1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <limits.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include "aom/aom_encoder.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/binary_codes_writer.h"
#include "aom_dsp/bitwriter_buffer.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/bitops.h"
#include "aom_ports/mem_ops.h"
#if CONFIG_BITSTREAM_DEBUG
#include "aom_util/debug_util.h"
#endif // CONFIG_BITSTREAM_DEBUG
#include "av1/common/cdef.h"
#include "av1/common/cfl.h"
#include "av1/common/debugmodes.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
#include "av1/common/mvref_common.h"
#include "av1/common/pred_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/seg_common.h"
#include "av1/common/tile_common.h"
#include "av1/encoder/bitstream.h"
#include "av1/encoder/cost.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/encodetxb.h"
#include "av1/encoder/ethread.h"
#include "av1/encoder/mcomp.h"
#include "av1/encoder/palette.h"
#include "av1/encoder/pickrst.h"
#include "av1/encoder/segmentation.h"
#include "av1/encoder/tokenize.h"
#define ENC_MISMATCH_DEBUG 0
#define SETUP_TIME_OH_CONST 5 // Setup time overhead constant per worker
#define JOB_DISP_TIME_OH_CONST 1 // Job dispatch time overhead per tile
static inline void write_uniform(aom_writer *w, int n, int v) {
const int l = get_unsigned_bits(n);
const int m = (1 << l) - n;
if (l == 0) return;
if (v < m) {
aom_write_literal(w, v, l - 1);
} else {
aom_write_literal(w, m + ((v - m) >> 1), l - 1);
aom_write_literal(w, (v - m) & 1, 1);
}
}
#if !CONFIG_REALTIME_ONLY
static inline void loop_restoration_write_sb_coeffs(
const AV1_COMMON *const cm, MACROBLOCKD *xd, int runit_idx,
aom_writer *const w, int plane, FRAME_COUNTS *counts);
#endif
static inline void write_intra_y_mode_kf(FRAME_CONTEXT *frame_ctx,
const MB_MODE_INFO *mi,
const MB_MODE_INFO *above_mi,
const MB_MODE_INFO *left_mi,
PREDICTION_MODE mode, aom_writer *w) {
assert(!is_intrabc_block(mi));
(void)mi;
aom_write_symbol(w, mode, get_y_mode_cdf(frame_ctx, above_mi, left_mi),
INTRA_MODES);
}
static inline void write_inter_mode(aom_writer *w, PREDICTION_MODE mode,
FRAME_CONTEXT *ec_ctx,
const int16_t mode_ctx) {
const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
aom_write_symbol(w, mode != NEWMV, ec_ctx->newmv_cdf[newmv_ctx], 2);
if (mode != NEWMV) {
const int16_t zeromv_ctx =
(mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
aom_write_symbol(w, mode != GLOBALMV, ec_ctx->zeromv_cdf[zeromv_ctx], 2);
if (mode != GLOBALMV) {
int16_t refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
aom_write_symbol(w, mode != NEARESTMV, ec_ctx->refmv_cdf[refmv_ctx], 2);
}
}
}
static inline void write_drl_idx(FRAME_CONTEXT *ec_ctx,
const MB_MODE_INFO *mbmi,
const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame,
aom_writer *w) {
assert(mbmi->ref_mv_idx < 3);
const int new_mv = mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV;
if (new_mv) {
int idx;
for (idx = 0; idx < 2; ++idx) {
if (mbmi_ext_frame->ref_mv_count > idx + 1) {
uint8_t drl_ctx = av1_drl_ctx(mbmi_ext_frame->weight, idx);
aom_write_symbol(w, mbmi->ref_mv_idx != idx, ec_ctx->drl_cdf[drl_ctx],
2);
if (mbmi->ref_mv_idx == idx) return;
}
}
return;
}
if (have_nearmv_in_inter_mode(mbmi->mode)) {
int idx;
// TODO(jingning): Temporary solution to compensate the NEARESTMV offset.
