1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include "config/aom_dsp_rtcd.h"
#include "aom/aomcx.h"
#include "aom_dsp/quantize.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/bitops.h"
#include "aom_ports/mem.h"
#include "av1/common/idct.h"
#include "av1/common/quant_common.h"
#include "av1/common/scan.h"
#include "av1/common/seg_common.h"
#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/rd.h"
void av1_quantize_skip(intptr_t n_coeffs, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr) {
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
*eob_ptr = 0;
}
int av1_quantize_fp_no_qmatrix(const int16_t quant_ptr[2],
const int16_t dequant_ptr[2],
const int16_t round_ptr[2], int log_scale,
const int16_t *scan, int coeff_count,
const tran_low_t *coeff_ptr,
tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr) {
memset(qcoeff_ptr, 0, coeff_count * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, coeff_count * sizeof(*dqcoeff_ptr));
const int rounding[2] = { ROUND_POWER_OF_TWO(round_ptr[0], log_scale),
ROUND_POWER_OF_TWO(round_ptr[1], log_scale) };
int eob = 0;
for (int i = 0; i < coeff_count; i++) {
const int rc = scan[i];
const int32_t thresh = (int32_t)(dequant_ptr[rc != 0]);
const int coeff = coeff_ptr[rc];
const int coeff_sign = AOMSIGN(coeff);
int64_t abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
int tmp32 = 0;
if ((abs_coeff << (1 + log_scale)) >= thresh) {
abs_coeff = clamp64(abs_coeff + rounding[rc != 0], INT16_MIN, INT16_MAX);
tmp32 = (int)((abs_coeff * quant_ptr[rc != 0]) >> (16 - log_scale));
if (tmp32) {
qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign;
const tran_low_t abs_dqcoeff =
(tmp32 * dequant_ptr[rc != 0]) >> log_scale;
dqcoeff_ptr[rc] = (abs_dqcoeff ^ coeff_sign) - coeff_sign;
}
}
if (tmp32) eob = i + 1;
}
return eob;
}
static void quantize_fp_helper_c(
const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan, const qm_val_t *qm_ptr,
const qm_val_t *iqm_ptr, int log_scale) {
int i, eob = -1;
const int rounding[2] = { ROUND_POWER_OF_TWO(round_ptr[0], log_scale),
ROUND_POWER_OF_TWO(round_ptr[1], log_scale) };
// TODO(jingning) Decide the need of these arguments after the
// quantization process is completed.
(void)zbin_ptr;
(void)quant_shift_ptr;
(void)iscan;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
if (qm_ptr == NULL && iqm_ptr == NULL) {
*eob_ptr = av1_quantize_fp_no_qmatrix(quant_ptr, dequant_ptr, round_ptr,
log_scale, scan, (int)n_coeffs,
coeff_ptr, qcoeff_ptr, dqcoeff_ptr);
} else {
// Quantization pass: All coefficients with index >= zero_flag are
// skippable. Note: zero_flag can be zero.
for (i = 0; i < n_coeffs; i++) {
const int rc = scan[i];
const int coeff = coeff_ptr[rc];
const qm_val_t wt = qm_ptr ? qm_ptr[rc] : (1 << AOM_QM_BITS);
const qm_val_t iwt = iqm_ptr ? iqm_ptr[rc] : (1 << AOM_QM_BITS);
const int dequant =
(dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >>
AOM_QM_BITS;
const int coeff_sign = AOMSIGN(coeff);
int64_t abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
int tmp32 = 0;
if (abs_coeff * wt >=
(dequant_ptr[rc != 0] << (AOM_QM_BITS - (1 + log_scale)))) {
abs_coeff += rounding[rc != 0];
abs_coeff = clamp64(abs_coeff, INT16_MIN, INT16_MAX);
tmp32 = (int)((abs_coeff * wt * quant_ptr[rc != 0]) >>
(16 - log_scale + AOM_QM_BITS));
qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign;
const tran_low_t abs_dqcoeff = (tmp32 * dequant) >> log_scale;
dqcoeff_ptr[rc] = (abs_dqcoeff ^ coeff_sign) - coeff_sign;
}
if (tmp32) eob = i;
}
*eob_ptr = eob + 1;
}
}
#if CONFIG_AV1_HIGHBITDEPTH
static void highbd_quantize_fp_helper_c(
const tran_low_t *coeff_ptr, intptr_t count, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan, const qm_val_t *qm_ptr,
const qm_val_t *iqm_ptr, int log_scale) {
int i;
int eob = -1;
const int shift = 16 - log_scale;
// TODO(jingning) Decide the need of these arguments after the
// quantization process is completed.
