delta_q_info.delta_q_present_flag) {
xd->current_base_qindex = quant_params->base_qindex;
cm->delta_q_info.delta_q_res = 1 << aom_rb_read_literal(rb, 2);
if (!features->allow_intrabc)
cm->delta_q_info.delta_lf_present_flag = aom_rb_read_bit(rb);
if (cm->delta_q_info.delta_lf_present_flag) {
cm->delta_q_info.delta_lf_res = 1 << aom_rb_read_literal(rb, 2);
cm->delta_q_info.delta_lf_multi = aom_rb_read_bit(rb);
av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
}
}
xd->cur_frame_force_integer_mv = features->cur_frame_force_integer_mv;
for (int i = 0; i < MAX_SEGMENTS; ++i) {
const int qindex = av1_get_qindex(&cm->seg, i, quant_params->base_qindex);
xd->lossless[i] =
qindex == 0 && quant_params->y_dc_delta_q == 0 &&
quant_params->u_dc_delta_q == 0 && quant_params->u_ac_delta_q == 0 &&
quant_params->v_dc_delta_q == 0 && quant_params->v_ac_delta_q == 0;
xd->qindex[i] = qindex;
}
features->coded_lossless = is_coded_lossless(cm, xd);
features->all_lossless = features->coded_lossless && !av1_superres_scaled(cm);
setup_segmentation_dequant(cm, xd);
if (features->coded_lossless) {
cm->lf.filter_level[0] = 0;
cm->lf.filter_level[1] = 0;
}
if (features->coded_lossless || !seq_params->enable_cdef) {
cm->cdef_info.cdef_bits = 0;
cm->cdef_info.cdef_strengths[0] = 0;
cm->cdef_info.cdef_uv_strengths[0] = 0;
}
if (features->all_lossless || !seq_params->enable_restoration) {
cm->rst_info[0].frame_restoration_type = RESTORE_NONE;
cm->rst_info[1].frame_restoration_type = RESTORE_NONE;
cm->rst_info[2].frame_restoration_type = RESTORE_NONE;
}
setup_loopfilter(cm, rb);
if (!features->coded_lossless && seq_params->enable_cdef) {
setup_cdef(cm, rb);
}
if (!features->all_lossless && seq_params->enable_restoration) {
decode_restoration_mode(cm, rb);
}
features->tx_mode = read_tx_mode(rb, features->coded_lossless);
current_frame->reference_mode = read_frame_reference_mode(cm, rb);
av1_setup_skip_mode_allowed(cm);
current_frame->skip_mode_info.skip_mode_flag =
current_frame->skip_mode_info.skip_mode_allowed ? aom_rb_read_bit(rb) : 0;
if (frame_might_allow_warped_motion(cm))
features->allow_warped_motion = aom_rb_read_bit(rb);
else
features->allow_warped_motion = 0;
features->reduced_tx_set_used = aom_rb_read_bit(rb);
if (features->allow_ref_frame_mvs && !frame_might_allow_ref_frame_mvs(cm)) {
aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
"Frame wrongly requests reference frame MVs");
}
if (!frame_is_intra_only(cm)) read_global_motion(cm, rb);
cm->cur_frame->film_grain_params_present =
seq_params->film_grain_params_present;
read_film_grain(cm, rb);
#if EXT_TILE_DEBUG
if (pbi->ext_tile_debug && cm->tiles.large_scale) {
read_ext_tile_info(pbi, rb);
av1_set_single_tile_decoding_mode(cm);
}
#endif // EXT_TILE_DEBUG
return 0;
}
struct aom_read_bit_buffer *av1_init_read_bit_buffer(
AV1Decoder *pbi, struct aom_read_bit_buffer *rb, const uint8_t *data,
const uint8_t *data_end) {
rb->bit_offset = 0;
rb->error_handler = error_handler;
rb->error_handler_data = &pbi->common;
rb->bit_buffer = data;
rb->bit_buffer_end = data_end;
return rb;
}
BITSTREAM_PROFILE av1_read_profile(struct aom_read_bit_buffer *rb) {
int profile = aom_rb_read_literal(rb, PROFILE_BITS);
return (BITSTREAM_PROFILE)profile;
}
static inline void superres_post_decode(AV1Decoder *pbi) {
AV1_COMMON *const cm = &pbi->common;
BufferPool *const pool = cm->buffer_pool;
if (!av1_superres_scaled(cm)) return;
assert(!cm->features.all_lossless);
av1_superres_upscale(cm, pool, 0);
}
uint32_t av1_decode_frame_headers_and_setup(AV1Decoder *pbi,
struct aom_read_bit_buffer *rb,
int trailing_bits_present) {
AV1_COMMON *const cm = &pbi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *const xd = &pbi->dcb.xd;
#if CONFIG_BITSTREAM_DEBUG
if (cm->seq_params->order_hint_info.enable_order_hint) {
aom_bitstream_queue_set_frame_read(cm->current_frame.order_hint * 2 +
cm->show_frame);
} else {
// This is currently used in RTC encoding. cm->show_frame is always 1.