for (idx = 1; idx < 3; ++idx) {
if (mbmi_ext_frame->ref_mv_count > idx + 1) {
uint8_t drl_ctx = av1_drl_ctx(mbmi_ext_frame->weight, idx);
aom_write_symbol(w, mbmi->ref_mv_idx != (idx - 1),
ec_ctx->drl_cdf[drl_ctx], 2);
if (mbmi->ref_mv_idx == (idx - 1)) return;
}
}
return;
}
}
static inline void write_inter_compound_mode(MACROBLOCKD *xd, aom_writer *w,
PREDICTION_MODE mode,
const int16_t mode_ctx) {
assert(is_inter_compound_mode(mode));
aom_write_symbol(w, INTER_COMPOUND_OFFSET(mode),
xd->tile_ctx->inter_compound_mode_cdf[mode_ctx],
INTER_COMPOUND_MODES);
}
static inline void write_tx_size_vartx(MACROBLOCKD *xd,
const MB_MODE_INFO *mbmi,
TX_SIZE tx_size, int depth, int blk_row,
int blk_col, aom_writer *w) {
FRAME_CONTEXT *const ec_ctx = xd->tile_ctx;
const int max_blocks_high = max_block_high(xd, mbmi->bsize, 0);
const int max_blocks_wide = max_block_wide(xd, mbmi->bsize, 0);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
if (depth == MAX_VARTX_DEPTH) {
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
return;
}
const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row,
mbmi->bsize, tx_size);
const int txb_size_index =
av1_get_txb_size_index(mbmi->bsize, blk_row, blk_col);
const int write_txfm_partition =
tx_size == mbmi->inter_tx_size[txb_size_index];
if (write_txfm_partition) {
aom_write_symbol(w, 0, ec_ctx->txfm_partition_cdf[ctx], 2);
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
// TODO(yuec): set correct txfm partition update for qttx
} else {
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
aom_write_symbol(w, 1, ec_ctx->txfm_partition_cdf[ctx], 2);
if (sub_txs == TX_4X4) {
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, sub_txs, tx_size);
return;
}
assert(bsw > 0 && bsh > 0);
for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
const int offsetr = blk_row + row;
for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
const int offsetc = blk_col + col;
write_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, offsetr, offsetc, w);
}
}
}
}
static inline void write_selected_tx_size(const MACROBLOCKD *xd,
aom_writer *w) {
const MB_MODE_INFO *const mbmi = xd->mi[0];
const BLOCK_SIZE bsize = mbmi->bsize;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
if (block_signals_txsize(bsize)) {
const TX_SIZE tx_size = mbmi->tx_size;
const int tx_size_ctx = get_tx_size_context(xd);
const int depth = tx_size_to_depth(tx_size, bsize);
const int max_depths = bsize_to_max_depth(bsize);
const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize);
assert(depth >= 0 && depth <= max_depths);
assert(!is_inter_block(mbmi));
assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed(xd, mbmi)));
aom_write_symbol(w, depth, ec_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx],
max_depths + 1);
}
}
static int write_skip(const AV1_COMMON *cm, const MACROBLOCKD *xd,
uint8_t segment_id, const MB_MODE_INFO *mi,
aom_writer *w) {
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
return 1;
} else {
const int skip_txfm = mi->skip_txfm;
const int ctx = av1_get_skip_txfm_context(xd);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
aom_write_symbol(w, skip_txfm, ec_ctx->skip_txfm_cdfs[ctx], 2);
return skip_txfm;
}
}
static int write_skip_mode(const AV1_COMMON *cm, const MACROBLOCKD *xd,
uint8_t segment_id, const MB_MODE_INFO *mi,
aom_writer *w) {
if (!cm->current_frame.skip_mode_info.skip_mode_flag) return 0;
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
return 0;
}
const int skip_mode = mi->skip_mode;
if (!is_comp_ref_allowed(mi->bsize)) {
assert(!skip_mode);
return 0;
}
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME) ||
segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
// These features imply single-reference mode, while skip mode implies
// compound reference. Hence, the two are mutually exclusive.