(void)zbin_ptr;
(void)quant_shift_ptr;
(void)iscan;
if (qm_ptr || iqm_ptr) {
// Quantization pass: All coefficients with index >= zero_flag are
// skippable. Note: zero_flag can be zero.
for (i = 0; i < count; i++) {
const int rc = scan[i];
const int coeff = coeff_ptr[rc];
const qm_val_t wt = qm_ptr != NULL ? qm_ptr[rc] : (1 << AOM_QM_BITS);
const qm_val_t iwt = iqm_ptr != NULL ? iqm_ptr[rc] : (1 << AOM_QM_BITS);
const int dequant =
(dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >>
AOM_QM_BITS;
const int coeff_sign = AOMSIGN(coeff);
const int64_t abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
int abs_qcoeff = 0;
if (abs_coeff * wt >=
(dequant_ptr[rc != 0] << (AOM_QM_BITS - (1 + log_scale)))) {
const int64_t tmp =
abs_coeff + ROUND_POWER_OF_TWO(round_ptr[rc != 0], log_scale);
abs_qcoeff =
(int)((tmp * quant_ptr[rc != 0] * wt) >> (shift + AOM_QM_BITS));
qcoeff_ptr[rc] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign);
const tran_low_t abs_dqcoeff = (abs_qcoeff * dequant) >> log_scale;
dqcoeff_ptr[rc] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign);
if (abs_qcoeff) eob = i;
} else {
qcoeff_ptr[rc] = 0;
dqcoeff_ptr[rc] = 0;
}
}
} else {
const int log_scaled_round_arr[2] = {
ROUND_POWER_OF_TWO(round_ptr[0], log_scale),
ROUND_POWER_OF_TWO(round_ptr[1], log_scale),
};
for (i = 0; i < count; i++) {
const int rc = scan[i];
const int coeff = coeff_ptr[rc];
const int rc01 = (rc != 0);
const int coeff_sign = AOMSIGN(coeff);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
const int log_scaled_round = log_scaled_round_arr[rc01];
if ((abs_coeff << (1 + log_scale)) >= dequant_ptr[rc01]) {
const int quant = quant_ptr[rc01];
const int dequant = dequant_ptr[rc01];
const int64_t tmp = (int64_t)abs_coeff + log_scaled_round;
const int abs_qcoeff = (int)((tmp * quant) >> shift);
qcoeff_ptr[rc] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign);
const tran_low_t abs_dqcoeff = (abs_qcoeff * dequant) >> log_scale;
if (abs_qcoeff) eob = i;
dqcoeff_ptr[rc] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign);
} else {
qcoeff_ptr[rc] = 0;
dqcoeff_ptr[rc] = 0;
}
}
}
*eob_ptr = eob + 1;
}
#endif // CONFIG_AV1_HIGHBITDEPTH
void av1_quantize_fp_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
const int16_t *zbin_ptr, const int16_t *round_ptr,
const int16_t *quant_ptr, const int16_t *quant_shift_ptr,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
quantize_fp_helper_c(coeff_ptr, n_coeffs, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr,
eob_ptr, scan, iscan, NULL, NULL, 0);
}
void av1_quantize_lp_c(const int16_t *coeff_ptr, intptr_t n_coeffs,
const int16_t *round_ptr, const int16_t *quant_ptr,
int16_t *qcoeff_ptr, int16_t *dqcoeff_ptr,
const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
(void)iscan;
int eob = -1;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
// Quantization pass: All coefficients with index >= zero_flag are
// skippable. Note: zero_flag can be zero.
for (int i = 0; i < n_coeffs; i++) {
const int rc = scan[i];
const int coeff = coeff_ptr[rc];
const int coeff_sign = AOMSIGN(coeff);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
int tmp = clamp(abs_coeff + round_ptr[rc != 0], INT16_MIN, INT16_MAX);
tmp = (tmp * quant_ptr[rc != 0]) >> 16;
qcoeff_ptr[rc] = (tmp ^ coeff_sign) - coeff_sign;
dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0];
if (tmp) eob = i;
}
*eob_ptr = eob + 1;
}
void av1_quantize_fp_32x32_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
const int16_t *zbin_ptr, const int16_t *round_ptr,
const int16_t *quant_ptr,
const int16_t *quant_shift_ptr,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
quantize_fp_helper_c(coeff_ptr, n_coeffs, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr,
eob_ptr, scan, iscan, NULL, NULL, 1);
}
void av1_quantize_fp_64x64_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
const int16_t *zbin_ptr, const int16_t *round_ptr,
const int16_t *quant_ptr,
const int16_t *quant_shift_ptr,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
quantize_fp_helper_c(coeff_ptr, n_coeffs, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr,
eob_ptr, scan, iscan, NULL, NULL, 2);
}
void av1_quantize_fp_facade(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
const MACROBLOCK_PLANE *p, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
const SCAN_ORDER *sc, const QUANT_PARAM *qparam) {
const qm_val_t *qm_ptr = qparam->qmatrix;
const qm_val_t *iqm_ptr = qparam->iqmatrix;
if (qm_ptr != NULL && iqm_ptr != NULL) {
quantize_fp_helper_c(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX,
p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr,
dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale);
} else {
switch (qparam->log_scale) {
case 0:
av1_quantize_fp(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX,
p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr,
dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
sc->iscan);
break;
case 1:
av1_quantize_fp_32x32(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX,
