File: av1_quantize.c

package info (click to toggle)
aom 3.13.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 38,340 kB
  • sloc: ansic: 415,031; cpp: 210,937; asm: 9,453; python: 4,479; perl: 2,339; sh: 1,878; pascal: 345; makefile: 57; javascript: 32
file content (1048 lines) | stat: -rw-r--r-- 46,434 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <math.h>

#include "config/aom_dsp_rtcd.h"

#include "aom/aomcx.h"
#include "aom_dsp/quantize.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/bitops.h"
#include "aom_ports/mem.h"

#include "av1/common/idct.h"
#include "av1/common/quant_common.h"
#include "av1/common/scan.h"
#include "av1/common/seg_common.h"

#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/rd.h"

void av1_quantize_skip(intptr_t n_coeffs, tran_low_t *qcoeff_ptr,
                       tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr) {
  memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
  memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
  *eob_ptr = 0;
}

int av1_quantize_fp_no_qmatrix(const int16_t quant_ptr[2],
                               const int16_t dequant_ptr[2],
                               const int16_t round_ptr[2], int log_scale,
                               const int16_t *scan, int coeff_count,
                               const tran_low_t *coeff_ptr,
                               tran_low_t *qcoeff_ptr,
                               tran_low_t *dqcoeff_ptr) {
  memset(qcoeff_ptr, 0, coeff_count * sizeof(*qcoeff_ptr));
  memset(dqcoeff_ptr, 0, coeff_count * sizeof(*dqcoeff_ptr));
  const int rounding[2] = { ROUND_POWER_OF_TWO(round_ptr[0], log_scale),
                            ROUND_POWER_OF_TWO(round_ptr[1], log_scale) };
  int eob = 0;
  for (int i = 0; i < coeff_count; i++) {
    const int rc = scan[i];
    const int32_t thresh = (int32_t)(dequant_ptr[rc != 0]);
    const int coeff = coeff_ptr[rc];
    const int coeff_sign = AOMSIGN(coeff);
    int64_t abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
    int tmp32 = 0;
    if ((abs_coeff << (1 + log_scale)) >= thresh) {
      abs_coeff = clamp64(abs_coeff + rounding[rc != 0], INT16_MIN, INT16_MAX);
      tmp32 = (int)((abs_coeff * quant_ptr[rc != 0]) >> (16 - log_scale));
      if (tmp32) {
        qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign;
        const tran_low_t abs_dqcoeff =
            (tmp32 * dequant_ptr[rc != 0]) >> log_scale;
        dqcoeff_ptr[rc] = (abs_dqcoeff ^ coeff_sign) - coeff_sign;
      }
    }
    if (tmp32) eob = i + 1;
  }
  return eob;
}

static void quantize_fp_helper_c(
    const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr,
    const int16_t *round_ptr, const int16_t *quant_ptr,
    const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
    tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
    const int16_t *scan, const int16_t *iscan, const qm_val_t *qm_ptr,
    const qm_val_t *iqm_ptr, int log_scale) {
  int i, eob = -1;
  const int rounding[2] = { ROUND_POWER_OF_TWO(round_ptr[0], log_scale),
                            ROUND_POWER_OF_TWO(round_ptr[1], log_scale) };
  // TODO(jingning) Decide the need of these arguments after the
  // quantization process is completed.
  (void)zbin_ptr;
  (void)quant_shift_ptr;
  (void)iscan;

  memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
  memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));

  if (qm_ptr == NULL && iqm_ptr == NULL) {
    *eob_ptr = av1_quantize_fp_no_qmatrix(quant_ptr, dequant_ptr, round_ptr,
                                          log_scale, scan, (int)n_coeffs,
                                          coeff_ptr, qcoeff_ptr, dqcoeff_ptr);
  } else {
    // Quantization pass: All coefficients with index >= zero_flag are
    // skippable. Note: zero_flag can be zero.
    for (i = 0; i < n_coeffs; i++) {
      const int rc = scan[i];
      const int coeff = coeff_ptr[rc];
      const qm_val_t wt = qm_ptr ? qm_ptr[rc] : (1 << AOM_QM_BITS);
      const qm_val_t iwt = iqm_ptr ? iqm_ptr[rc] : (1 << AOM_QM_BITS);
      const int dequant =
          (dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >>
          AOM_QM_BITS;
      const int coeff_sign = AOMSIGN(coeff);
      int64_t abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
      int tmp32 = 0;
      if (abs_coeff * wt >=
          (dequant_ptr[rc != 0] << (AOM_QM_BITS - (1 + log_scale)))) {
        abs_coeff += rounding[rc != 0];
        abs_coeff = clamp64(abs_coeff, INT16_MIN, INT16_MAX);
        tmp32 = (int)((abs_coeff * wt * quant_ptr[rc != 0]) >>
                      (16 - log_scale + AOM_QM_BITS));
        qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign;
        const tran_low_t abs_dqcoeff = (tmp32 * dequant) >> log_scale;
        dqcoeff_ptr[rc] = (abs_dqcoeff ^ coeff_sign) - coeff_sign;
      }

      if (tmp32) eob = i;
    }
    *eob_ptr = eob + 1;
  }
}

#if CONFIG_AV1_HIGHBITDEPTH
static void highbd_quantize_fp_helper_c(
    const tran_low_t *coeff_ptr, intptr_t count, const int16_t *zbin_ptr,
    const int16_t *round_ptr, const int16_t *quant_ptr,
    const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
    tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
    const int16_t *scan, const int16_t *iscan, const qm_val_t *qm_ptr,
    const qm_val_t *iqm_ptr, int log_scale) {
  int i;
  int eob = -1;
  const int shift = 16 - log_scale;
  // TODO(jingning) Decide the need of these arguments after the
  // quantization process is completed.
  (void)zbin_ptr;
  (void)quant_shift_ptr;
  (void)iscan;

