1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
|
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include "config/aom_config.h"
#include "aom_util/aom_pthread.h"
#if CONFIG_TFLITE
#include "tensorflow/lite/c/c_api.h"
#include "av1/encoder/deltaq4_model.c"
#endif
#include "av1/common/common_data.h"
#include "av1/common/enums.h"
#include "av1/common/idct.h"
#include "av1/common/reconinter.h"
#include "av1/encoder/allintra_vis.h"
#include "av1/encoder/aq_variance.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/ethread.h"
#include "av1/encoder/hybrid_fwd_txfm.h"
#include "av1/encoder/model_rd.h"
#include "av1/encoder/rdopt_utils.h"
#define MB_WIENER_PRED_BLOCK_SIZE BLOCK_128X128
#define MB_WIENER_PRED_BUF_STRIDE 128
// Maximum delta-q range allowed for Variance Boost after scaling
#define VAR_BOOST_MAX_DELTAQ_RANGE 80
// Maximum quantization step boost allowed for Variance Boost
#define VAR_BOOST_MAX_BOOST 8.0
void av1_alloc_mb_wiener_var_pred_buf(AV1_COMMON *cm, ThreadData *td) {
const int is_high_bitdepth = is_cur_buf_hbd(&td->mb.e_mbd);
assert(MB_WIENER_PRED_BLOCK_SIZE < BLOCK_SIZES_ALL);
const int buf_width = block_size_wide[MB_WIENER_PRED_BLOCK_SIZE];
const int buf_height = block_size_high[MB_WIENER_PRED_BLOCK_SIZE];
assert(buf_width == MB_WIENER_PRED_BUF_STRIDE);
const size_t buf_size =
(buf_width * buf_height * sizeof(*td->wiener_tmp_pred_buf))
<< is_high_bitdepth;
CHECK_MEM_ERROR(cm, td->wiener_tmp_pred_buf, aom_memalign(32, buf_size));
}
void av1_dealloc_mb_wiener_var_pred_buf(ThreadData *td) {
aom_free(td->wiener_tmp_pred_buf);
td->wiener_tmp_pred_buf = NULL;
}
void av1_init_mb_wiener_var_buffer(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
// This block size is also used to determine number of workers in
// multi-threading. If it is changed, one needs to change it accordingly in
// "compute_num_ai_workers()".
cpi->weber_bsize = BLOCK_8X8;
if (cpi->oxcf.enable_rate_guide_deltaq) {
if (cpi->mb_weber_stats && cpi->prep_rate_estimates &&
cpi->ext_rate_distribution)
return;
} else {
if (cpi->mb_weber_stats) return;
}
CHECK_MEM_ERROR(cm, cpi->mb_weber_stats,
aom_calloc(cpi->frame_info.mi_rows * cpi->frame_info.mi_cols,
sizeof(*cpi->mb_weber_stats)));
if (cpi->oxcf.enable_rate_guide_deltaq) {
CHECK_MEM_ERROR(
cm, cpi->prep_rate_estimates,
aom_calloc(cpi->frame_info.mi_rows * cpi->frame_info.mi_cols,
sizeof(*cpi->prep_rate_estimates)));
CHECK_MEM_ERROR(
cm, cpi->ext_rate_distribution,
aom_calloc(cpi->frame_info.mi_rows * cpi->frame_info.mi_cols,
sizeof(*cpi->ext_rate_distribution)));
}
}
static int64_t get_satd(AV1_COMP *const cpi, BLOCK_SIZE bsize, int mi_row,
int mi_col) {
AV1_COMMON *const cm = &cpi->common;
const int mi_wide = mi_size_wide[bsize];
const int mi_high = mi_size_high[bsize];
const int mi_step = mi_size_wide[cpi->weber_bsize];
int mb_stride = cpi->frame_info.mi_cols;
int mb_count = 0;
int64_t satd = 0;
for (int row = mi_row; row < mi_row + mi_high; row += mi_step) {
for (int col = mi_col; col < mi_col + mi_wide; col += mi_step) {
if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols)
continue;
satd += cpi->mb_weber_stats[(row / mi_step) * mb_stride + (col / mi_step)]
.satd;
++mb_count;
}
}
if (mb_count) satd = (int)(satd / mb_count);
satd = AOMMAX(1, satd);
return (int)satd;
}
static int64_t get_sse(AV1_COMP *const cpi, BLOCK_SIZE bsize, int mi_row,
int mi_col) {
AV1_COMMON *const cm = &cpi->common;
const int mi_wide = mi_size_wide[bsize];
const int mi_high = mi_size_high[bsize];
const int mi_step = mi_size_wide[cpi->weber_bsize];
int mb_stride = cpi->frame_info.mi_cols;
int mb_count = 0;
int64_t distortion = 0;
for (int row = mi_row; row < mi_row + mi_high; row += mi_step) {
for (int col = mi_col; col < mi_col + mi_wide; col += mi_step) {
if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols)
continue;
distortion +=
cpi->mb_weber_stats[(row / mi_step) * mb_stride + (col / mi_step)]
.distortion;
++mb_count;
}
}
if (mb_count) distortion = (int)(distortion / mb_count);
distortion = AOMMAX(1, distortion);
return (int)distortion;
}
static double get_max_scale(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
int mi_row, int mi_col) {
const AV1_COMMON *const cm = &cpi->common;
const int mi_wide = mi_size_wide[bsize];
const int mi_high = mi_size_high[bsize];
const int mi_step = mi_size_wide[cpi->weber_bsize];
int mb_stride = cpi->frame_info.mi_cols;
double min_max_scale = 10.0;
for (int row = mi_row; row < mi_row + mi_high; row += mi_step) {
for (int col = mi_col; col < mi_col + mi_wide; col += mi_step) {
if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols)
continue;
const WeberStats *weber_stats =
&cpi->mb_weber_stats[(row / mi_step) * mb_stride + (col / mi_step)];
if (weber_stats->max_scale < 1.0) continue;
if (weber_stats->max_scale < min_max_scale)
min_max_scale = weber_stats->max_scale;