assert(cm->show_frame);
aom_bitstream_queue_set_frame_read(cm->current_frame.frame_number);
}
#endif
#if CONFIG_MISMATCH_DEBUG
mismatch_move_frame_idx_r();
#endif
for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
cm->global_motion[i] = default_warp_params;
cm->cur_frame->global_motion[i] = default_warp_params;
}
xd->global_motion = cm->global_motion;
read_uncompressed_header(pbi, rb);
if (trailing_bits_present) av1_check_trailing_bits(pbi, rb);
if (!cm->tiles.single_tile_decoding &&
(pbi->dec_tile_row >= 0 || pbi->dec_tile_col >= 0)) {
pbi->dec_tile_row = -1;
pbi->dec_tile_col = -1;
}
const uint32_t uncomp_hdr_size =
(uint32_t)aom_rb_bytes_read(rb); // Size of the uncompressed header
YV12_BUFFER_CONFIG *new_fb = &cm->cur_frame->buf;
xd->cur_buf = new_fb;
if (av1_allow_intrabc(cm)) {
av1_setup_scale_factors_for_frame(
&cm->sf_identity, xd->cur_buf->y_crop_width, xd->cur_buf->y_crop_height,
xd->cur_buf->y_crop_width, xd->cur_buf->y_crop_height);
}
// Showing a frame directly.
if (cm->show_existing_frame) {
if (pbi->reset_decoder_state) {
// Use the default frame context values.
*cm->fc = *cm->default_frame_context;
if (!cm->fc->initialized)
aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
"Uninitialized entropy context.");
}
return uncomp_hdr_size;
}
cm->mi_params.setup_mi(&cm->mi_params);
av1_calculate_ref_frame_side(cm);
if (cm->features.allow_ref_frame_mvs) av1_setup_motion_field(cm);
av1_setup_block_planes(xd, cm->seq_params->subsampling_x,
cm->seq_params->subsampling_y, num_planes);
if (cm->features.primary_ref_frame == PRIMARY_REF_NONE) {
// use the default frame context values
*cm->fc = *cm->default_frame_context;
} else {
*cm->fc = get_primary_ref_frame_buf(cm)->frame_context;
}
if (!cm->fc->initialized)
aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
"Uninitialized entropy context.");
pbi->dcb.corrupted = 0;
return uncomp_hdr_size;
}
// Once-per-frame initialization
static inline void setup_frame_info(AV1Decoder *pbi) {
AV1_COMMON *const cm = &pbi->common;
if (cm->rst_info[0].frame_restoration_type != RESTORE_NONE ||
cm->rst_info[1].frame_restoration_type != RESTORE_NONE ||
cm->rst_info[2].frame_restoration_type != RESTORE_NONE) {
av1_alloc_restoration_buffers(cm, /*is_sgr_enabled =*/true);
for (int p = 0; p < av1_num_planes(cm); p++) {
av1_alloc_restoration_struct(cm, &cm->rst_info[p], p > 0);
}
}
const int use_highbd = cm->seq_params->use_highbitdepth;
const int buf_size = MC_TEMP_BUF_PELS << use_highbd;
if (pbi->td.mc_buf_size != buf_size) {
av1_free_mc_tmp_buf(&pbi->td);
allocate_mc_tmp_buf(cm, &pbi->td, buf_size, use_highbd);
}
}
void av1_decode_tg_tiles_and_wrapup(AV1Decoder *pbi, const uint8_t *data,
const uint8_t *data_end,
const uint8_t **p_data_end, int start_tile,
int end_tile, int initialize_flag) {
AV1_COMMON *const cm = &pbi->common;
CommonTileParams *const tiles = &cm->tiles;
MACROBLOCKD *const xd = &pbi->dcb.xd;
const int tile_count_tg = end_tile - start_tile + 1;
xd->error_info = cm->error;
if (initialize_flag) setup_frame_info(pbi);
const int num_planes = av1_num_planes(cm);
if (pbi->max_threads > 1 && !(tiles->large_scale && !pbi->ext_tile_debug) &&
pbi->row_mt)
*p_data_end =
decode_tiles_row_mt(pbi, data, data_end, start_tile, end_tile);
else if (pbi->max_threads > 1 && tile_count_tg > 1 &&
!(tiles->large_scale && !pbi->ext_tile_debug))
*p_data_end = decode_tiles_mt(pbi, data, data_end, start_tile, end_tile);
else
*p_data_end = decode_tiles(pbi, data, data_end, start_tile, end_tile);
// If the bit stream is monochrome, set the U and V buffers to a constant.