// In other words, skip_mode is implicitly 0 here.
assert(!skip_mode);
return 0;
}
const int ctx = av1_get_skip_mode_context(xd);
aom_write_symbol(w, skip_mode, xd->tile_ctx->skip_mode_cdfs[ctx], 2);
return skip_mode;
}
static inline void write_is_inter(const AV1_COMMON *cm, const MACROBLOCKD *xd,
uint8_t segment_id, aom_writer *w,
const int is_inter) {
if (!segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
assert(is_inter);
return;
}
const int ctx = av1_get_intra_inter_context(xd);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
aom_write_symbol(w, is_inter, ec_ctx->intra_inter_cdf[ctx], 2);
}
}
static inline void write_motion_mode(const AV1_COMMON *cm, MACROBLOCKD *xd,
const MB_MODE_INFO *mbmi, aom_writer *w) {
MOTION_MODE last_motion_mode_allowed =
cm->features.switchable_motion_mode
? motion_mode_allowed(cm->global_motion, xd, mbmi,
cm->features.allow_warped_motion)
: SIMPLE_TRANSLATION;
assert(mbmi->motion_mode <= last_motion_mode_allowed);
switch (last_motion_mode_allowed) {
case SIMPLE_TRANSLATION: break;
case OBMC_CAUSAL:
aom_write_symbol(w, mbmi->motion_mode == OBMC_CAUSAL,
xd->tile_ctx->obmc_cdf[mbmi->bsize], 2);
break;
default:
aom_write_symbol(w, mbmi->motion_mode,
xd->tile_ctx->motion_mode_cdf[mbmi->bsize],
MOTION_MODES);
}
}
static inline void write_delta_qindex(const MACROBLOCKD *xd, int delta_qindex,
aom_writer *w) {
int sign = delta_qindex < 0;
int abs = sign ? -delta_qindex : delta_qindex;
int rem_bits, thr;
int smallval = abs < DELTA_Q_SMALL ? 1 : 0;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
aom_write_symbol(w, AOMMIN(abs, DELTA_Q_SMALL), ec_ctx->delta_q_cdf,
DELTA_Q_PROBS + 1);
if (!smallval) {
rem_bits = get_msb(abs - 1);
thr = (1 << rem_bits) + 1;
aom_write_literal(w, rem_bits - 1, 3);
aom_write_literal(w, abs - thr, rem_bits);
}
if (abs > 0) {
aom_write_bit(w, sign);
}
}
static inline void write_delta_lflevel(const AV1_COMMON *cm,
const MACROBLOCKD *xd, int lf_id,
int delta_lflevel, int delta_lf_multi,
aom_writer *w) {
int sign = delta_lflevel < 0;
int abs = sign ? -delta_lflevel : delta_lflevel;
int rem_bits, thr;
int smallval = abs < DELTA_LF_SMALL ? 1 : 0;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
(void)cm;
if (delta_lf_multi) {
assert(lf_id >= 0 && lf_id < (av1_num_planes(cm) > 1 ? FRAME_LF_COUNT
: FRAME_LF_COUNT - 2));
aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL),
ec_ctx->delta_lf_multi_cdf[lf_id], DELTA_LF_PROBS + 1);
} else {
aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), ec_ctx->delta_lf_cdf,
DELTA_LF_PROBS + 1);
}
if (!smallval) {
rem_bits = get_msb(abs - 1);
thr = (1 << rem_bits) + 1;
aom_write_literal(w, rem_bits - 1, 3);
aom_write_literal(w, abs - thr, rem_bits);
}
if (abs > 0) {
aom_write_bit(w, sign);
}
}
static inline void pack_map_tokens(aom_writer *w, const TokenExtra **tp, int n,
int num, MapCdf map_pb_cdf) {
const TokenExtra *p = *tp;
const int palette_size_idx = n - PALETTE_MIN_SIZE;
write_uniform(w, n, p->token); // The first color index.