}
}
return min_max_scale;
}
static int get_window_wiener_var(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
int mi_row, int mi_col) {
const AV1_COMMON *const cm = &cpi->common;
const int mi_wide = mi_size_wide[bsize];
const int mi_high = mi_size_high[bsize];
const int mi_step = mi_size_wide[cpi->weber_bsize];
int sb_wiener_var = 0;
int mb_stride = cpi->frame_info.mi_cols;
int mb_count = 0;
double base_num = 1;
double base_den = 1;
double base_reg = 1;
for (int row = mi_row; row < mi_row + mi_high; row += mi_step) {
for (int col = mi_col; col < mi_col + mi_wide; col += mi_step) {
if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols)
continue;
const WeberStats *weber_stats =
&cpi->mb_weber_stats[(row / mi_step) * mb_stride + (col / mi_step)];
base_num += ((double)weber_stats->distortion) *
sqrt((double)weber_stats->src_variance) *
weber_stats->rec_pix_max;
base_den += fabs(
weber_stats->rec_pix_max * sqrt((double)weber_stats->src_variance) -
weber_stats->src_pix_max * sqrt((double)weber_stats->rec_variance));
base_reg += sqrt((double)weber_stats->distortion) *
sqrt((double)weber_stats->src_pix_max) * 0.1;
++mb_count;
}
}
sb_wiener_var =
(int)(((base_num + base_reg) / (base_den + base_reg)) / mb_count);
sb_wiener_var = AOMMAX(1, sb_wiener_var);
return (int)sb_wiener_var;
}
static int get_var_perceptual_ai(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
int mi_row, int mi_col) {
const AV1_COMMON *const cm = &cpi->common;
const int mi_wide = mi_size_wide[bsize];
const int mi_high = mi_size_high[bsize];
int sb_wiener_var = get_window_wiener_var(cpi, bsize, mi_row, mi_col);
if (mi_row >= (mi_high / 2)) {
sb_wiener_var =
AOMMIN(sb_wiener_var,
get_window_wiener_var(cpi, bsize, mi_row - mi_high / 2, mi_col));
}
if (mi_row <= (cm->mi_params.mi_rows - mi_high - (mi_high / 2))) {
sb_wiener_var =
AOMMIN(sb_wiener_var,
get_window_wiener_var(cpi, bsize, mi_row + mi_high / 2, mi_col));
}
if (mi_col >= (mi_wide / 2)) {
sb_wiener_var =
AOMMIN(sb_wiener_var,
get_window_wiener_var(cpi, bsize, mi_row, mi_col - mi_wide / 2));
}
if (mi_col <= (cm->mi_params.mi_cols - mi_wide - (mi_wide / 2))) {
sb_wiener_var =
AOMMIN(sb_wiener_var,
get_window_wiener_var(cpi, bsize, mi_row, mi_col + mi_wide / 2));
}
return sb_wiener_var;
}
static int rate_estimator(const tran_low_t *qcoeff, int eob, TX_SIZE tx_size) {
const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT];
assert((1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]]) >= eob);
int rate_cost = 1;
for (int idx = 0; idx < eob; ++idx) {
int abs_level = abs(qcoeff[scan_order->scan[idx]]);
rate_cost += (int)(log1p(abs_level) / log(2.0)) + 1 + (abs_level > 0);
}
return (rate_cost << AV1_PROB_COST_SHIFT);
}
void av1_calc_mb_wiener_var_row(AV1_COMP *const cpi, MACROBLOCK *x,
MACROBLOCKD *xd, const int mi_row,
int16_t *src_diff, tran_low_t *coeff,
tran_low_t *qcoeff, tran_low_t *dqcoeff,
double *sum_rec_distortion,
double *sum_est_rate, uint8_t *pred_buffer) {
AV1_COMMON *const cm = &cpi->common;
uint8_t *buffer = cpi->source->y_buffer;
int buf_stride = cpi->source->y_stride;
MB_MODE_INFO mbmi;
memset(&mbmi, 0, sizeof(mbmi));
MB_MODE_INFO *mbmi_ptr = &mbmi;
xd->mi = &mbmi_ptr;
const BLOCK_SIZE bsize = cpi->weber_bsize;
const TX_SIZE tx_size = max_txsize_lookup[bsize];
const int block_size = tx_size_wide[tx_size];
const int coeff_count = block_size * block_size;
const int mb_step = mi_size_wide[bsize];
const BitDepthInfo bd_info = get_bit_depth_info(xd);
const MultiThreadInfo *const mt_info = &cpi->mt_info;
const AV1EncAllIntraMultiThreadInfo *const intra_mt = &mt_info->intra_mt;
AV1EncRowMultiThreadSync *const intra_row_mt_sync =
&cpi->ppi->intra_row_mt_sync;
const int mi_cols = cm->mi_params.mi_cols;
const int mt_thread_id = mi_row / mb_step;
// TODO(chengchen): test different unit step size
const int mt_unit_step = mi_size_wide[MB_WIENER_MT_UNIT_SIZE];
const int mt_unit_cols = (mi_cols + (mt_unit_step >> 1)) / mt_unit_step;
int mt_unit_col = 0;
const int is_high_bitdepth = is_cur_buf_hbd(xd);
uint8_t *dst_buffer = pred_buffer;
const int dst_buffer_stride = MB_WIENER_PRED_BUF_STRIDE;
if (is_high_bitdepth) {
uint16_t *pred_buffer_16 = (uint16_t *)pred_buffer;
dst_buffer = CONVERT_TO_BYTEPTR(pred_buffer_16);
}
for (int mi_col = 0; mi_col < mi_cols; mi_col += mb_step) {
if (mi_col % mt_unit_step == 0) {
intra_mt->intra_sync_read_ptr(intra_row_mt_sync, mt_thread_id,
mt_unit_col);
#if CONFIG_MULTITHREAD
const int num_workers =
AOMMIN(mt_info->num_mod_workers[MOD_AI], mt_info->num_workers);
if (num_workers > 1) {
const AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt;
pthread_mutex_lock(enc_row_mt->mutex_);
const bool exit = enc_row_mt->mb_wiener_mt_exit;
pthread_mutex_unlock(enc_row_mt->mutex_);
// Stop further processing in case any worker has encountered an error.