  if (qm_ptr || iqm_ptr) {
    // Quantization pass: All coefficients with index >= zero_flag are
    // skippable. Note: zero_flag can be zero.
    for (i = 0; i < count; i++) {
      const int rc = scan[i];
      const int coeff = coeff_ptr[rc];
      const qm_val_t wt = qm_ptr != NULL ? qm_ptr[rc] : (1 << AOM_QM_BITS);
      const qm_val_t iwt = iqm_ptr != NULL ? iqm_ptr[rc] : (1 << AOM_QM_BITS);
      const int dequant =
          (dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >>
          AOM_QM_BITS;
      const int coeff_sign = AOMSIGN(coeff);
      const int64_t abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
      int abs_qcoeff = 0;
      if (abs_coeff * wt >=
          (dequant_ptr[rc != 0] << (AOM_QM_BITS - (1 + log_scale)))) {
        const int64_t tmp =
            abs_coeff + ROUND_POWER_OF_TWO(round_ptr[rc != 0], log_scale);
        abs_qcoeff =
            (int)((tmp * quant_ptr[rc != 0] * wt) >> (shift + AOM_QM_BITS));
        qcoeff_ptr[rc] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign);
        const tran_low_t abs_dqcoeff = (abs_qcoeff * dequant) >> log_scale;
        dqcoeff_ptr[rc] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign);
        if (abs_qcoeff) eob = i;
      } else {
        qcoeff_ptr[rc] = 0;
        dqcoeff_ptr[rc] = 0;
      }
    }
  } else {
    const int log_scaled_round_arr[2] = {
      ROUND_POWER_OF_TWO(round_ptr[0], log_scale),
      ROUND_POWER_OF_TWO(round_ptr[1], log_scale),
    };
    for (i = 0; i < count; i++) {
      const int rc = scan[i];
      const int coeff = coeff_ptr[rc];
      const int rc01 = (rc != 0);
      const int coeff_sign = AOMSIGN(coeff);
      const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
      const int log_scaled_round = log_scaled_round_arr[rc01];
      if ((abs_coeff << (1 + log_scale)) >= dequant_ptr[rc01]) {
        const int quant = quant_ptr[rc01];
        const int dequant = dequant_ptr[rc01];
        const int64_t tmp = (int64_t)abs_coeff + log_scaled_round;
        const int abs_qcoeff = (int)((tmp * quant) >> shift);
        qcoeff_ptr[rc] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign);
        const tran_low_t abs_dqcoeff = (abs_qcoeff * dequant) >> log_scale;
        if (abs_qcoeff) eob = i;
        dqcoeff_ptr[rc] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign);
      } else {
        qcoeff_ptr[rc] = 0;
        dqcoeff_ptr[rc] = 0;
      }
    }
  }
  *eob_ptr = eob + 1;
}
#endif  // CONFIG_AV1_HIGHBITDEPTH

void av1_quantize_fp_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
                       const int16_t *zbin_ptr, const int16_t *round_ptr,
                       const int16_t *quant_ptr, const int16_t *quant_shift_ptr,
                       tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
                       const int16_t *dequant_ptr, uint16_t *eob_ptr,
                       const int16_t *scan, const int16_t *iscan) {
  quantize_fp_helper_c(coeff_ptr, n_coeffs, zbin_ptr, round_ptr, quant_ptr,
                       quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr,
                       eob_ptr, scan, iscan, NULL, NULL, 0);
}

void av1_quantize_lp_c(const int16_t *coeff_ptr, intptr_t n_coeffs,
                       const int16_t *round_ptr, const int16_t *quant_ptr,
                       int16_t *qcoeff_ptr, int16_t *dqcoeff_ptr,
                       const int16_t *dequant_ptr, uint16_t *eob_ptr,
                       const int16_t *scan, const int16_t *iscan) {
  (void)iscan;
  int eob = -1;

  memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
  memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));

  // Quantization pass: All coefficients with index >= zero_flag are
  // skippable. Note: zero_flag can be zero.
  for (int i = 0; i < n_coeffs; i++) {
    const int rc = scan[i];
    const int coeff = coeff_ptr[rc];
    const int coeff_sign = AOMSIGN(coeff);
    const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;

    int tmp = clamp(abs_coeff + round_ptr[rc != 0], INT16_MIN, INT16_MAX);
    tmp = (tmp * quant_ptr[rc != 0]) >> 16;

    qcoeff_ptr[rc] = (tmp ^ coeff_sign) - coeff_sign;
    dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0];

    if (tmp) eob = i;
  }
  *eob_ptr = eob + 1;
}

void av1_quantize_fp_32x32_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
                             const int16_t *zbin_ptr, const int16_t *round_ptr,
                             const int16_t *quant_ptr,
                             const int16_t *quant_shift_ptr,
                             tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
                             const int16_t *dequant_ptr, uint16_t *eob_ptr,
                             const int16_t *scan, const int16_t *iscan) {
  quantize_fp_helper_c(coeff_ptr, n_coeffs, zbin_ptr, round_ptr, quant_ptr,
                       quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr,
                       eob_ptr, scan, iscan, NULL, NULL, 1);
}

void av1_quantize_fp_64x64_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
                             const int16_t *zbin_ptr, const int16_t *round_ptr,
                             const int16_t *quant_ptr,
                             const int16_t *quant_shift_ptr,
                             tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
                             const int16_t *dequant_ptr, uint16_t *eob_ptr,
                             const int16_t *scan, const int16_t *iscan) {
  quantize_fp_helper_c(coeff_ptr, n_coeffs, zbin_ptr, round_ptr, quant_ptr,
                       quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr,
                       eob_ptr, scan, iscan, NULL, NULL, 2);
}