if (num_planes < 3) {
set_planes_to_neutral_grey(cm->seq_params, xd->cur_buf, 1);
}
if (end_tile != tiles->rows * tiles->cols - 1) {
return;
}
av1_alloc_cdef_buffers(cm, &pbi->cdef_worker, &pbi->cdef_sync,
pbi->num_workers, 1);
av1_alloc_cdef_sync(cm, &pbi->cdef_sync, pbi->num_workers);
if (!cm->features.allow_intrabc && !tiles->single_tile_decoding) {
if (cm->lf.filter_level[0] || cm->lf.filter_level[1]) {
av1_loop_filter_frame_mt(&cm->cur_frame->buf, cm, &pbi->dcb.xd, 0,
num_planes, 0, pbi->tile_workers,
pbi->num_workers, &pbi->lf_row_sync, 0);
}
const int do_cdef =
!pbi->skip_loop_filter && !cm->features.coded_lossless &&
(cm->cdef_info.cdef_bits || cm->cdef_info.cdef_strengths[0] ||
cm->cdef_info.cdef_uv_strengths[0]);
const int do_superres = av1_superres_scaled(cm);
const int optimized_loop_restoration = !do_cdef && !do_superres;
const int do_loop_restoration =
cm->rst_info[0].frame_restoration_type != RESTORE_NONE ||
cm->rst_info[1].frame_restoration_type != RESTORE_NONE ||
cm->rst_info[2].frame_restoration_type != RESTORE_NONE;
// Frame border extension is not required in the decoder
// as it happens in extend_mc_border().
int do_extend_border_mt = 0;
if (!optimized_loop_restoration) {
if (do_loop_restoration)
av1_loop_restoration_save_boundary_lines(&pbi->common.cur_frame->buf,
cm, 0);
if (do_cdef) {
if (pbi->num_workers > 1) {
av1_cdef_frame_mt(cm, &pbi->dcb.xd, pbi->cdef_worker,
pbi->tile_workers, &pbi->cdef_sync,
pbi->num_workers, av1_cdef_init_fb_row_mt,
do_extend_border_mt);
} else {
av1_cdef_frame(&pbi->common.cur_frame->buf, cm, &pbi->dcb.xd,
av1_cdef_init_fb_row);
}
}
superres_post_decode(pbi);
if (do_loop_restoration) {
av1_loop_restoration_save_boundary_lines(&pbi->common.cur_frame->buf,
cm, 1);
if (pbi->num_workers > 1) {
av1_loop_restoration_filter_frame_mt(
(YV12_BUFFER_CONFIG *)xd->cur_buf, cm, optimized_loop_restoration,
pbi->tile_workers, pbi->num_workers, &pbi->lr_row_sync,
&pbi->lr_ctxt, do_extend_border_mt);
} else {
av1_loop_restoration_filter_frame((YV12_BUFFER_CONFIG *)xd->cur_buf,
cm, optimized_loop_restoration,
&pbi->lr_ctxt);
}
}
} else {
// In no cdef and no superres case. Provide an optimized version of
// loop_restoration_filter.
if (do_loop_restoration) {
if (pbi->num_workers > 1) {
av1_loop_restoration_filter_frame_mt(
(YV12_BUFFER_CONFIG *)xd->cur_buf, cm, optimized_loop_restoration,
pbi->tile_workers, pbi->num_workers, &pbi->lr_row_sync,
&pbi->lr_ctxt, do_extend_border_mt);
} else {
av1_loop_restoration_filter_frame((YV12_BUFFER_CONFIG *)xd->cur_buf,
cm, optimized_loop_restoration,
&pbi->lr_ctxt);
}
}
}
}
if (!pbi->dcb.corrupted) {
if (cm->features.refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
assert(pbi->context_update_tile_id < pbi->allocated_tiles);
*cm->fc = pbi->tile_data[pbi->context_update_tile_id].tctx;
av1_reset_cdf_symbol_counters(cm->fc);
}
} else {
aom_internal_error(&pbi->error, AOM_CODEC_CORRUPT_FRAME,
"Decode failed. Frame data is corrupted.");
}
#if CONFIG_INSPECTION
if (pbi->inspect_cb != NULL) {
(*pbi->inspect_cb)(pbi, pbi->inspect_ctx);
}
#endif
// Non frame parallel update frame context here.
if (!tiles->large_scale) {
cm->cur_frame->frame_context = *cm->fc;
}
if (cm->show_frame && !cm->seq_params->order_hint_info.enable_order_hint) {
++cm->current_frame.frame_number;
}
}
|