if (exit) break;
}
#endif
}
PREDICTION_MODE best_mode = DC_PRED;
int best_intra_cost = INT_MAX;
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd,
mi_row, mi_col);
set_mi_row_col(xd, &xd->tile, mi_row, mi_height, mi_col, mi_width,
AOMMIN(mi_row + mi_height, cm->mi_params.mi_rows),
AOMMIN(mi_col + mi_width, cm->mi_params.mi_cols));
set_plane_n4(xd, mi_size_wide[bsize], mi_size_high[bsize],
av1_num_planes(cm));
xd->mi[0]->bsize = bsize;
xd->mi[0]->motion_mode = SIMPLE_TRANSLATION;
// Set above and left mbmi to NULL as they are not available in the
// preprocessing stage.
// They are used to detemine intra edge filter types in intra prediction.
if (xd->up_available) {
xd->above_mbmi = NULL;
}
if (xd->left_available) {
xd->left_mbmi = NULL;
}
uint8_t *mb_buffer =
buffer + mi_row * MI_SIZE * buf_stride + mi_col * MI_SIZE;
for (PREDICTION_MODE mode = INTRA_MODE_START; mode < INTRA_MODE_END;
++mode) {
// TODO(chengchen): Here we use src instead of reconstructed frame as
// the intra predictor to make single and multithread version match.
// Ideally we want to use the reconstructed.
av1_predict_intra_block(
xd, cm->seq_params->sb_size, cm->seq_params->enable_intra_edge_filter,
block_size, block_size, tx_size, mode, 0, 0, FILTER_INTRA_MODES,
mb_buffer, buf_stride, dst_buffer, dst_buffer_stride, 0, 0, 0);
av1_subtract_block(bd_info, block_size, block_size, src_diff, block_size,
mb_buffer, buf_stride, dst_buffer, dst_buffer_stride);
av1_quick_txfm(0, tx_size, bd_info, src_diff, block_size, coeff);
int intra_cost = aom_satd(coeff, coeff_count);
if (intra_cost < best_intra_cost) {
best_intra_cost = intra_cost;
best_mode = mode;
}
}
av1_predict_intra_block(
xd, cm->seq_params->sb_size, cm->seq_params->enable_intra_edge_filter,
block_size, block_size, tx_size, best_mode, 0, 0, FILTER_INTRA_MODES,
mb_buffer, buf_stride, dst_buffer, dst_buffer_stride, 0, 0, 0);
av1_subtract_block(bd_info, block_size, block_size, src_diff, block_size,
mb_buffer, buf_stride, dst_buffer, dst_buffer_stride);
av1_quick_txfm(0, tx_size, bd_info, src_diff, block_size, coeff);
const struct macroblock_plane *const p = &x->plane[0];
uint16_t eob;
const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT];
QUANT_PARAM quant_param;
int pix_num = 1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]];
av1_setup_quant(tx_size, 0, AV1_XFORM_QUANT_FP, 0, &quant_param);
#if CONFIG_AV1_HIGHBITDEPTH
if (is_cur_buf_hbd(xd)) {
av1_highbd_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, &eob,
scan_order, &quant_param);
} else {
av1_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, &eob,
scan_order, &quant_param);
}
#else
av1_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, &eob, scan_order,
&quant_param);
#endif // CONFIG_AV1_HIGHBITDEPTH
if (cpi->oxcf.enable_rate_guide_deltaq) {
const int rate_cost = rate_estimator(qcoeff, eob, tx_size);
cpi->prep_rate_estimates[(mi_row / mb_step) * cpi->frame_info.mi_cols +
(mi_col / mb_step)] = rate_cost;
}
av1_inverse_transform_block(xd, dqcoeff, 0, DCT_DCT, tx_size, dst_buffer,
dst_buffer_stride, eob, 0);
WeberStats *weber_stats =
&cpi->mb_weber_stats[(mi_row / mb_step) * cpi->frame_info.mi_cols +
(mi_col / mb_step)];
weber_stats->rec_pix_max = 1;
weber_stats->rec_variance = 0;
weber_stats->src_pix_max = 1;
weber_stats->src_variance = 0;
weber_stats->distortion = 0;
int64_t src_mean = 0;
int64_t rec_mean = 0;
int64_t dist_mean = 0;
for (int pix_row = 0; pix_row < block_size; ++pix_row) {
for (int pix_col = 0; pix_col < block_size; ++pix_col) {
int src_pix, rec_pix;
#if CONFIG_AV1_HIGHBITDEPTH
if (is_cur_buf_hbd(xd)) {
uint16_t *src = CONVERT_TO_SHORTPTR(mb_buffer);
uint16_t *rec = CONVERT_TO_SHORTPTR(dst_buffer);
src_pix = src[pix_row * buf_stride + pix_col];
rec_pix = rec[pix_row * dst_buffer_stride + pix_col];
} else {
src_pix = mb_buffer[pix_row * buf_stride + pix_col];
rec_pix = dst_buffer[pix_row * dst_buffer_stride + pix_col];
}
#else
src_pix = mb_buffer[pix_row * buf_stride + pix_col];
rec_pix = dst_buffer[pix_row * dst_buffer_stride + pix_col];
#endif
src_mean += src_pix;
rec_mean += rec_pix;
dist_mean += src_pix - rec_pix;
weber_stats->src_variance += src_pix * src_pix;
weber_stats->rec_variance += rec_pix * rec_pix;
weber_stats->src_pix_max = AOMMAX(weber_stats->src_pix_max, src_pix);
weber_stats->rec_pix_max = AOMMAX(weber_stats->rec_pix_max, rec_pix);
weber_stats->distortion += (src_pix - rec_pix) * (src_pix - rec_pix);
}
}
if (cpi->oxcf.intra_mode_cfg.auto_intra_tools_off) {
*sum_rec_distortion += weber_stats->distortion;
int est_block_rate = 0;
int64_t est_block_dist = 0;
model_rd_sse_fn[MODELRD_LEGACY](cpi, x, bsize, 0, weber_stats->distortion,
pix_num, &est_block_rate,
&est_block_dist);
*sum_est_rate += est_block_rate;
}
weber_stats->src_variance -= (src_mean * src_mean) / pix_num;
weber_stats->rec_variance -= (rec_mean * rec_mean) / pix_num;
weber_stats->distortion -= (dist_mean * dist_mean) / pix_num;
weber_stats->satd = best_intra_cost;
qcoeff[0] = 0;
int max_scale = 0;
for (int idx = 1; idx < coeff_count; ++idx) {
const int abs_qcoeff = abs(qcoeff[idx]);
max_scale = AOMMAX(max_scale, abs_qcoeff);
}
weber_stats->max_scale = max_scale;
if ((mi_col + mb_step) % mt_unit_step == 0 ||
(mi_col + mb_step) >= mi_cols) {
intra_mt->intra_sync_write_ptr(intra_row_mt_sync, mt_thread_id,
mt_unit_col, mt_unit_cols);
++mt_unit_col;
}
}
// Set the pointer to null since mbmi is only allocated inside this function.