p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr,
dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
sc->iscan);
break;
case 2:
av1_quantize_fp_64x64(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX,
p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr,
dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
sc->iscan);
break;
default: assert(0);
}
}
}
void av1_quantize_b_facade(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
const MACROBLOCK_PLANE *p, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
const SCAN_ORDER *sc, const QUANT_PARAM *qparam) {
const qm_val_t *qm_ptr = qparam->qmatrix;
const qm_val_t *iqm_ptr = qparam->iqmatrix;
#if !CONFIG_REALTIME_ONLY
if (qparam->use_quant_b_adapt) {
// TODO(sarahparker) These quantize_b optimizations need SIMD
// implementations
if (qm_ptr != NULL && iqm_ptr != NULL) {
aom_quantize_b_adaptive_helper_c(
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr,
sc->scan, sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale);
} else {
switch (qparam->log_scale) {
case 0:
aom_quantize_b_adaptive(coeff_ptr, n_coeffs, p->zbin_QTX,
p->round_QTX, p->quant_QTX,
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr,
p->dequant_QTX, eob_ptr, sc->scan, sc->iscan);
break;
case 1:
aom_quantize_b_32x32_adaptive(
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX,
eob_ptr, sc->scan, sc->iscan);
break;
case 2:
aom_quantize_b_64x64_adaptive(
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX,
eob_ptr, sc->scan, sc->iscan);
break;
default: assert(0);
}
}
return;
}
#endif // !CONFIG_REALTIME_ONLY
if (qm_ptr != NULL && iqm_ptr != NULL) {
aom_quantize_b_helper_c(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX,
p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr,
dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale);
} else {
switch (qparam->log_scale) {
case 0:
aom_quantize_b(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX,
p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr,
dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
sc->iscan);
break;
case 1:
aom_quantize_b_32x32(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX,
p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr,
dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
sc->iscan);
break;
case 2:
aom_quantize_b_64x64(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX,
p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr,
dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
sc->iscan);
break;
default: assert(0);
}
}
}
static void quantize_dc(const tran_low_t *coeff_ptr, int n_coeffs,
int skip_block, const int16_t *round_ptr,
const int16_t quant, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t dequant_ptr,
uint16_t *eob_ptr, const qm_val_t *qm_ptr,
const qm_val_t *iqm_ptr, const int log_scale) {
const int rc = 0;
const int coeff = coeff_ptr[rc];
const int coeff_sign = AOMSIGN(coeff);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
int64_t tmp;
int eob = -1;
int32_t tmp32;
int dequant;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
if (!skip_block) {
const int wt = qm_ptr != NULL ? qm_ptr[rc] : (1 << AOM_QM_BITS);
const int iwt = iqm_ptr != NULL ? iqm_ptr[rc] : (1 << AOM_QM_BITS);
tmp = clamp(abs_coeff + ROUND_POWER_OF_TWO(round_ptr[rc != 0], log_scale),
INT16_MIN, INT16_MAX);
tmp32 = (int32_t)((tmp * wt * quant) >> (16 - log_scale + AOM_QM_BITS));
qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign;
dequant = (dequant_ptr * iwt + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS;
const tran_low_t abs_dqcoeff = (tmp32 * dequant) >> log_scale;
dqcoeff_ptr[rc] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign);
if (tmp32) eob = 0;
}
*eob_ptr = eob + 1;
}
void av1_quantize_dc_facade(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
const MACROBLOCK_PLANE *p, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
const SCAN_ORDER *sc, const QUANT_PARAM *qparam) {
// obsolete skip_block
const int skip_block = 0;
(void)sc;
assert(qparam->log_scale >= 0 && qparam->log_scale < (3));
const qm_val_t *qm_ptr = qparam->qmatrix;
const qm_val_t *iqm_ptr = qparam->iqmatrix;
quantize_dc(coeff_ptr, (int)n_coeffs, skip_block, p->round_QTX,
p->quant_fp_QTX[0], qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX[0],
eob_ptr, qm_ptr, iqm_ptr, qparam->log_scale);
}
#if CONFIG_AV1_HIGHBITDEPTH
void av1_highbd_quantize_fp_facade(const tran_low_t *coeff_ptr,
intptr_t n_coeffs, const MACROBLOCK_PLANE *p,
tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
const SCAN_ORDER *sc,
const QUANT_PARAM *qparam) {
const qm_val_t *qm_ptr = qparam->qmatrix;
const qm_val_t *iqm_ptr = qparam->iqmatrix;
if (qm_ptr != NULL && iqm_ptr != NULL) {
highbd_quantize_fp_helper_c(
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX, p->quant_fp_QTX,
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr,
sc->scan, sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale);
} else {
av1_highbd_quantize_fp(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX,