++p;
--num;
for (int i = 0; i < num; ++i) {
assert((p->color_ctx >= 0) &&
(p->color_ctx < PALETTE_COLOR_INDEX_CONTEXTS));
aom_cdf_prob *color_map_cdf = map_pb_cdf[palette_size_idx][p->color_ctx];
aom_write_symbol(w, p->token, color_map_cdf, n);
++p;
}
*tp = p;
}
static inline void pack_txb_tokens(
aom_writer *w, AV1_COMMON *cm, MACROBLOCK *const x, const TokenExtra **tp,
const TokenExtra *const tok_end, MACROBLOCKD *xd, MB_MODE_INFO *mbmi,
int plane, BLOCK_SIZE plane_bsize, aom_bit_depth_t bit_depth, int block,
int blk_row, int blk_col, TX_SIZE tx_size, TOKEN_STATS *token_stats) {
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
const struct macroblockd_plane *const pd = &xd->plane[plane];
const TX_SIZE plane_tx_size =
plane ? av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
pd->subsampling_y)
: mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
blk_col)];
if (tx_size == plane_tx_size || plane) {
av1_write_coeffs_txb(cm, x, w, blk_row, blk_col, plane, block, tx_size);
#if CONFIG_RD_DEBUG
TOKEN_STATS tmp_token_stats;
init_token_stats(&tmp_token_stats);
token_stats->cost += tmp_token_stats.cost;
#endif
} else {
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
const int step = bsh * bsw;
const int row_end =
AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row);
const int col_end =
AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col);
assert(bsw > 0 && bsh > 0);
for (int r = 0; r < row_end; r += bsh) {
const int offsetr = blk_row + r;
for (int c = 0; c < col_end; c += bsw) {
const int offsetc = blk_col + c;
pack_txb_tokens(w, cm, x, tp, tok_end, xd, mbmi, plane, plane_bsize,
bit_depth, block, offsetr, offsetc, sub_txs,
token_stats);
block += step;
}
}
}
}
static inline void set_spatial_segment_id(
const CommonModeInfoParams *const mi_params, uint8_t *segment_ids,
BLOCK_SIZE bsize, int mi_row, int mi_col, uint8_t segment_id) {
const int mi_offset = mi_row * mi_params->mi_cols + mi_col;
const int bw = mi_size_wide[bsize];
const int bh = mi_size_high[bsize];
const int xmis = AOMMIN(mi_params->mi_cols - mi_col, bw);
const int ymis = AOMMIN(mi_params->mi_rows - mi_row, bh);
const int mi_stride = mi_params->mi_cols;
set_segment_id(segment_ids, mi_offset, xmis, ymis, mi_stride, segment_id);
}
int av1_neg_interleave(int x, int ref, int max) {
assert(x < max);
const int diff = x - ref;
if (!ref) return x;
if (ref >= (max - 1)) return -x + max - 1;
if (2 * ref < max) {
if (abs(diff) <= ref) {
if (diff > 0)
return (diff << 1) - 1;
else
return ((-diff) << 1);
}
return x;
} else {
if (abs(diff) < (max - ref)) {
if (diff > 0)
return (diff << 1) - 1;
else
return ((-diff) << 1);
}
return (max - x) - 1;
}
}
static inline void write_segment_id(AV1_COMP *cpi, MACROBLOCKD *const xd,
const MB_MODE_INFO *const mbmi,
aom_writer *w,
const struct segmentation *seg,
struct segmentation_probs *segp,
int skip_txfm) {
if (!seg->enabled || !seg->update_map) return;
AV1_COMMON *const cm = &cpi->common;
int cdf_num;
const uint8_t pred = av1_get_spatial_seg_pred(
cm, xd, &cdf_num, cpi->cyclic_refresh->skip_over4x4);
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
if (skip_txfm) {
// Still need to transmit tx size for intra blocks even if skip_txfm is
// true. Changing segment_id may make the tx size become invalid, e.g
// changing from lossless to lossy.
assert(is_inter_block(mbmi) || !cpi->enc_seg.has_lossless_segment);
set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, mbmi->bsize,
mi_row, mi_col, pred);
set_spatial_segment_id(&cm->mi_params, cpi->enc_seg.map, mbmi->bsize,
mi_row, mi_col, pred);
/* mbmi is read only but we need to update segment_id */
((MB_MODE_INFO *)mbmi)->segment_id = pred;
return;
}
const int coded_id =
av1_neg_interleave(mbmi->segment_id, pred, seg->last_active_segid + 1);
aom_cdf_prob *pred_cdf = segp->spatial_pred_seg_cdf[cdf_num];
aom_write_symbol(w, coded_id, pred_cdf, MAX_SEGMENTS);
set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, mbmi->bsize,
mi_row, mi_col, mbmi->segment_id);
}
#define WRITE_REF_BIT(bname, pname) \
aom_write_symbol(w, bname, av1_get_pred_cdf_##pname(xd), 2)
// This function encodes the reference frame
static inline void write_ref_frames(const AV1_COMMON *cm, const MACROBLOCKD *xd,
aom_writer *w) {
const MB_MODE_INFO *const mbmi = xd->mi[0];
const int is_compound = has_second_ref(mbmi);
const uint8_t segment_id = mbmi->segment_id;
// If segment level coding of this signal is disabled...