xd->mi = NULL;
}
static void calc_mb_wiener_var(AV1_COMP *const cpi, double *sum_rec_distortion,
double *sum_est_rate) {
MACROBLOCK *x = &cpi->td.mb;
MACROBLOCKD *xd = &x->e_mbd;
const BLOCK_SIZE bsize = cpi->weber_bsize;
const int mb_step = mi_size_wide[bsize];
DECLARE_ALIGNED(32, int16_t, src_diff[32 * 32]);
DECLARE_ALIGNED(32, tran_low_t, coeff[32 * 32]);
DECLARE_ALIGNED(32, tran_low_t, qcoeff[32 * 32]);
DECLARE_ALIGNED(32, tran_low_t, dqcoeff[32 * 32]);
for (int mi_row = 0; mi_row < cpi->frame_info.mi_rows; mi_row += mb_step) {
av1_calc_mb_wiener_var_row(cpi, x, xd, mi_row, src_diff, coeff, qcoeff,
dqcoeff, sum_rec_distortion, sum_est_rate,
cpi->td.wiener_tmp_pred_buf);
}
}
static int64_t estimate_wiener_var_norm(AV1_COMP *const cpi,
const BLOCK_SIZE norm_block_size) {
const AV1_COMMON *const cm = &cpi->common;
int64_t norm_factor = 1;
assert(norm_block_size >= BLOCK_16X16 && norm_block_size <= BLOCK_128X128);
const int norm_step = mi_size_wide[norm_block_size];
double sb_wiener_log = 0;
double sb_count = 0;
for (int mi_row = 0; mi_row < cm->mi_params.mi_rows; mi_row += norm_step) {
for (int mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += norm_step) {
const int sb_wiener_var =
get_var_perceptual_ai(cpi, norm_block_size, mi_row, mi_col);
const int64_t satd = get_satd(cpi, norm_block_size, mi_row, mi_col);
const int64_t sse = get_sse(cpi, norm_block_size, mi_row, mi_col);
const double scaled_satd = (double)satd / sqrt((double)sse);
sb_wiener_log += scaled_satd * log(sb_wiener_var);
sb_count += scaled_satd;
}
}
if (sb_count > 0) norm_factor = (int64_t)(exp(sb_wiener_log / sb_count));
norm_factor = AOMMAX(1, norm_factor);
return norm_factor;
}
static void automatic_intra_tools_off(AV1_COMP *cpi,
const double sum_rec_distortion,
const double sum_est_rate) {
if (!cpi->oxcf.intra_mode_cfg.auto_intra_tools_off) return;
// Thresholds
const int high_quality_qindex = 128;
const double high_quality_bpp = 2.0;
const double high_quality_dist_per_pix = 4.0;
AV1_COMMON *const cm = &cpi->common;
const int qindex = cm->quant_params.base_qindex;
const double dist_per_pix =
(double)sum_rec_distortion / (cm->width * cm->height);
// The estimate bpp is not accurate, an empirical constant 100 is divided.
const double estimate_bpp = sum_est_rate / (cm->width * cm->height * 100);
if (qindex < high_quality_qindex && estimate_bpp > high_quality_bpp &&
dist_per_pix < high_quality_dist_per_pix) {
cpi->oxcf.intra_mode_cfg.enable_smooth_intra = 0;
cpi->oxcf.intra_mode_cfg.enable_paeth_intra = 0;
cpi->oxcf.intra_mode_cfg.enable_cfl_intra = 0;
cpi->oxcf.intra_mode_cfg.enable_diagonal_intra = 0;
}
}
static void ext_rate_guided_quantization(AV1_COMP *cpi) {
// Calculation uses 8x8.
const int mb_step = mi_size_wide[cpi->weber_bsize];
// Accumulate to 16x16, step size is in the unit of mi.