p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr,
dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
sc->iscan, qparam->log_scale);
}
}
void av1_highbd_quantize_b_facade(const tran_low_t *coeff_ptr,
intptr_t n_coeffs, const MACROBLOCK_PLANE *p,
tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
const SCAN_ORDER *sc,
const QUANT_PARAM *qparam) {
const qm_val_t *qm_ptr = qparam->qmatrix;
const qm_val_t *iqm_ptr = qparam->iqmatrix;
#if !CONFIG_REALTIME_ONLY
if (qparam->use_quant_b_adapt) {
if (qm_ptr != NULL && iqm_ptr != NULL) {
aom_highbd_quantize_b_adaptive_helper_c(
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr,
sc->scan, sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale);
} else {
switch (qparam->log_scale) {
case 0:
aom_highbd_quantize_b_adaptive(
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX,
eob_ptr, sc->scan, sc->iscan);
break;
case 1:
aom_highbd_quantize_b_32x32_adaptive(
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX,
eob_ptr, sc->scan, sc->iscan);
break;
case 2:
aom_highbd_quantize_b_64x64_adaptive(
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX,
eob_ptr, sc->scan, sc->iscan);
break;
default: assert(0);
}
}
return;
}
#endif // !CONFIG_REALTIME_ONLY
if (qm_ptr != NULL && iqm_ptr != NULL) {
aom_highbd_quantize_b_helper_c(
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr,
sc->scan, sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale);
} else {
switch (qparam->log_scale) {
case 0:
aom_highbd_quantize_b(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX,
p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr,
dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan,
sc->iscan);
break;
case 1:
aom_highbd_quantize_b_32x32(
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX,
eob_ptr, sc->scan, sc->iscan);
break;
case 2:
aom_highbd_quantize_b_64x64(
coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX,
p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX,
eob_ptr, sc->scan, sc->iscan);
break;
default: assert(0);
}
}
}
static inline void highbd_quantize_dc(
const tran_low_t *coeff_ptr, int n_coeffs, int skip_block,
const int16_t *round_ptr, const int16_t quant, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t dequant_ptr, uint16_t *eob_ptr,
const qm_val_t *qm_ptr, const qm_val_t *iqm_ptr, const int log_scale) {
int eob = -1;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
if (!skip_block) {
const qm_val_t wt = qm_ptr != NULL ? qm_ptr[0] : (1 << AOM_QM_BITS);
const qm_val_t iwt = iqm_ptr != NULL ? iqm_ptr[0] : (1 << AOM_QM_BITS);
const int coeff = coeff_ptr[0];
const int coeff_sign = AOMSIGN(coeff);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
const int64_t tmp = abs_coeff + ROUND_POWER_OF_TWO(round_ptr[0], log_scale);
const int64_t tmpw = tmp * wt;
const int abs_qcoeff =
(int)((tmpw * quant) >> (16 - log_scale + AOM_QM_BITS));
qcoeff_ptr[0] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign);
const int dequant =
(dequant_ptr * iwt + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS;
const tran_low_t abs_dqcoeff = (abs_qcoeff * dequant) >> log_scale;
dqcoeff_ptr[0] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign);
if (abs_qcoeff) eob = 0;
}
*eob_ptr = eob + 1;
}
void av1_highbd_quantize_dc_facade(const tran_low_t *coeff_ptr,
intptr_t n_coeffs, const MACROBLOCK_PLANE *p,
tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr,
const SCAN_ORDER *sc,
const QUANT_PARAM *qparam) {
// obsolete skip_block
const int skip_block = 0;
const qm_val_t *qm_ptr = qparam->qmatrix;
const qm_val_t *iqm_ptr = qparam->iqmatrix;
(void)sc;
highbd_quantize_dc(coeff_ptr, (int)n_coeffs, skip_block, p->round_QTX,
p->quant_fp_QTX[0], qcoeff_ptr, dqcoeff_ptr,
p->dequant_QTX[0], eob_ptr, qm_ptr, iqm_ptr,
qparam->log_scale);
}
void av1_highbd_quantize_fp_c(const tran_low_t *coeff_ptr, intptr_t count,
const int16_t *zbin_ptr, const int16_t *round_ptr,
const int16_t *quant_ptr,
const int16_t *quant_shift_ptr,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan,
int log_scale) {
highbd_quantize_fp_helper_c(coeff_ptr, count, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr,
dequant_ptr, eob_ptr, scan, iscan, NULL, NULL,
log_scale);
}
#endif // CONFIG_AV1_HIGHBITDEPTH
static void invert_quant(int16_t *quant, int16_t *shift, int d) {
uint32_t t;
int l, m;
t = d;
l = get_msb(t);
m = 1 + (1 << (16 + l)) / d;
*quant = (int16_t)(m - (1 << 16));
*shift = 1 << (16 - l);
}
static int get_qzbin_factor(int q, aom_bit_depth_t bit_depth) {
const int quant = av1_dc_quant_QTX(q, 0, bit_depth);
switch (bit_depth) {
case AOM_BITS_8: return q == 0 ? 64 : (quant < 148 ? 84 : 80);
case AOM_BITS_10: return q == 0 ? 64 : (quant < 592 ? 84 : 80);
case AOM_BITS_12: return q == 0 ? 64 : (quant < 2368 ? 84 : 80);
default:
assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12");
return -1;
}
}
void av1_build_quantizer(aom_bit_depth_t bit_depth, int y_dc_delta_q,
int u_dc_delta_q, int u_ac_delta_q, int v_dc_delta_q,