void av1_quantize_fp_facade(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
                            const MACROBLOCK_PLANE *p, tran_low_t *qcoeff_ptr,
                            tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
                            const SCAN_ORDER *sc, const QUANT_PARAM *qparam) {
  const qm_val_t *qm_ptr = qparam->qmatrix;
  const qm_val_t *iqm_ptr = qparam->iqmatrix;
  if (qm_ptr != NULL && iqm_ptr != NULL) {
    quantize_fp_helper_c(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX,
                         p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr,
                         dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
                         sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale);
  } else {
    switch (qparam->log_scale) {
      case 0:
        av1_quantize_fp(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX,
                        p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr,
                        dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
                        sc->iscan);
        break;
      case 1:
        av1_quantize_fp_32x32(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX,
                              p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr,
                              dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
                              sc->iscan);
        break;
      case 2:
        av1_quantize_fp_64x64(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX,
                              p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr,
                              dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
                              sc->iscan);
        break;
      default: assert(0);
    }
  }
}

void av1_quantize_b_facade(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
                           const MACROBLOCK_PLANE *p, tran_low_t *qcoeff_ptr,
                           tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
                           const SCAN_ORDER *sc, const QUANT_PARAM *qparam) {
  const qm_val_t *qm_ptr = qparam->qmatrix;
  const qm_val_t *iqm_ptr = qparam->iqmatrix;
#if !CONFIG_REALTIME_ONLY
  if (qparam->use_quant_b_adapt) {
    // TODO(sarahparker) These quantize_b optimizations need SIMD
    // implementations
    if (qm_ptr != NULL && iqm_ptr != NULL) {
      aom_quantize_b_adaptive_helper_c(
          coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
          p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr,
          sc->scan, sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale);
    } else {
      switch (qparam->log_scale) {
        case 0:
          aom_quantize_b_adaptive(coeff_ptr, n_coeffs, p->zbin_QTX,
                                  p->round_QTX, p->quant_QTX,
                                  p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr,
                                  p->dequant_QTX, eob_ptr, sc->scan, sc->iscan);
          break;
        case 1:
          aom_quantize_b_32x32_adaptive(
              coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
              p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX,
              eob_ptr, sc->scan, sc->iscan);
          break;
        case 2:
          aom_quantize_b_64x64_adaptive(
              coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
              p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX,
              eob_ptr, sc->scan, sc->iscan);
          break;
        default: assert(0);
      }
    }
    return;
  }
#endif  // !CONFIG_REALTIME_ONLY

  if (qm_ptr != NULL && iqm_ptr != NULL) {
    aom_quantize_b_helper_c(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX,
                            p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr,
                            dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
                            sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale);
  } else {
    switch (qparam->log_scale) {
      case 0:
        aom_quantize_b(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX,
                       p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr,
                       dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
                       sc->iscan);
        break;
      case 1:
        aom_quantize_b_32x32(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX,
                             p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr,
                             dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
                             sc->iscan);
        break;
      case 2:
        aom_quantize_b_64x64(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX,
                             p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr,
                             dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
                             sc->iscan);
        break;
      default: assert(0);
    }
  }
}

static void quantize_dc(const tran_low_t *coeff_ptr, int n_coeffs,
                        int skip_block, const int16_t *round_ptr,
                        const int16_t quant, tran_low_t *qcoeff_ptr,
                        tran_low_t *dqcoeff_ptr, const int16_t dequant_ptr,
                        uint16_t *eob_ptr, const qm_val_t *qm_ptr,
                        const qm_val_t *iqm_ptr, const int log_scale) {
  const int rc = 0;
  const int coeff = coeff_ptr[rc];
  const int coeff_sign = AOMSIGN(coeff);
  const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
  int64_t tmp;
  int eob = -1;
  int32_t tmp32;
  int dequant;

  memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
  memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));

  if (!skip_block) {
    const int wt = qm_ptr != NULL ? qm_ptr[rc] : (1 << AOM_QM_BITS);
    const int iwt = iqm_ptr != NULL ? iqm_ptr[rc] : (1 << AOM_QM_BITS);
    tmp = clamp(abs_coeff + ROUND_POWER_OF_TWO(round_ptr[rc != 0], log_scale),
                INT16_MIN, INT16_MAX);
    tmp32 = (int32_t)((tmp * wt * quant) >> (16 - log_scale + AOM_QM_BITS));
    qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign;
    dequant = (dequant_ptr * iwt + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS;
    const tran_low_t abs_dqcoeff = (tmp32 * dequant) >> log_scale;
    dqcoeff_ptr[rc] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign);
    if (tmp32) eob = 0;
  }
  *eob_ptr = eob + 1;
}

void av1_quantize_dc_facade(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
                            const MACROBLOCK_PLANE *p, tran_low_t *qcoeff_ptr,
                            tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
                            const SCAN_ORDER *sc, const QUANT_PARAM *qparam) {
  // obsolete skip_block
  const int skip_block = 0;
  (void)sc;
  assert(qparam->log_scale >= 0 && qparam->log_scale < (3));
  const qm_val_t *qm_ptr = qparam->qmatrix;
  const qm_val_t *iqm_ptr = qparam->iqmatrix;
  quantize_dc(coeff_ptr, (int)n_coeffs, skip_block, p->round_QTX,
              p->quant_fp_QTX[0], qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX[0],
              eob_ptr, qm_ptr, iqm_ptr, qparam->log_scale);
}