const int block_step = 4;
const char *filename = cpi->oxcf.rate_distribution_info;
FILE *pfile = fopen(filename, "r");
if (pfile == NULL) {
assert(pfile != NULL);
return;
}
double ext_rate_sum = 0.0;
for (int row = 0; row < cpi->frame_info.mi_rows; row += block_step) {
for (int col = 0; col < cpi->frame_info.mi_cols; col += block_step) {
float val;
const int fields_converted = fscanf(pfile, "%f", &val);
if (fields_converted != 1) {
assert(fields_converted == 1);
fclose(pfile);
return;
}
ext_rate_sum += val;
cpi->ext_rate_distribution[(row / mb_step) * cpi->frame_info.mi_cols +
(col / mb_step)] = val;
}
}
fclose(pfile);
int uniform_rate_sum = 0;
for (int row = 0; row < cpi->frame_info.mi_rows; row += block_step) {
for (int col = 0; col < cpi->frame_info.mi_cols; col += block_step) {
int rate_sum = 0;
for (int r = 0; r < block_step; r += mb_step) {
for (int c = 0; c < block_step; c += mb_step) {
const int mi_row = row + r;
const int mi_col = col + c;
rate_sum += cpi->prep_rate_estimates[(mi_row / mb_step) *
cpi->frame_info.mi_cols +
(mi_col / mb_step)];
}
}
uniform_rate_sum += rate_sum;
}
}
const double scale = uniform_rate_sum / ext_rate_sum;
cpi->ext_rate_scale = scale;
}
void av1_set_mb_wiener_variance(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
const SequenceHeader *const seq_params = cm->seq_params;
if (aom_realloc_frame_buffer(
&cm->cur_frame->buf, cm->width, cm->height, seq_params->subsampling_x,
seq_params->subsampling_y, seq_params->use_highbitdepth,
cpi->oxcf.border_in_pixels, cm->features.byte_alignment, NULL, NULL,
NULL, cpi->alloc_pyramid, 0))
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
av1_alloc_mb_wiener_var_pred_buf(&cpi->common, &cpi->td);
cpi->norm_wiener_variance = 0;
MACROBLOCK *x = &cpi->td.mb;
MACROBLOCKD *xd = &x->e_mbd;
// xd->mi needs to be setup since it is used in av1_frame_init_quantizer.
MB_MODE_INFO mbmi;
memset(&mbmi, 0, sizeof(mbmi));
MB_MODE_INFO *mbmi_ptr = &mbmi;
xd->mi = &mbmi_ptr;
cm->quant_params.base_qindex = cpi->oxcf.rc_cfg.cq_level;
av1_frame_init_quantizer(cpi);
double sum_rec_distortion = 0.0;
double sum_est_rate = 0.0;
MultiThreadInfo *const mt_info = &cpi->mt_info;
const int num_workers =
AOMMIN(mt_info->num_mod_workers[MOD_AI], mt_info->num_workers);
AV1EncAllIntraMultiThreadInfo *const intra_mt = &mt_info->intra_mt;
intra_mt->intra_sync_read_ptr = av1_row_mt_sync_read_dummy;
intra_mt->intra_sync_write_ptr = av1_row_mt_sync_write_dummy;
// Calculate differential contrast for each block for the entire image.
// TODO(chengchen): properly accumulate the distortion and rate in
// av1_calc_mb_wiener_var_mt(). Until then, call calc_mb_wiener_var() if
// auto_intra_tools_off is true.
if (num_workers > 1 && !cpi->oxcf.intra_mode_cfg.auto_intra_tools_off) {
intra_mt->intra_sync_read_ptr = av1_row_mt_sync_read;
intra_mt->intra_sync_write_ptr = av1_row_mt_sync_write;
av1_calc_mb_wiener_var_mt(cpi, num_workers, &sum_rec_distortion,
&sum_est_rate);
} else {
calc_mb_wiener_var(cpi, &sum_rec_distortion, &sum_est_rate);
}
// Determine whether to turn off several intra coding tools.
automatic_intra_tools_off(cpi, sum_rec_distortion, sum_est_rate);
// Read external rate distribution and use it to guide delta quantization
if (cpi->oxcf.enable_rate_guide_deltaq) ext_rate_guided_quantization(cpi);
const BLOCK_SIZE norm_block_size = cm->seq_params->sb_size;
cpi->norm_wiener_variance = estimate_wiener_var_norm(cpi, norm_block_size);
const int norm_step = mi_size_wide[norm_block_size];
double sb_wiener_log = 0;
double sb_count = 0;
for (int its_cnt = 0; its_cnt < 2; ++its_cnt) {
sb_wiener_log = 0;
sb_count = 0;
for (int mi_row = 0; mi_row < cm->mi_params.mi_rows; mi_row += norm_step) {
for (int mi_col = 0; mi_col < cm->mi_params.mi_cols;
mi_col += norm_step) {
int sb_wiener_var =
get_var_perceptual_ai(cpi, norm_block_size, mi_row, mi_col);
double beta = (double)cpi->norm_wiener_variance / sb_wiener_var;
double min_max_scale = AOMMAX(
1.0, get_max_scale(cpi, cm->seq_params->sb_size, mi_row, mi_col));
beta = AOMMIN(beta, 4);
beta = AOMMAX(beta, 0.25);
if (beta < 1 / min_max_scale) continue;
sb_wiener_var = (int)(cpi->norm_wiener_variance / beta);
int64_t satd = get_satd(cpi, norm_block_size, mi_row, mi_col);
int64_t sse = get_sse(cpi, norm_block_size, mi_row, mi_col);
double scaled_satd = (double)satd / sqrt((double)sse);
sb_wiener_log += scaled_satd * log(sb_wiener_var);
sb_count += scaled_satd;
}
}
if (sb_count > 0)
cpi->norm_wiener_variance = (int64_t)(exp(sb_wiener_log / sb_count));
cpi->norm_wiener_variance = AOMMAX(1, cpi->norm_wiener_variance);
}
// Set the pointer to null since mbmi is only allocated inside this function.
xd->mi = NULL;
aom_free_frame_buffer(&cm->cur_frame->buf);
av1_dealloc_mb_wiener_var_pred_buf(&cpi->td);
}
static int get_rate_guided_quantizer(const AV1_COMP *const cpi,
BLOCK_SIZE bsize, int mi_row, int mi_col) {
// Calculation uses 8x8.