int v_ac_delta_q, QUANTS *const quants,
Dequants *const deq, int sharpness) {
int i, q, quant_QTX;
const int sharpness_adjustment = 16 * (7 - sharpness) / 7;
for (q = 0; q < QINDEX_RANGE; q++) {
const int qzbin_factor = get_qzbin_factor(q, bit_depth);
int qrounding_factor = q == 0 ? 64 : 48;
for (i = 0; i < 2; ++i) {
int qrounding_factor_fp = 64;
if (sharpness != 0 && q != 0) {
qrounding_factor = 64 - sharpness_adjustment;
qrounding_factor_fp = 64 - sharpness_adjustment;
}
// y quantizer with TX scale
quant_QTX = i == 0 ? av1_dc_quant_QTX(q, y_dc_delta_q, bit_depth)
: av1_ac_quant_QTX(q, 0, bit_depth);
invert_quant(&quants->y_quant[q][i], &quants->y_quant_shift[q][i],
quant_QTX);
quants->y_quant_fp[q][i] = (1 << 16) / quant_QTX;
quants->y_round_fp[q][i] = (qrounding_factor_fp * quant_QTX) >> 7;
quants->y_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant_QTX, 7);
quants->y_round[q][i] = (qrounding_factor * quant_QTX) >> 7;
deq->y_dequant_QTX[q][i] = quant_QTX;
// u quantizer with TX scale
quant_QTX = i == 0 ? av1_dc_quant_QTX(q, u_dc_delta_q, bit_depth)
: av1_ac_quant_QTX(q, u_ac_delta_q, bit_depth);
invert_quant(&quants->u_quant[q][i], &quants->u_quant_shift[q][i],
quant_QTX);
quants->u_quant_fp[q][i] = (1 << 16) / quant_QTX;
quants->u_round_fp[q][i] = (qrounding_factor_fp * quant_QTX) >> 7;
quants->u_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant_QTX, 7);
quants->u_round[q][i] = (qrounding_factor * quant_QTX) >> 7;
deq->u_dequant_QTX[q][i] = quant_QTX;
// v quantizer with TX scale
quant_QTX = i == 0 ? av1_dc_quant_QTX(q, v_dc_delta_q, bit_depth)
: av1_ac_quant_QTX(q, v_ac_delta_q, bit_depth);
invert_quant(&quants->v_quant[q][i], &quants->v_quant_shift[q][i],
quant_QTX);
quants->v_quant_fp[q][i] = (1 << 16) / quant_QTX;
quants->v_round_fp[q][i] = (qrounding_factor_fp * quant_QTX) >> 7;
quants->v_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant_QTX, 7);
quants->v_round[q][i] = (qrounding_factor * quant_QTX) >> 7;
deq->v_dequant_QTX[q][i] = quant_QTX;
}
for (i = 2; i < 8; i++) { // 8: SIMD width
quants->y_quant[q][i] = quants->y_quant[q][1];
quants->y_quant_fp[q][i] = quants->y_quant_fp[q][1];
quants->y_round_fp[q][i] = quants->y_round_fp[q][1];
quants->y_quant_shift[q][i] = quants->y_quant_shift[q][1];
quants->y_zbin[q][i] = quants->y_zbin[q][1];
quants->y_round[q][i] = quants->y_round[q][1];
deq->y_dequant_QTX[q][i] = deq->y_dequant_QTX[q][1];
quants->u_quant[q][i] = quants->u_quant[q][1];
quants->u_quant_fp[q][i] = quants->u_quant_fp[q][1];
quants->u_round_fp[q][i] = quants->u_round_fp[q][1];
quants->u_quant_shift[q][i] = quants->u_quant_shift[q][1];
quants->u_zbin[q][i] = quants->u_zbin[q][1];
quants->u_round[q][i] = quants->u_round[q][1];
deq->u_dequant_QTX[q][i] = deq->u_dequant_QTX[q][1];
quants->v_quant[q][i] = quants->v_quant[q][1];
quants->v_quant_fp[q][i] = quants->v_quant_fp[q][1];
quants->v_round_fp[q][i] = quants->v_round_fp[q][1];
quants->v_quant_shift[q][i] = quants->v_quant_shift[q][1];
quants->v_zbin[q][i] = quants->v_zbin[q][1];
quants->v_round[q][i] = quants->v_round[q][1];
deq->v_dequant_QTX[q][i] = deq->v_dequant_QTX[q][1];
}
}
}
static inline bool deltaq_params_have_changed(
const DeltaQuantParams *prev_deltaq_params,
const CommonQuantParams *quant_params) {
return (prev_deltaq_params->y_dc_delta_q != quant_params->y_dc_delta_q ||
prev_deltaq_params->u_dc_delta_q != quant_params->u_dc_delta_q ||
prev_deltaq_params->v_dc_delta_q != quant_params->v_dc_delta_q ||
prev_deltaq_params->u_ac_delta_q != quant_params->u_ac_delta_q ||
prev_deltaq_params->v_ac_delta_q != quant_params->v_ac_delta_q ||
prev_deltaq_params->sharpness != quant_params->sharpness);
}
void av1_init_quantizer(EncQuantDequantParams *const enc_quant_dequant_params,
CommonQuantParams *quant_params,
aom_bit_depth_t bit_depth, int sharpness) {
DeltaQuantParams *const prev_deltaq_params =
&enc_quant_dequant_params->prev_deltaq_params;
quant_params->sharpness = sharpness;
// Re-initialize the quantizer only if any of the dc/ac deltaq parameters
// change.
if (!deltaq_params_have_changed(prev_deltaq_params, quant_params)) return;
QUANTS *const quants = &enc_quant_dequant_params->quants;
Dequants *const dequants = &enc_quant_dequant_params->dequants;
av1_build_quantizer(bit_depth, quant_params->y_dc_delta_q,
quant_params->u_dc_delta_q, quant_params->u_ac_delta_q,
quant_params->v_dc_delta_q, quant_params->v_ac_delta_q,
quants, dequants, sharpness);
// Record the state of deltaq parameters.
prev_deltaq_params->y_dc_delta_q = quant_params->y_dc_delta_q;
prev_deltaq_params->u_dc_delta_q = quant_params->u_dc_delta_q;
prev_deltaq_params->v_dc_delta_q = quant_params->v_dc_delta_q;
prev_deltaq_params->u_ac_delta_q = quant_params->u_ac_delta_q;
prev_deltaq_params->v_ac_delta_q = quant_params->v_ac_delta_q;
prev_deltaq_params->sharpness = sharpness;
}
/*!\brief Update quantize parameters in MACROBLOCK
*
* \param[in] enc_quant_dequant_params This parameter cached the quantize and
* dequantize parameters for all q
* indices.