// or the segment allows multiple reference frame options
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
assert(!is_compound);
assert(mbmi->ref_frame[0] ==
get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
} else if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) ||
segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
assert(!is_compound);
assert(mbmi->ref_frame[0] == LAST_FRAME);
} else {
// does the feature use compound prediction or not
// (if not specified at the frame/segment level)
if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) {
if (is_comp_ref_allowed(mbmi->bsize))
aom_write_symbol(w, is_compound, av1_get_reference_mode_cdf(xd), 2);
} else {
assert((!is_compound) ==
(cm->current_frame.reference_mode == SINGLE_REFERENCE));
}
if (is_compound) {
const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi)
? UNIDIR_COMP_REFERENCE
: BIDIR_COMP_REFERENCE;
aom_write_symbol(w, comp_ref_type, av1_get_comp_reference_type_cdf(xd),
2);
if (comp_ref_type == UNIDIR_COMP_REFERENCE) {
const int bit = mbmi->ref_frame[0] == BWDREF_FRAME;
WRITE_REF_BIT(bit, uni_comp_ref_p);
if (!bit) {
assert(mbmi->ref_frame[0] == LAST_FRAME);
const int bit1 = mbmi->ref_frame[1] == LAST3_FRAME ||
mbmi->ref_frame[1] == GOLDEN_FRAME;
WRITE_REF_BIT(bit1, uni_comp_ref_p1);
if (bit1) {
const int bit2 = mbmi->ref_frame[1] == GOLDEN_FRAME;
WRITE_REF_BIT(bit2, uni_comp_ref_p2);
}
} else {
assert(mbmi->ref_frame[1] == ALTREF_FRAME);
}
return;
}
assert(comp_ref_type == BIDIR_COMP_REFERENCE);
const int bit = (mbmi->ref_frame[0] == GOLDEN_FRAME ||
mbmi->ref_frame[0] == LAST3_FRAME);
WRITE_REF_BIT(bit, comp_ref_p);
if (!bit) {
const int bit1 = mbmi->ref_frame[0] == LAST2_FRAME;
WRITE_REF_BIT(bit1, comp_ref_p1);
} else {
const int bit2 = mbmi->ref_frame[0] == GOLDEN_FRAME;
WRITE_REF_BIT(bit2, comp_ref_p2);
}
const int bit_bwd = mbmi->ref_frame[1] == ALTREF_FRAME;
WRITE_REF_BIT(bit_bwd, comp_bwdref_p);
if (!bit_bwd) {
WRITE_REF_BIT(mbmi->ref_frame[1] == ALTREF2_FRAME, comp_bwdref_p1);
}
} else {
const int bit0 = (mbmi->ref_frame[0] <= ALTREF_FRAME &&
mbmi->ref_frame[0] >= BWDREF_FRAME);
WRITE_REF_BIT(bit0, single_ref_p1);
if (bit0) {
const int bit1 = mbmi->ref_frame[0] == ALTREF_FRAME;
WRITE_REF_BIT(bit1, single_ref_p2);
if (!bit1) {
WRITE_REF_BIT(mbmi->ref_frame[0] == ALTREF2_FRAME, single_ref_p6);
}
} else {
const int bit2 = (mbmi->ref_frame[0] == LAST3_FRAME ||
mbmi->ref_frame[0] == GOLDEN_FRAME);
WRITE_REF_BIT(bit2, single_ref_p3);
if (!bit2) {
const int bit3 = mbmi->ref_frame[0] != LAST_FRAME;
WRITE_REF_BIT(bit3, single_ref_p4);
} else {
const int bit4 = mbmi->ref_frame[0] != LAST3_FRAME;
WRITE_REF_BIT(bit4, single_ref_p5);
}
}
}
}
}
static inline void write_filter_intra_mode_info(const AV1_COMMON *cm,
const MACROBLOCKD *xd,
const MB_MODE_INFO *const mbmi,
aom_writer *w) {
if (av1_filter_intra_allowed(cm, mbmi)) {
aom_write_symbol(w, mbmi->filter_intra_mode_info.use_filter_intra,
xd->tile_ctx->filter_intra_cdfs[mbmi->bsize], 2);
if (mbmi->filter_intra_mode_info.use_filter_intra) {
const FILTER_INTRA_MODE mode =
mbmi->filter_intra_mode_info.filter_intra_mode;
aom_write_symbol(w, mode, xd->tile_ctx->filter_intra_mode_cdf,
FILTER_INTRA_MODES);
}
}
}
static inline void write_angle_delta(aom_writer *w, int angle_delta,
aom_cdf_prob *cdf) {