const int mb_step = mi_size_wide[cpi->weber_bsize];
// Accumulate to 16x16
const int block_step = mi_size_wide[BLOCK_16X16];
double sb_rate_hific = 0.0;
double sb_rate_uniform = 0.0;
for (int row = mi_row; row < mi_row + mi_size_wide[bsize];
row += block_step) {
for (int col = mi_col; col < mi_col + mi_size_high[bsize];
col += block_step) {
sb_rate_hific +=
cpi->ext_rate_distribution[(row / mb_step) * cpi->frame_info.mi_cols +
(col / mb_step)];
for (int r = 0; r < block_step; r += mb_step) {
for (int c = 0; c < block_step; c += mb_step) {
const int this_row = row + r;
const int this_col = col + c;
sb_rate_uniform +=
cpi->prep_rate_estimates[(this_row / mb_step) *
cpi->frame_info.mi_cols +
(this_col / mb_step)];
}
}
}
}
sb_rate_hific *= cpi->ext_rate_scale;
const double weight = 1.0;
const double rate_diff =
weight * (sb_rate_hific - sb_rate_uniform) / sb_rate_uniform;
double scale = pow(2, rate_diff);
scale = scale * scale;
double min_max_scale = AOMMAX(1.0, get_max_scale(cpi, bsize, mi_row, mi_col));
scale = 1.0 / AOMMIN(1.0 / scale, min_max_scale);
const AV1_COMMON *const cm = &cpi->common;
const int base_qindex = cm->quant_params.base_qindex;
int offset =
av1_get_deltaq_offset(cm->seq_params->bit_depth, base_qindex, scale);
const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
const int max_offset = delta_q_info->delta_q_res * 10;
offset = AOMMIN(offset, max_offset - 1);
offset = AOMMAX(offset, -max_offset + 1);
int qindex = cm->quant_params.base_qindex + offset;
qindex = AOMMIN(qindex, MAXQ);
qindex = AOMMAX(qindex, MINQ);
if (base_qindex > MINQ) qindex = AOMMAX(qindex, MINQ + 1);
return qindex;
}
int av1_get_sbq_perceptual_ai(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
int mi_row, int mi_col) {
if (cpi->oxcf.enable_rate_guide_deltaq) {
return get_rate_guided_quantizer(cpi, bsize, mi_row, mi_col);
}
const AV1_COMMON *const cm = &cpi->common;
const int base_qindex = cm->quant_params.base_qindex;
int sb_wiener_var = get_var_perceptual_ai(cpi, bsize, mi_row, mi_col);
int offset = 0;
double beta = (double)cpi->norm_wiener_variance / sb_wiener_var;
double min_max_scale = AOMMAX(1.0, get_max_scale(cpi, bsize, mi_row, mi_col));
beta = 1.0 / AOMMIN(1.0 / beta, min_max_scale);
// Cap beta such that the delta q value is not much far away from the base q.
beta = AOMMIN(beta, 4);
beta = AOMMAX(beta, 0.25);
offset = av1_get_deltaq_offset(cm->seq_params->bit_depth, base_qindex, beta);
const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
offset = AOMMIN(offset, delta_q_info->delta_q_res * 20 - 1);
offset = AOMMAX(offset, -delta_q_info->delta_q_res * 20 + 1);
int qindex = cm->quant_params.base_qindex + offset;
qindex = AOMMIN(qindex, MAXQ);
qindex = AOMMAX(qindex, MINQ);
if (base_qindex > MINQ) qindex = AOMMAX(qindex, MINQ + 1);
return qindex;
}
void av1_init_mb_ur_var_buffer(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
if (cpi->mb_delta_q) return;
CHECK_MEM_ERROR(cm, cpi->mb_delta_q,
aom_calloc(cpi->frame_info.mb_rows * cpi->frame_info.mb_cols,
sizeof(*cpi->mb_delta_q)));
}
#if CONFIG_TFLITE
static int model_predict(BLOCK_SIZE block_size, int num_cols, int num_rows,
int bit_depth, uint8_t *y_buffer, int y_stride,
float *predicts0, float *predicts1) {
// Create the model and interpreter options.
TfLiteModel *model =
TfLiteModelCreate(av1_deltaq4_model_file, av1_deltaq4_model_fsize);
if (model == NULL) return 1;
TfLiteInterpreterOptions *options = TfLiteInterpreterOptionsCreate();
TfLiteInterpreterOptionsSetNumThreads(options, 2);
if (options == NULL) {
TfLiteModelDelete(model);
return 1;
}
// Create the interpreter.
TfLiteInterpreter *interpreter = TfLiteInterpreterCreate(model, options);
if (interpreter == NULL) {
TfLiteInterpreterOptionsDelete(options);
TfLiteModelDelete(model);
return 1;
}
// Allocate tensors and populate the input tensor data.
TfLiteInterpreterAllocateTensors(interpreter);
TfLiteTensor *input_tensor = TfLiteInterpreterGetInputTensor(interpreter, 0);
if (input_tensor == NULL) {
TfLiteInterpreterDelete(interpreter);
TfLiteInterpreterOptionsDelete(options);
TfLiteModelDelete(model);
return 1;
}
size_t input_size = TfLiteTensorByteSize(input_tensor);
float *input_data = aom_calloc(input_size, 1);
if (input_data == NULL) {
TfLiteInterpreterDelete(interpreter);
TfLiteInterpreterOptionsDelete(options);
TfLiteModelDelete(model);
return 1;
}
const int num_mi_w = mi_size_wide[block_size];
const int num_mi_h = mi_size_high[block_size];
for (int row = 0; row < num_rows; ++row) {
for (int col = 0; col < num_cols; ++col) {
const int row_offset = (row * num_mi_h) << 2;
const int col_offset = (col * num_mi_w) << 2;
uint8_t *buf = y_buffer + row_offset * y_stride + col_offset;
int r = row_offset, pos = 0;
const float base = (float)((1 << bit_depth) - 1);
while (r < row_offset + (num_mi_h << 2)) {
for (int c = 0; c < (num_mi_w << 2); ++c) {
input_data[pos++] = bit_depth > 8
? (float)*CONVERT_TO_SHORTPTR(buf + c) / base
: (float)*(buf + c) / base;
}
buf += y_stride;
++r;
}
TfLiteTensorCopyFromBuffer(input_tensor, input_data, input_size);
// Execute inference.
if (TfLiteInterpreterInvoke(interpreter) != kTfLiteOk) {
TfLiteInterpreterDelete(interpreter);
TfLiteInterpreterOptionsDelete(options);
TfLiteModelDelete(model);
return 1;
}
// Extract the output tensor data.
const TfLiteTensor *output_tensor =
TfLiteInterpreterGetOutputTensor(interpreter, 0);
if (output_tensor == NULL) {
TfLiteInterpreterDelete(interpreter);
TfLiteInterpreterOptionsDelete(options);
TfLiteModelDelete(model);
return 1;
}
size_t output_size = TfLiteTensorByteSize(output_tensor);
float output_data[2];
TfLiteTensorCopyToBuffer(output_tensor, output_data, output_size);
predicts0[row * num_cols + col] = output_data[0];
predicts1[row * num_cols + col] = output_data[1];
}
}
// Dispose of the model and interpreter objects.