* \param[in] qindex Quantize index used for the current
* superblock.
* \param[out] x A superblock data structure for
* encoder.
*/
static void set_q_index(const EncQuantDequantParams *enc_quant_dequant_params,
int qindex, MACROBLOCK *x) {
const QUANTS *const quants = &enc_quant_dequant_params->quants;
const Dequants *const dequants = &enc_quant_dequant_params->dequants;
x->qindex = qindex;
x->seg_skip_block =
0; // TODO(angiebird): Find a proper place to init this variable.
// Y
x->plane[0].quant_QTX = quants->y_quant[qindex];
x->plane[0].quant_fp_QTX = quants->y_quant_fp[qindex];
x->plane[0].round_fp_QTX = quants->y_round_fp[qindex];
x->plane[0].quant_shift_QTX = quants->y_quant_shift[qindex];
x->plane[0].zbin_QTX = quants->y_zbin[qindex];
x->plane[0].round_QTX = quants->y_round[qindex];
x->plane[0].dequant_QTX = dequants->y_dequant_QTX[qindex];
// U
x->plane[1].quant_QTX = quants->u_quant[qindex];
x->plane[1].quant_fp_QTX = quants->u_quant_fp[qindex];
x->plane[1].round_fp_QTX = quants->u_round_fp[qindex];
x->plane[1].quant_shift_QTX = quants->u_quant_shift[qindex];
x->plane[1].zbin_QTX = quants->u_zbin[qindex];
x->plane[1].round_QTX = quants->u_round[qindex];
x->plane[1].dequant_QTX = dequants->u_dequant_QTX[qindex];
// V
x->plane[2].quant_QTX = quants->v_quant[qindex];
x->plane[2].quant_fp_QTX = quants->v_quant_fp[qindex];
x->plane[2].round_fp_QTX = quants->v_round_fp[qindex];
x->plane[2].quant_shift_QTX = quants->v_quant_shift[qindex];
x->plane[2].zbin_QTX = quants->v_zbin[qindex];
x->plane[2].round_QTX = quants->v_round[qindex];
x->plane[2].dequant_QTX = dequants->v_dequant_QTX[qindex];
}
/*!\brief Update quantize matrix in MACROBLOCKD based on segment id
*
* \param[in] quant_params Quantize parameters used by encoder and decoder
* \param[in] segment_id Segment id.
* \param[out] xd A superblock data structure used by encoder and
* decoder.
*/
static void set_qmatrix(const CommonQuantParams *quant_params, int segment_id,
MACROBLOCKD *xd) {
const int use_qmatrix = av1_use_qmatrix(quant_params, xd, segment_id);
const int qmlevel_y =
use_qmatrix ? quant_params->qmatrix_level_y : NUM_QM_LEVELS - 1;
const int qmlevel_u =
use_qmatrix ? quant_params->qmatrix_level_u : NUM_QM_LEVELS - 1;
const int qmlevel_v =
use_qmatrix ? quant_params->qmatrix_level_v : NUM_QM_LEVELS - 1;
const int qmlevel_ls[MAX_MB_PLANE] = { qmlevel_y, qmlevel_u, qmlevel_v };
for (int i = 0; i < MAX_MB_PLANE; ++i) {
const int qmlevel = qmlevel_ls[i];
memcpy(&xd->plane[i].seg_qmatrix[segment_id],
quant_params->gqmatrix[qmlevel][i],
sizeof(quant_params->gqmatrix[qmlevel][i]));
memcpy(&xd->plane[i].seg_iqmatrix[segment_id],
quant_params->giqmatrix[qmlevel][i],
sizeof(quant_params->giqmatrix[qmlevel][i]));
}
}
void av1_init_plane_quantizers(const AV1_COMP *cpi, MACROBLOCK *x,
int segment_id, const int do_update) {
const AV1_COMMON *const cm = &cpi->common;
const CommonQuantParams *const quant_params = &cm->quant_params;
const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100));
const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6);
const FRAME_TYPE frame_type = cm->current_frame.frame_type;
int qindex_rd;
const int current_qindex =
clamp(cm->delta_q_info.delta_q_present_flag
? quant_params->base_qindex + x->delta_qindex
: quant_params->base_qindex,
0, QINDEX_RANGE - 1);
const int qindex = av1_get_qindex(&cm->seg, segment_id, current_qindex);
if (cpi->oxcf.sb_qp_sweep) {
const int current_rd_qindex =
clamp(cm->delta_q_info.delta_q_present_flag
? quant_params->base_qindex + x->rdmult_delta_qindex
: quant_params->base_qindex,
0, QINDEX_RANGE - 1);
qindex_rd = av1_get_qindex(&cm->seg, segment_id, current_rd_qindex);
} else {
qindex_rd = qindex;
}
const int qindex_rdmult = qindex_rd + quant_params->y_dc_delta_q;
const int rdmult = av1_compute_rd_mult(
qindex_rdmult, cm->seq_params->bit_depth,
cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth,
boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets,
is_stat_consumption_stage(cpi), cpi->oxcf.tune_cfg.tuning);
const int qindex_change = x->qindex != qindex;
if (qindex_change || do_update) {
set_q_index(&cpi->enc_quant_dequant_params, qindex, x);