#if CONFIG_AV1_HIGHBITDEPTH
void av1_highbd_quantize_fp_facade(const tran_low_t *coeff_ptr,
                                   intptr_t n_coeffs, const MACROBLOCK_PLANE *p,
                                   tran_low_t *qcoeff_ptr,
                                   tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
                                   const SCAN_ORDER *sc,
                                   const QUANT_PARAM *qparam) {
  const qm_val_t *qm_ptr = qparam->qmatrix;
  const qm_val_t *iqm_ptr = qparam->iqmatrix;
  if (qm_ptr != NULL && iqm_ptr != NULL) {
    highbd_quantize_fp_helper_c(
        coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX, p->quant_fp_QTX,
        p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr,
        sc->scan, sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale);
  } else {
    av1_highbd_quantize_fp(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX,
                           p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr,
                           dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
                           sc->iscan, qparam->log_scale);
  }
}

void av1_highbd_quantize_b_facade(const tran_low_t *coeff_ptr,
                                  intptr_t n_coeffs, const MACROBLOCK_PLANE *p,
                                  tran_low_t *qcoeff_ptr,
                                  tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
                                  const SCAN_ORDER *sc,
                                  const QUANT_PARAM *qparam) {
  const qm_val_t *qm_ptr = qparam->qmatrix;
  const qm_val_t *iqm_ptr = qparam->iqmatrix;
#if !CONFIG_REALTIME_ONLY
  if (qparam->use_quant_b_adapt) {
    if (qm_ptr != NULL && iqm_ptr != NULL) {
      aom_highbd_quantize_b_adaptive_helper_c(
          coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
          p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr,
          sc->scan, sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale);
    } else {
      switch (qparam->log_scale) {
        case 0:
          aom_highbd_quantize_b_adaptive(
              coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
              p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX,
              eob_ptr, sc->scan, sc->iscan);
          break;
        case 1:
          aom_highbd_quantize_b_32x32_adaptive(
              coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
              p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX,
              eob_ptr, sc->scan, sc->iscan);
          break;
        case 2:
          aom_highbd_quantize_b_64x64_adaptive(
              coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
              p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX,
              eob_ptr, sc->scan, sc->iscan);
          break;
        default: assert(0);
      }
    }
    return;
  }
#endif  // !CONFIG_REALTIME_ONLY

  if (qm_ptr != NULL && iqm_ptr != NULL) {
    aom_highbd_quantize_b_helper_c(
        coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
        p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr,
        sc->scan, sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale);
  } else {
    switch (qparam->log_scale) {
      case 0:
        aom_highbd_quantize_b(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX,
                              p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr,
                              dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
                              sc->iscan);
        break;
      case 1:
        aom_highbd_quantize_b_32x32(
            coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
            p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX,
            eob_ptr, sc->scan, sc->iscan);
        break;
      case 2:
        aom_highbd_quantize_b_64x64(
            coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
            p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX,
            eob_ptr, sc->scan, sc->iscan);
        break;
      default: assert(0);
    }
  }
}

static inline void highbd_quantize_dc(
    const tran_low_t *coeff_ptr, int n_coeffs, int skip_block,
    const int16_t *round_ptr, const int16_t quant, tran_low_t *qcoeff_ptr,
    tran_low_t *dqcoeff_ptr, const int16_t dequant_ptr, uint16_t *eob_ptr,
    const qm_val_t *qm_ptr, const qm_val_t *iqm_ptr, const int log_scale) {
  int eob = -1;

  memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
  memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));

  if (!skip_block) {
    const qm_val_t wt = qm_ptr != NULL ? qm_ptr[0] : (1 << AOM_QM_BITS);
    const qm_val_t iwt = iqm_ptr != NULL ? iqm_ptr[0] : (1 << AOM_QM_BITS);
    const int coeff = coeff_ptr[0];
    const int coeff_sign = AOMSIGN(coeff);
    const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
    const int64_t tmp = abs_coeff + ROUND_POWER_OF_TWO(round_ptr[0], log_scale);
    const int64_t tmpw = tmp * wt;
    const int abs_qcoeff =
        (int)((tmpw * quant) >> (16 - log_scale + AOM_QM_BITS));
    qcoeff_ptr[0] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign);
    const int dequant =
        (dequant_ptr * iwt + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS;

    const tran_low_t abs_dqcoeff = (abs_qcoeff * dequant) >> log_scale;
    dqcoeff_ptr[0] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign);
    if (abs_qcoeff) eob = 0;
  }
  *eob_ptr = eob + 1;
}

void av1_highbd_quantize_dc_facade(const tran_low_t *coeff_ptr,
                                   intptr_t n_coeffs, const MACROBLOCK_PLANE *p,
                                   tran_low_t *qcoeff_ptr,
                                   tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
                                   const SCAN_ORDER *sc,
                                   const QUANT_PARAM *qparam) {
  // obsolete skip_block
  const int skip_block = 0;
  const qm_val_t *qm_ptr = qparam->qmatrix;
  const qm_val_t *iqm_ptr = qparam->iqmatrix;
  (void)sc;

  highbd_quantize_dc(coeff_ptr, (int)n_coeffs, skip_block, p->round_QTX,
                     p->quant_fp_QTX[0], qcoeff_ptr, dqcoeff_ptr,
                     p->dequant_QTX[0], eob_ptr, qm_ptr, iqm_ptr,
                     qparam->log_scale);
}

void av1_highbd_quantize_fp_c(const tran_low_t *coeff_ptr, intptr_t count,
                              const int16_t *zbin_ptr, const int16_t *round_ptr,
                              const int16_t *quant_ptr,
                              const int16_t *quant_shift_ptr,
                              tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
                              const int16_t *dequant_ptr, uint16_t *eob_ptr,
                              const int16_t *scan, const int16_t *iscan,
                              int log_scale) {
  highbd_quantize_fp_helper_c(coeff_ptr, count, zbin_ptr, round_ptr, quant_ptr,
                              quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr,
                              dequant_ptr, eob_ptr, scan, iscan, NULL, NULL,
                              log_scale);
}
#endif  // CONFIG_AV1_HIGHBITDEPTH

static void invert_quant(int16_t *quant, int16_t *shift, int d) {
  uint32_t t;
  int l, m;
  t = d;
  l = get_msb(t);
  m = 1 + (1 << (16 + l)) / d;
  *quant = (int16_t)(m - (1 << 16));
  *shift = 1 << (16 - l);
}

static int get_qzbin_factor(int q, aom_bit_depth_t bit_depth) {
  const int quant = av1_dc_quant_QTX(q, 0, bit_depth);
  switch (bit_depth) {
    case AOM_BITS_8: return q == 0 ? 64 : (quant < 148 ? 84 : 80);
    case AOM_BITS_10: return q == 0 ? 64 : (quant < 592 ? 84 : 80);
    case AOM_BITS_12: return q == 0 ? 64 : (quant < 2368 ? 84 : 80);
    default:
      assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12");
      return -1;
  }
}