TfLiteInterpreterDelete(interpreter);
TfLiteInterpreterOptionsDelete(options);
TfLiteModelDelete(model);
aom_free(input_data);
return 0;
}
void av1_set_mb_ur_variance(AV1_COMP *cpi) {
const AV1_COMMON *cm = &cpi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
uint8_t *y_buffer = cpi->source->y_buffer;
const int y_stride = cpi->source->y_stride;
const int block_size = cpi->common.seq_params->sb_size;
const uint32_t bit_depth = cpi->td.mb.e_mbd.bd;
const int num_mi_w = mi_size_wide[block_size];
const int num_mi_h = mi_size_high[block_size];
const int num_cols = (mi_params->mi_cols + num_mi_w - 1) / num_mi_w;
const int num_rows = (mi_params->mi_rows + num_mi_h - 1) / num_mi_h;
// TODO(sdeng): fit a better model_1; disable it at this time.
float *mb_delta_q0, *mb_delta_q1, delta_q_avg0 = 0.0f;
CHECK_MEM_ERROR(cm, mb_delta_q0,
aom_calloc(num_rows * num_cols, sizeof(float)));
CHECK_MEM_ERROR(cm, mb_delta_q1,
aom_calloc(num_rows * num_cols, sizeof(float)));
if (model_predict(block_size, num_cols, num_rows, bit_depth, y_buffer,
y_stride, mb_delta_q0, mb_delta_q1)) {
aom_internal_error(cm->error, AOM_CODEC_ERROR,
"Failed to call TFlite functions.");
}
// Loop through each SB block.
for (int row = 0; row < num_rows; ++row) {
for (int col = 0; col < num_cols; ++col) {
const int index = row * num_cols + col;
delta_q_avg0 += mb_delta_q0[index];
}
}
delta_q_avg0 /= (float)(num_rows * num_cols);
float scaling_factor;
const float cq_level = (float)cpi->oxcf.rc_cfg.cq_level / (float)MAXQ;
if (cq_level < delta_q_avg0) {
scaling_factor = cq_level / delta_q_avg0;
} else {
scaling_factor = 1.0f - (cq_level - delta_q_avg0) / (1.0f - delta_q_avg0);
}
for (int row = 0; row < num_rows; ++row) {
for (int col = 0; col < num_cols; ++col) {
const int index = row * num_cols + col;
cpi->mb_delta_q[index] =
RINT((float)cpi->oxcf.q_cfg.deltaq_strength / 100.0f * (float)MAXQ *
scaling_factor * (mb_delta_q0[index] - delta_q_avg0));
}
}
aom_free(mb_delta_q0);
aom_free(mb_delta_q1);
}
#else // !CONFIG_TFLITE
void av1_set_mb_ur_variance(AV1_COMP *cpi) {
const AV1_COMMON *cm = &cpi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
uint8_t *y_buffer = cpi->source->y_buffer;
const int y_stride = cpi->source->y_stride;
const int block_size = cpi->common.seq_params->sb_size;
const int num_mi_w = mi_size_wide[block_size];
const int num_mi_h = mi_size_high[block_size];
const int num_cols = (mi_params->mi_cols + num_mi_w - 1) / num_mi_w;
const int num_rows = (mi_params->mi_rows + num_mi_h - 1) / num_mi_h;
int *mb_delta_q[2];
CHECK_MEM_ERROR(cm, mb_delta_q[0],
aom_calloc(num_rows * num_cols, sizeof(*mb_delta_q[0])));
CHECK_MEM_ERROR(cm, mb_delta_q[1],
aom_calloc(num_rows * num_cols, sizeof(*mb_delta_q[1])));
// Approximates the model change between current version (Spet 2021) and the
// baseline (July 2021).
const double model_change[] = { 3.0, 3.0 };
// The following parameters are fitted from user labeled data.
const double a[] = { -24.50 * 4.0, -17.20 * 4.0 };
const double b[] = { 0.004898, 0.003093 };
const double c[] = { (29.932 + model_change[0]) * 4.0,
(42.100 + model_change[1]) * 4.0 };
int delta_q_avg[2] = { 0, 0 };
// Loop through each SB block.
for (int row = 0; row < num_rows; ++row) {
for (int col = 0; col < num_cols; ++col) {
double var = 0.0, num_of_var = 0.0;
const int index = row * num_cols + col;
// Loop through each 8x8 block.