}
MACROBLOCKD *const xd = &x->e_mbd;
if ((segment_id != x->prev_segment_id) ||
av1_use_qmatrix(quant_params, xd, segment_id)) {
set_qmatrix(quant_params, segment_id, xd);
}
x->seg_skip_block = segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP);
av1_set_error_per_bit(&x->errorperbit, rdmult);
av1_set_sad_per_bit(cpi, &x->sadperbit, qindex_rd);
x->prev_segment_id = segment_id;
}
void av1_frame_init_quantizer(AV1_COMP *cpi) {
MACROBLOCK *const x = &cpi->td.mb;
MACROBLOCKD *const xd = &x->e_mbd;
x->prev_segment_id = -1;
av1_init_plane_quantizers(cpi, x, xd->mi[0]->segment_id, 1);
}
static int adjust_hdr_cb_deltaq(int base_qindex) {
double baseQp = base_qindex / QP_SCALE_FACTOR;
const double chromaQp = CHROMA_QP_SCALE * baseQp + CHROMA_QP_OFFSET;
const double dcbQP = CHROMA_CB_QP_SCALE * chromaQp * QP_SCALE_FACTOR;
int dqpCb = (int)(dcbQP + (dcbQP < 0 ? -0.5 : 0.5));
dqpCb = AOMMIN(0, dqpCb);
dqpCb = (int)CLIP(dqpCb, -12 * QP_SCALE_FACTOR, 12 * QP_SCALE_FACTOR);
return dqpCb;
}
static int adjust_hdr_cr_deltaq(int base_qindex) {
double baseQp = base_qindex / QP_SCALE_FACTOR;
const double chromaQp = CHROMA_QP_SCALE * baseQp + CHROMA_QP_OFFSET;
const double dcrQP = CHROMA_CR_QP_SCALE * chromaQp * QP_SCALE_FACTOR;
int dqpCr = (int)(dcrQP + (dcrQP < 0 ? -0.5 : 0.5));
dqpCr = AOMMIN(0, dqpCr);
dqpCr = (int)CLIP(dqpCr, -12 * QP_SCALE_FACTOR, 12 * QP_SCALE_FACTOR);
return dqpCr;
}
void av1_set_quantizer(AV1_COMMON *const cm, int min_qmlevel, int max_qmlevel,
int q, int enable_chroma_deltaq, int enable_hdr_deltaq,
bool is_allintra, aom_tune_metric tuning) {
// quantizer has to be reinitialized with av1_init_quantizer() if any
// delta_q changes.
CommonQuantParams *quant_params = &cm->quant_params;
quant_params->base_qindex = AOMMAX(cm->delta_q_info.delta_q_present_flag, q);
quant_params->y_dc_delta_q = 0;
// Disable deltaq in lossless mode.
if (enable_chroma_deltaq && q) {
if (is_allintra &&
(tuning == AOM_TUNE_IQ || tuning == AOM_TUNE_SSIMULACRA2)) {
int chroma_dc_delta_q = 0;
int chroma_ac_delta_q = 0;
if (cm->seq_params->subsampling_x == 1 &&
cm->seq_params->subsampling_y == 1) {
// 4:2:0 subsampling: Constant chroma delta_q decrease (i.e. improved
// chroma quality relative to luma) with gradual ramp-down for very low
// qindexes.
// Lowering chroma delta_q by 16 was found to improve SSIMULACRA 2
// BD-Rate by 1.5-2% on Daala's subset1, as well as reducing chroma
// artifacts (smudging, discoloration) during subjective quality
// evaluations.
// The ramp-down of chroma increase was determined by generating the
// convex hull of SSIMULACRA 2 scores (for all boosts from 0-16), and
// finding a linear equation that fits the convex hull.
chroma_dc_delta_q = -clamp((quant_params->base_qindex / 2) - 14, 0, 16);
chroma_ac_delta_q = chroma_dc_delta_q;
} else if (cm->seq_params->subsampling_x == 1 &&
cm->seq_params->subsampling_y == 0) {
// 4:2:2 subsampling: Constant chroma AC delta_q increase (i.e. improved
// luma quality relative to chroma) with gradual ramp-down for very low
// qindexes.
// SSIMULACRA 2 appears to have some issues correctly scoring 4:2:2
// material. Solely optimizing for maximum scores suggests a chroma AC
// delta_q of 12 is the most efficient. However, visual inspection on
// difficult-to-encode material resulted in chroma quality degrading too
// much relative to luma, and chroma channels ending up being too small
// compared to equivalent 4:4:4 or 4:2:0 encodes.
// A chroma AC delta_q of 6 was selected because encoded chroma channels
// have a much closer size to 4:4:4 and 4:2:0 encodes, and have more
// favorable visual quality characteristics.
// The ramp-down of chroma decrease was put into place to match 4:2:0
// and 4:4:4 behavior. There were no special considerations on
// SSIMULACRA 2 scores.
chroma_dc_delta_q = 0;
chroma_ac_delta_q = clamp((quant_params->base_qindex / 2), 0, 6);
} else if (cm->seq_params->subsampling_x == 0 &&
cm->seq_params->subsampling_y == 0) {
// 4:4:4 subsampling: Constant chroma AC delta_q increase (i.e. improved
// luma quality relative to chroma) with gradual ramp-down for very low
// qindexes.