void av1_build_quantizer(aom_bit_depth_t bit_depth, int y_dc_delta_q,
                         int u_dc_delta_q, int u_ac_delta_q, int v_dc_delta_q,
                         int v_ac_delta_q, QUANTS *const quants,
                         Dequants *const deq, int sharpness) {
  int i, q, quant_QTX;
  const int sharpness_adjustment = 16 * (7 - sharpness) / 7;

  for (q = 0; q < QINDEX_RANGE; q++) {
    const int qzbin_factor = get_qzbin_factor(q, bit_depth);
    int qrounding_factor = q == 0 ? 64 : 48;

    for (i = 0; i < 2; ++i) {
      int qrounding_factor_fp = 64;

      if (sharpness != 0 && q != 0) {
        qrounding_factor = 64 - sharpness_adjustment;
        qrounding_factor_fp = 64 - sharpness_adjustment;
      }

      // y quantizer with TX scale
      quant_QTX = i == 0 ? av1_dc_quant_QTX(q, y_dc_delta_q, bit_depth)
                         : av1_ac_quant_QTX(q, 0, bit_depth);
      invert_quant(&quants->y_quant[q][i], &quants->y_quant_shift[q][i],
                   quant_QTX);
      quants->y_quant_fp[q][i] = (1 << 16) / quant_QTX;
      quants->y_round_fp[q][i] = (qrounding_factor_fp * quant_QTX) >> 7;
      quants->y_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant_QTX, 7);
      quants->y_round[q][i] = (qrounding_factor * quant_QTX) >> 7;
      deq->y_dequant_QTX[q][i] = quant_QTX;

      // u quantizer with TX scale
      quant_QTX = i == 0 ? av1_dc_quant_QTX(q, u_dc_delta_q, bit_depth)
                         : av1_ac_quant_QTX(q, u_ac_delta_q, bit_depth);
      invert_quant(&quants->u_quant[q][i], &quants->u_quant_shift[q][i],
                   quant_QTX);
      quants->u_quant_fp[q][i] = (1 << 16) / quant_QTX;
      quants->u_round_fp[q][i] = (qrounding_factor_fp * quant_QTX) >> 7;
      quants->u_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant_QTX, 7);
      quants->u_round[q][i] = (qrounding_factor * quant_QTX) >> 7;
      deq->u_dequant_QTX[q][i] = quant_QTX;

      // v quantizer with TX scale
      quant_QTX = i == 0 ? av1_dc_quant_QTX(q, v_dc_delta_q, bit_depth)
                         : av1_ac_quant_QTX(q, v_ac_delta_q, bit_depth);
      invert_quant(&quants->v_quant[q][i], &quants->v_quant_shift[q][i],
                   quant_QTX);
      quants->v_quant_fp[q][i] = (1 << 16) / quant_QTX;
      quants->v_round_fp[q][i] = (qrounding_factor_fp * quant_QTX) >> 7;
      quants->v_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant_QTX, 7);
      quants->v_round[q][i] = (qrounding_factor * quant_QTX) >> 7;
      deq->v_dequant_QTX[q][i] = quant_QTX;
    }

    for (i = 2; i < 8; i++) {  // 8: SIMD width
      quants->y_quant[q][i] = quants->y_quant[q][1];
      quants->y_quant_fp[q][i] = quants->y_quant_fp[q][1];
      quants->y_round_fp[q][i] = quants->y_round_fp[q][1];
      quants->y_quant_shift[q][i] = quants->y_quant_shift[q][1];
      quants->y_zbin[q][i] = quants->y_zbin[q][1];
      quants->y_round[q][i] = quants->y_round[q][1];
      deq->y_dequant_QTX[q][i] = deq->y_dequant_QTX[q][1];

      quants->u_quant[q][i] = quants->u_quant[q][1];
      quants->u_quant_fp[q][i] = quants->u_quant_fp[q][1];
      quants->u_round_fp[q][i] = quants->u_round_fp[q][1];
      quants->u_quant_shift[q][i] = quants->u_quant_shift[q][1];
      quants->u_zbin[q][i] = quants->u_zbin[q][1];
      quants->u_round[q][i] = quants->u_round[q][1];
      deq->u_dequant_QTX[q][i] = deq->u_dequant_QTX[q][1];

      quants->v_quant[q][i] = quants->v_quant[q][1];
      quants->v_quant_fp[q][i] = quants->v_quant_fp[q][1];
      quants->v_round_fp[q][i] = quants->v_round_fp[q][1];
      quants->v_quant_shift[q][i] = quants->v_quant_shift[q][1];
      quants->v_zbin[q][i] = quants->v_zbin[q][1];
      quants->v_round[q][i] = quants->v_round[q][1];
      deq->v_dequant_QTX[q][i] = deq->v_dequant_QTX[q][1];
    }
  }
}

static inline bool deltaq_params_have_changed(
    const DeltaQuantParams *prev_deltaq_params,
    const CommonQuantParams *quant_params) {
  return (prev_deltaq_params->y_dc_delta_q != quant_params->y_dc_delta_q ||
          prev_deltaq_params->u_dc_delta_q != quant_params->u_dc_delta_q ||
          prev_deltaq_params->v_dc_delta_q != quant_params->v_dc_delta_q ||
          prev_deltaq_params->u_ac_delta_q != quant_params->u_ac_delta_q ||
          prev_deltaq_params->v_ac_delta_q != quant_params->v_ac_delta_q ||
          prev_deltaq_params->sharpness != quant_params->sharpness);
}

void av1_init_quantizer(EncQuantDequantParams *const enc_quant_dequant_params,
                        CommonQuantParams *quant_params,
                        aom_bit_depth_t bit_depth, int sharpness) {
  DeltaQuantParams *const prev_deltaq_params =
      &enc_quant_dequant_params->prev_deltaq_params;
  quant_params->sharpness = sharpness;