for (int mi_row = row * num_mi_h;
mi_row < mi_params->mi_rows && mi_row < (row + 1) * num_mi_h;
mi_row += 2) {
for (int mi_col = col * num_mi_w;
mi_col < mi_params->mi_cols && mi_col < (col + 1) * num_mi_w;
mi_col += 2) {
struct buf_2d buf;
const int row_offset_y = mi_row << 2;
const int col_offset_y = mi_col << 2;
buf.buf = y_buffer + row_offset_y * y_stride + col_offset_y;
buf.stride = y_stride;
unsigned int block_variance;
block_variance = av1_get_perpixel_variance_facade(
cpi, xd, &buf, BLOCK_8X8, AOM_PLANE_Y);
block_variance = AOMMAX(block_variance, 1);
var += log((double)block_variance);
num_of_var += 1.0;
}
}
var = exp(var / num_of_var);
mb_delta_q[0][index] = RINT(a[0] * exp(-b[0] * var) + c[0]);
mb_delta_q[1][index] = RINT(a[1] * exp(-b[1] * var) + c[1]);
delta_q_avg[0] += mb_delta_q[0][index];
delta_q_avg[1] += mb_delta_q[1][index];
}
}
delta_q_avg[0] = RINT((double)delta_q_avg[0] / (num_rows * num_cols));
delta_q_avg[1] = RINT((double)delta_q_avg[1] / (num_rows * num_cols));
int model_idx;
double scaling_factor;
const int cq_level = cpi->oxcf.rc_cfg.cq_level;
if (cq_level < delta_q_avg[0]) {
model_idx = 0;
scaling_factor = (double)cq_level / delta_q_avg[0];
} else if (cq_level < delta_q_avg[1]) {
model_idx = 2;
scaling_factor =
(double)(cq_level - delta_q_avg[0]) / (delta_q_avg[1] - delta_q_avg[0]);
} else {
model_idx = 1;
scaling_factor = (double)(MAXQ - cq_level) / (MAXQ - delta_q_avg[1]);
}
const double new_delta_q_avg =
delta_q_avg[0] + scaling_factor * (delta_q_avg[1] - delta_q_avg[0]);
for (int row = 0; row < num_rows; ++row) {
for (int col = 0; col < num_cols; ++col) {
const int index = row * num_cols + col;
if (model_idx == 2) {
const double delta_q =
mb_delta_q[0][index] +
scaling_factor * (mb_delta_q[1][index] - mb_delta_q[0][index]);
cpi->mb_delta_q[index] = RINT((double)cpi->oxcf.q_cfg.deltaq_strength /
100.0 * (delta_q - new_delta_q_avg));
} else {
cpi->mb_delta_q[index] = RINT(
(double)cpi->oxcf.q_cfg.deltaq_strength / 100.0 * scaling_factor *
(mb_delta_q[model_idx][index] - delta_q_avg[model_idx]));
}
}
}
aom_free(mb_delta_q[0]);
aom_free(mb_delta_q[1]);
}
#endif
int av1_get_sbq_user_rating_based(const AV1_COMP *const cpi, int mi_row,
int mi_col) {
const BLOCK_SIZE bsize = cpi->common.seq_params->sb_size;
const CommonModeInfoParams *const mi_params = &cpi->common.mi_params;
const AV1_COMMON *const cm = &cpi->common;
const int base_qindex = cm->quant_params.base_qindex;
if (base_qindex == MINQ || base_qindex == MAXQ) return base_qindex;
const int num_mi_w = mi_size_wide[bsize];
const int num_mi_h = mi_size_high[bsize];
const int num_cols = (mi_params->mi_cols + num_mi_w - 1) / num_mi_w;
const int index = (mi_row / num_mi_h) * num_cols + (mi_col / num_mi_w);
const int delta_q = cpi->mb_delta_q[index];
int qindex = base_qindex + delta_q;
qindex = AOMMIN(qindex, MAXQ);
qindex = AOMMAX(qindex, MINQ + 1);
return qindex;
}
#if !CONFIG_REALTIME_ONLY
// Variance Boost: a variance adaptive quantization implementation
// SVT-AV1 appendix with an overview and a graphical, step-by-step explanation
// of the implementation
// https://gitlab.com/AOMediaCodec/SVT-AV1/-/blob/master/Docs/Appendix-Variance-Boost.md
int av1_get_sbq_variance_boost(const AV1_COMP *cpi, const MACROBLOCK *x) {
const AV1_COMMON *cm = &cpi->common;
const int base_qindex = cm->quant_params.base_qindex;
const aom_bit_depth_t bit_depth = cm->seq_params->bit_depth;
// Variance Boost only supports 64x64 SBs.
assert(cm->seq_params->sb_size == BLOCK_64X64);
unsigned int variance = av1_get_variance_boost_block_variance(cpi, x);
// Compute Variance Boost strength from the deltaq_strength value.
double strength = (cpi->oxcf.q_cfg.deltaq_strength / 100.0) * 3.0;
// Clamp strength to a reasonable range.
// deltaq_strength can go up to 1000%, which is too strong for the Variance
// Boost scaling. Testing revealed strengths as high as 6 (200%) are still
// reasonable for some specific scenarios.
strength = fclamp(strength, 0.0, 6.0);
// Variance = 0 areas are either completely flat patches or have very fine
// gradients. Boost these blocks as if they have a variance of 1.
if (variance == 0) {
variance = 1;
}
// Compute a boost based on a fast-growing formula.
// High and medium variance SBs essentially get no boost, while lower variance
// SBs get increasingly stronger boosts.
// Still picture curve, with variance crossover point at 1024.
double qstep_ratio = 0.15 * strength * (-log2((double)variance) + 10.0) + 1.0;
qstep_ratio = fclamp(qstep_ratio, 1.0, VAR_BOOST_MAX_BOOST);
double base_q = av1_convert_qindex_to_q(base_qindex, bit_depth);
double target_q = base_q / qstep_ratio;
int target_qindex = av1_convert_q_to_qindex(target_q, bit_depth);
// Determine the SB's delta_q boost by computing an (unscaled) delta_q from
// the base and target q values, then scale that delta_q according to the
// frame's base qindex.
// The scaling coefficients were chosen empirically to maximize SSIMULACRA 2
// scores, 10th percentile scores, and subjective quality. Boosts become
// smaller (for a given variance) the lower the base qindex.
int boost = (int)round((base_qindex + 544.0) * (base_qindex - target_qindex) /
1279.0);
boost = AOMMIN(VAR_BOOST_MAX_DELTAQ_RANGE, boost);
// Variance Boost was designed to always operate in the lossy domain, so MINQ
// is excluded.
int sb_qindex = AOMMAX(base_qindex - boost, MINQ + 1);
return sb_qindex;
}
#endif
|