// Raising chroma AC delta_q by 24 was found to improve SSIMULACRA 2
// BD-Rate by 2.5-3% on Daala's subset1, as well as providing a more
// balanced bit allocation between the (relatively-starved) luma and
// chroma channels.
// Raising chroma DC delta_q appears to be harmful, both for SSIMULACRA
// 2 scores and subjective quality (harshens blocking artifacts).
// The ramp-down of chroma decrease was put into place so (lossy) QP 0
// encodes still score within 0.1 SSIMULACRA 2 points of the equivalent
// with no chroma delta_q (with a small efficiency improvement), while
// encodes in the SSIMULACRA 2 <=90 range yield full benefits from this
// adjustment.
chroma_dc_delta_q = 0;
chroma_ac_delta_q = clamp((quant_params->base_qindex / 2), 0, 24);
}
// TODO: bug https://crbug.com/aomedia/375221136 - find chroma_delta_q
// values for 4:2:2 subsampling mode.
quant_params->u_dc_delta_q = chroma_dc_delta_q;
quant_params->u_ac_delta_q = chroma_ac_delta_q;
quant_params->v_dc_delta_q = chroma_dc_delta_q;
quant_params->v_ac_delta_q = chroma_ac_delta_q;
} else {
// TODO(aomedia:2717): need to design better delta
quant_params->u_dc_delta_q = 2;
quant_params->u_ac_delta_q = 2;
quant_params->v_dc_delta_q = 2;
quant_params->v_ac_delta_q = 2;
}
} else {
quant_params->u_dc_delta_q = 0;
quant_params->u_ac_delta_q = 0;
quant_params->v_dc_delta_q = 0;
quant_params->v_ac_delta_q = 0;
}
// following section 8.3.2 in T-REC-H.Sup15 document
// to apply to AV1 qindex in the range of [0, 255]
if (enable_hdr_deltaq && q) {
int dqpCb = adjust_hdr_cb_deltaq(quant_params->base_qindex);
int dqpCr = adjust_hdr_cr_deltaq(quant_params->base_qindex);
quant_params->u_dc_delta_q = quant_params->u_ac_delta_q = dqpCb;
quant_params->v_dc_delta_q = quant_params->v_ac_delta_q = dqpCr;
if (dqpCb != dqpCr) {
cm->seq_params->separate_uv_delta_q = 1;
}
}
// Select the best luma and chroma QM formulas based on encoding mode and
// tuning
int (*get_luma_qmlevel)(int, int, int);
int (*get_chroma_qmlevel)(int, int, int);
if (is_allintra) {
if (tuning == AOM_TUNE_IQ || tuning == AOM_TUNE_SSIMULACRA2) {
if (tuning == AOM_TUNE_SSIMULACRA2) {
// Use luma QM formula specifically tailored for tune SSIMULACRA2
get_luma_qmlevel = aom_get_qmlevel_luma_ssimulacra2;
} else {
get_luma_qmlevel = aom_get_qmlevel_allintra;
}
if (cm->seq_params->subsampling_x == 0 &&
cm->seq_params->subsampling_y == 0) {
// 4:4:4 subsampling mode has 4x the number of chroma coefficients
// compared to 4:2:0 (2x on each dimension). This means the encoder
// should use lower chroma QM levels that more closely match the scaling
// of an equivalent 4:2:0 chroma QM.
get_chroma_qmlevel = aom_get_qmlevel_444_chroma;
} else {
// For all other chroma subsampling modes, use the all intra QM formula
get_chroma_qmlevel = aom_get_qmlevel_allintra;
}
} else {
get_luma_qmlevel = aom_get_qmlevel_allintra;
get_chroma_qmlevel = aom_get_qmlevel_allintra;
}
} else {
get_luma_qmlevel = aom_get_qmlevel;
get_chroma_qmlevel = aom_get_qmlevel;
}
quant_params->qmatrix_level_y =
get_luma_qmlevel(quant_params->base_qindex, min_qmlevel, max_qmlevel);
quant_params->qmatrix_level_u =
get_chroma_qmlevel(quant_params->base_qindex + quant_params->u_ac_delta_q,
min_qmlevel, max_qmlevel);
if (cm->seq_params->separate_uv_delta_q) {
quant_params->qmatrix_level_v = get_chroma_qmlevel(
quant_params->base_qindex + quant_params->v_ac_delta_q, min_qmlevel,
max_qmlevel);
} else {
quant_params->qmatrix_level_v = quant_params->qmatrix_level_u;
}
}
// Table that converts 0-63 Q-range values passed in outside to the Qindex
// range used internally.
static const int quantizer_to_qindex[] = {
0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48,
52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100,
104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152,
156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204,
208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 249, 255,
};
int av1_quantizer_to_qindex(int quantizer) {
return quantizer_to_qindex[quantizer];
}
int av1_qindex_to_quantizer(int qindex) {
int quantizer;
for (quantizer = 0; quantizer < 64; ++quantizer)
if (quantizer_to_qindex[quantizer] >= qindex) return quantizer;
return 63;
}
|