  // Re-initialize the quantizer only if any of the dc/ac deltaq parameters
  // change.
  if (!deltaq_params_have_changed(prev_deltaq_params, quant_params)) return;
  QUANTS *const quants = &enc_quant_dequant_params->quants;
  Dequants *const dequants = &enc_quant_dequant_params->dequants;
  av1_build_quantizer(bit_depth, quant_params->y_dc_delta_q,
                      quant_params->u_dc_delta_q, quant_params->u_ac_delta_q,
                      quant_params->v_dc_delta_q, quant_params->v_ac_delta_q,
                      quants, dequants, sharpness);

  // Record the state of deltaq parameters.
  prev_deltaq_params->y_dc_delta_q = quant_params->y_dc_delta_q;
  prev_deltaq_params->u_dc_delta_q = quant_params->u_dc_delta_q;
  prev_deltaq_params->v_dc_delta_q = quant_params->v_dc_delta_q;
  prev_deltaq_params->u_ac_delta_q = quant_params->u_ac_delta_q;
  prev_deltaq_params->v_ac_delta_q = quant_params->v_ac_delta_q;
  prev_deltaq_params->sharpness = sharpness;
}

/*!\brief Update quantize parameters in MACROBLOCK
 *
 * \param[in]  enc_quant_dequant_params This parameter cached the quantize and
 *                                      dequantize parameters for all q
 *                                      indices.
 * \param[in]  qindex                   Quantize index used for the current
 *                                      superblock.
 * \param[out] x                        A superblock data structure for
 *                                      encoder.
 */
static void set_q_index(const EncQuantDequantParams *enc_quant_dequant_params,
                        int qindex, MACROBLOCK *x) {
  const QUANTS *const quants = &enc_quant_dequant_params->quants;
  const Dequants *const dequants = &enc_quant_dequant_params->dequants;
  x->qindex = qindex;
  x->seg_skip_block =
      0;  // TODO(angiebird): Find a proper place to init this variable.

  // Y
  x->plane[0].quant_QTX = quants->y_quant[qindex];
  x->plane[0].quant_fp_QTX = quants->y_quant_fp[qindex];
  x->plane[0].round_fp_QTX = quants->y_round_fp[qindex];
  x->plane[0].quant_shift_QTX = quants->y_quant_shift[qindex];
  x->plane[0].zbin_QTX = quants->y_zbin[qindex];
  x->plane[0].round_QTX = quants->y_round[qindex];
  x->plane[0].dequant_QTX = dequants->y_dequant_QTX[qindex];

  // U
  x->plane[1].quant_QTX = quants->u_quant[qindex];
  x->plane[1].quant_fp_QTX = quants->u_quant_fp[qindex];
  x->plane[1].round_fp_QTX = quants->u_round_fp[qindex];
  x->plane[1].quant_shift_QTX = quants->u_quant_shift[qindex];
  x->plane[1].zbin_QTX = quants->u_zbin[qindex];
  x->plane[1].round_QTX = quants->u_round[qindex];
  x->plane[1].dequant_QTX = dequants->u_dequant_QTX[qindex];

  // V
  x->plane[2].quant_QTX = quants->v_quant[qindex];
  x->plane[2].quant_fp_QTX = quants->v_quant_fp[qindex];
  x->plane[2].round_fp_QTX = quants->v_round_fp[qindex];
  x->plane[2].quant_shift_QTX = quants->v_quant_shift[qindex];
  x->plane[2].zbin_QTX = quants->v_zbin[qindex];
  x->plane[2].round_QTX = quants->v_round[qindex];
  x->plane[2].dequant_QTX = dequants->v_dequant_QTX[qindex];
}

/*!\brief Update quantize matrix in MACROBLOCKD based on segment id
 *
 * \param[in]  quant_params  Quantize parameters used by encoder and decoder
 * \param[in]  segment_id    Segment id.
 * \param[out] xd            A superblock data structure used by encoder and
 * decoder.
 */
static void set_qmatrix(const CommonQuantParams *quant_params, int segment_id,
                        MACROBLOCKD *xd) {
  const int use_qmatrix = av1_use_qmatrix(quant_params, xd, segment_id);
  const int qmlevel_y =
      use_qmatrix ? quant_params->qmatrix_level_y : NUM_QM_LEVELS - 1;
  const int qmlevel_u =
      use_qmatrix ? quant_params->qmatrix_level_u : NUM_QM_LEVELS - 1;
  const int qmlevel_v =
      use_qmatrix ? quant_params->qmatrix_level_v : NUM_QM_LEVELS - 1;
  const int qmlevel_ls[MAX_MB_PLANE] = { qmlevel_y, qmlevel_u, qmlevel_v };
  for (int i = 0; i < MAX_MB_PLANE; ++i) {
    const int qmlevel = qmlevel_ls[i];
    memcpy(&xd->plane[i].seg_qmatrix[segment_id],
           quant_params->gqmatrix[qmlevel][i],
           sizeof(quant_params->gqmatrix[qmlevel][i]));
    memcpy(&xd->plane[i].seg_iqmatrix[segment_id],
           quant_params->giqmatrix[qmlevel][i],
           sizeof(quant_params->giqmatrix[qmlevel][i]));
  }
}

void av1_init_plane_quantizers(const AV1_COMP *cpi, MACROBLOCK *x,
                               int segment_id, const int do_update) {
  const AV1_COMMON *const cm = &cpi->common;
  const CommonQuantParams *const quant_params = &cm->quant_params;
  const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
  const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100));
  const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6);
  const FRAME_TYPE frame_type = cm->current_frame.frame_type;
  int qindex_rd;

  const int current_qindex =
      clamp(cm->delta_q_info.delta_q_present_flag
                ? quant_params->base_qindex + x->delta_qindex
                : quant_params->base_qindex,
            0, QINDEX_RANGE - 1);
  const int qindex = av1_get_qindex(&cm->seg, segment_id, current_qindex);

  if (cpi->oxcf.sb_qp_sweep) {
    const int current_rd_qindex =
        clamp(cm->delta_q_info.delta_q_present_flag
                  ? quant_params->base_qindex + x->rdmult_delta_qindex
                  : quant_params->base_qindex,
              0, QINDEX_RANGE - 1);
    qindex_rd = av1_get_qindex(&cm->seg, segment_id, current_rd_qindex);
  } else {
    qindex_rd = qindex;
  }

  const int qindex_rdmult = qindex_rd + quant_params->y_dc_delta_q;
  const int rdmult = av1_compute_rd_mult(
      qindex_rdmult, cm->seq_params->bit_depth,
      cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth,
      boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets,
      is_stat_consumption_stage(cpi), cpi->oxcf.tune_cfg.tuning);

  const int qindex_change = x->qindex != qindex;
  if (qindex_change || do_update) {
    set_q_index(&cpi->enc_quant_dequant_params, qindex, x);
  }

  MACROBLOCKD *const xd = &x->e_mbd;
  if ((segment_id != x->prev_segment_id) ||
      av1_use_qmatrix(quant_params, xd, segment_id)) {
    set_qmatrix(quant_params, segment_id, xd);
  }

  x->seg_skip_block = segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP);

  av1_set_error_per_bit(&x->errorperbit, rdmult);
  av1_set_sad_per_bit(cpi, &x->sadperbit, qindex_rd);

  x->prev_segment_id = segment_id;
}

void av1_frame_init_quantizer(AV1_COMP *cpi) {
  MACROBLOCK *const x = &cpi->td.mb;
  MACROBLOCKD *const xd = &x->e_mbd;
  x->prev_segment_id = -1;
  av1_init_plane_quantizers(cpi, x, xd->mi[0]->segment_id, 1);
}

static int adjust_hdr_cb_deltaq(int base_qindex) {
  double baseQp = base_qindex / QP_SCALE_FACTOR;
  const double chromaQp = CHROMA_QP_SCALE * baseQp + CHROMA_QP_OFFSET;
  const double dcbQP = CHROMA_CB_QP_SCALE * chromaQp * QP_SCALE_FACTOR;
  int dqpCb = (int)(dcbQP + (dcbQP < 0 ? -0.5 : 0.5));
  dqpCb = AOMMIN(0, dqpCb);
  dqpCb = (int)CLIP(dqpCb, -12 * QP_SCALE_FACTOR, 12 * QP_SCALE_FACTOR);
  return dqpCb;
}

static int adjust_hdr_cr_deltaq(int base_qindex) {
  double baseQp = base_qindex / QP_SCALE_FACTOR;
  const double chromaQp = CHROMA_QP_SCALE * baseQp + CHROMA_QP_OFFSET;
  const double dcrQP = CHROMA_CR_QP_SCALE * chromaQp * QP_SCALE_FACTOR;
  int dqpCr = (int)(dcrQP + (dcrQP < 0 ? -0.5 : 0.5));
  dqpCr = AOMMIN(0, dqpCr);
  dqpCr = (int)CLIP(dqpCr, -12 * QP_SCALE_FACTOR, 12 * QP_SCALE_FACTOR);
  return dqpCr;
}

void av1_set_quantizer(AV1_COMMON *const cm, int min_qmlevel, int max_qmlevel,
                       int q, int enable_chroma_deltaq, int enable_hdr_deltaq,
                       bool is_allintra, aom_tune_metric tuning) {
  // quantizer has to be reinitialized with av1_init_quantizer() if any
  // delta_q changes.
  CommonQuantParams *quant_params = &cm->quant_params;
  quant_params->base_qindex = AOMMAX(cm->delta_q_info.delta_q_present_flag, q);
  quant_params->y_dc_delta_q = 0;

  // Disable deltaq in lossless mode.
  if (enable_chroma_deltaq && q) {
    if (is_allintra &&
        (tuning == AOM_TUNE_IQ || tuning == AOM_TUNE_SSIMULACRA2)) {
      int chroma_dc_delta_q = 0;
      int chroma_ac_delta_q = 0;

      if (cm->seq_params->subsampling_x == 1 &&
          cm->seq_params->subsampling_y == 1) {
        // 4:2:0 subsampling: Constant chroma delta_q decrease (i.e. improved
        // chroma quality relative to luma) with gradual ramp-down for very low
        // qindexes.
        // Lowering chroma delta_q by 16 was found to improve SSIMULACRA 2
        // BD-Rate by 1.5-2% on Daala's subset1, as well as reducing chroma
        // artifacts (smudging, discoloration) during subjective quality
        // evaluations.
        // The ramp-down of chroma increase was determined by generating the
        // convex hull of SSIMULACRA 2 scores (for all boosts from 0-16), and
        // finding a linear equation that fits the convex hull.
        chroma_dc_delta_q = -clamp((quant_params->base_qindex / 2) - 14, 0, 16);
        chroma_ac_delta_q = chroma_dc_delta_q;
      } else if (cm->seq_params->subsampling_x == 1 &&
                 cm->seq_params->subsampling_y == 0) {
        // 4:2:2 subsampling: Constant chroma AC delta_q increase (i.e. improved
        // luma quality relative to chroma) with gradual ramp-down for very low
        // qindexes.
        // SSIMULACRA 2 appears to have some issues correctly scoring 4:2:2
        // material. Solely optimizing for maximum scores suggests a chroma AC
        // delta_q of 12 is the most efficient. However, visual inspection on
        // difficult-to-encode material resulted in chroma quality degrading too
        // much relative to luma, and chroma channels ending up being too small
        // compared to equivalent 4:4:4 or 4:2:0 encodes.
        // A chroma AC delta_q of 6 was selected because encoded chroma channels
        // have a much closer size to 4:4:4 and 4:2:0 encodes, and have more
        // favorable visual quality characteristics.
        // The ramp-down of chroma decrease was put into place to match 4:2:0
        // and 4:4:4 behavior. There were no special considerations on
        // SSIMULACRA 2 scores.
        chroma_dc_delta_q = 0;
        chroma_ac_delta_q = clamp((quant_params->base_qindex / 2), 0, 6);
      } else if (cm->seq_params->subsampling_x == 0 &&
                 cm->seq_params->subsampling_y == 0) {
        // 4:4:4 subsampling: Constant chroma AC delta_q increase (i.e. improved
        // luma quality relative to chroma) with gradual ramp-down for very low
        // qindexes.
        // Raising chroma AC delta_q by 24 was found to improve SSIMULACRA 2
        // BD-Rate by 2.5-3% on Daala's subset1, as well as providing a more
        // balanced bit allocation between the (relatively-starved) luma and
        // chroma channels.
        // Raising chroma DC delta_q appears to be harmful, both for SSIMULACRA
        // 2 scores and subjective quality (harshens blocking artifacts).
        // The ramp-down of chroma decrease was put into place so (lossy) QP 0
        // encodes still score within 0.1 SSIMULACRA 2 points of the equivalent
        // with no chroma delta_q (with a small efficiency improvement), while
        // encodes in the SSIMULACRA 2 <=90 range yield full benefits from this
        // adjustment.
        chroma_dc_delta_q = 0;
        chroma_ac_delta_q = clamp((quant_params->base_qindex / 2), 0, 24);
      }

      // TODO: bug https://crbug.com/aomedia/375221136 - find chroma_delta_q
      // values for 4:2:2 subsampling mode.
      quant_params->u_dc_delta_q = chroma_dc_delta_q;
      quant_params->u_ac_delta_q = chroma_ac_delta_q;
      quant_params->v_dc_delta_q = chroma_dc_delta_q;
      quant_params->v_ac_delta_q = chroma_ac_delta_q;
    } else {
      // TODO(aomedia:2717): need to design better delta
      quant_params->u_dc_delta_q = 2;
      quant_params->u_ac_delta_q = 2;
      quant_params->v_dc_delta_q = 2;
      quant_params->v_ac_delta_q = 2;
    }
  } else {
    quant_params->u_dc_delta_q = 0;
    quant_params->u_ac_delta_q = 0;
    quant_params->v_dc_delta_q = 0;
    quant_params->v_ac_delta_q = 0;
  }

  // following section 8.3.2 in T-REC-H.Sup15 document
  // to apply to AV1 qindex in the range of [0, 255]
  if (enable_hdr_deltaq && q) {
    int dqpCb = adjust_hdr_cb_deltaq(quant_params->base_qindex);
    int dqpCr = adjust_hdr_cr_deltaq(quant_params->base_qindex);
    quant_params->u_dc_delta_q = quant_params->u_ac_delta_q = dqpCb;
    quant_params->v_dc_delta_q = quant_params->v_ac_delta_q = dqpCr;
    if (dqpCb != dqpCr) {
      cm->seq_params->separate_uv_delta_q = 1;
    }
  }

  // Select the best luma and chroma QM formulas based on encoding mode and
  // tuning
  int (*get_luma_qmlevel)(int, int, int);
  int (*get_chroma_qmlevel)(int, int, int);

  if (is_allintra) {
    if (tuning == AOM_TUNE_IQ || tuning == AOM_TUNE_SSIMULACRA2) {
      if (tuning == AOM_TUNE_SSIMULACRA2) {
        // Use luma QM formula specifically tailored for tune SSIMULACRA2
        get_luma_qmlevel = aom_get_qmlevel_luma_ssimulacra2;
      } else {
        get_luma_qmlevel = aom_get_qmlevel_allintra;
      }

      if (cm->seq_params->subsampling_x == 0 &&
          cm->seq_params->subsampling_y == 0) {
        // 4:4:4 subsampling mode has 4x the number of chroma coefficients
        // compared to 4:2:0 (2x on each dimension). This means the encoder
        // should use lower chroma QM levels that more closely match the scaling
        // of an equivalent 4:2:0 chroma QM.
        get_chroma_qmlevel = aom_get_qmlevel_444_chroma;
      } else {
        // For all other chroma subsampling modes, use the all intra QM formula
        get_chroma_qmlevel = aom_get_qmlevel_allintra;
      }
    } else {
      get_luma_qmlevel = aom_get_qmlevel_allintra;
      get_chroma_qmlevel = aom_get_qmlevel_allintra;
    }
  } else {
    get_luma_qmlevel = aom_get_qmlevel;
    get_chroma_qmlevel = aom_get_qmlevel;
  }

  quant_params->qmatrix_level_y =
      get_luma_qmlevel(quant_params->base_qindex, min_qmlevel, max_qmlevel);
  quant_params->qmatrix_level_u =
      get_chroma_qmlevel(quant_params->base_qindex + quant_params->u_ac_delta_q,
                         min_qmlevel, max_qmlevel);

  if (cm->seq_params->separate_uv_delta_q) {
    quant_params->qmatrix_level_v = get_chroma_qmlevel(
        quant_params->base_qindex + quant_params->v_ac_delta_q, min_qmlevel,
        max_qmlevel);
  } else {
    quant_params->qmatrix_level_v = quant_params->qmatrix_level_u;
  }
}

// Table that converts 0-63 Q-range values passed in outside to the Qindex
// range used internally.
static const int quantizer_to_qindex[] = {
  0,   4,   8,   12,  16,  20,  24,  28,  32,  36,  40,  44,  48,
  52,  56,  60,  64,  68,  72,  76,  80,  84,  88,  92,  96,  100,
  104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152,
  156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204,
  208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 249, 255,
};

int av1_quantizer_to_qindex(int quantizer) {
  return quantizer_to_qindex[quantizer];
}

int av1_qindex_to_quantizer(int qindex) {
  int quantizer;

  for (quantizer = 0; quantizer < 64; ++quantizer)
    if (quantizer_to_qindex[quantizer] >= qindex) return quantizer;

  return 63;
}