aom_write_symbol(w, angle_delta + MAX_ANGLE_DELTA, cdf,
2 * MAX_ANGLE_DELTA + 1);
}
static inline void write_mb_interp_filter(AV1_COMMON *const cm, ThreadData *td,
aom_writer *w) {
const MACROBLOCKD *xd = &td->mb.e_mbd;
const MB_MODE_INFO *const mbmi = xd->mi[0];
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
if (!av1_is_interp_needed(xd)) {
int_interpfilters filters = av1_broadcast_interp_filter(
av1_unswitchable_filter(cm->features.interp_filter));
assert(mbmi->interp_filters.as_int == filters.as_int);
(void)filters;
return;
}
if (cm->features.interp_filter == SWITCHABLE) {
int dir;
for (dir = 0; dir < 2; ++dir) {
const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
InterpFilter filter =
av1_extract_interp_filter(mbmi->interp_filters, dir);
aom_write_symbol(w, filter, ec_ctx->switchable_interp_cdf[ctx],
SWITCHABLE_FILTERS);
++td->interp_filter_selected[filter];
if (cm->seq_params->enable_dual_filter == 0) return;
}
}
}
// Transmit color values with delta encoding. Write the first value as
// literal, and the deltas between each value and the previous one. "min_val" is
// the smallest possible value of the deltas.
static inline void delta_encode_palette_colors(const int *colors, int num,
int bit_depth, int min_val,
aom_writer *w) {
if (num <= 0) return;
assert(colors[0] < (1 << bit_depth));
aom_write_literal(w, colors[0], bit_depth);
if (num == 1) return;
int max_delta = 0;
int deltas[PALETTE_MAX_SIZE];
memset(deltas, 0, sizeof(deltas));
for (int i = 1; i < num; ++i) {
assert(colors[i] < (1 << bit_depth));
const int delta = colors[i] - colors[i - 1];
deltas[i - 1] = delta;
assert(delta >= min_val);
if (delta > max_delta) max_delta = delta;
}
const int min_bits = bit_depth - 3;
int bits = AOMMAX(aom_ceil_log2(max_delta + 1 - min_val), min_bits);
assert(bits <= bit_depth);
int range = (1 << bit_depth) - colors[0] - min_val;
aom_write_literal(w, bits - min_bits, 2);
for (int i = 0; i < num - 1; ++i) {
aom_write_literal(w, deltas[i] - min_val, bits);
range -= deltas[i];
bits = AOMMIN(bits, aom_ceil_log2(range));
}
}
// Transmit luma palette color values. First signal if each color in the color
// cache is used. Those colors that are not in the cache are transmitted with
// delta encoding.
static inline void write_palette_colors_y(const MACROBLOCKD *const xd,
const PALETTE_MODE_INFO *const pmi,
int bit_depth, aom_writer *w) {
const int n = pmi->palette_size[0];
uint16_t color_cache[2 * PALETTE_MAX_SIZE];
const int n_cache = av1_get_palette_cache(xd, 0, color_cache);
int out_cache_colors[PALETTE_MAX_SIZE];
uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
const int n_out_cache =
av1_index_color_cache(color_cache, n_cache, pmi->palette_colors, n,
cache_color_found, out_cache_colors);
int n_in_cache = 0;
for (int i = 0; i < n_cache && n_in_cache < n; ++i) {
const int found = cache_color_found[i];
aom_write_bit(w, found);
n_in_cache += found;
}
assert(n_in_cache + n_out_cache == n);
delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 1, w);
}
// Write chroma palette color values. U channel is handled similarly to the luma
// channel. For v channel, either use delta encoding or transmit raw values
// directly, whichever costs less.
static inline void write_palette_colors_uv(const MACROBLOCKD *const xd,
const PALETTE_MODE_INFO *const pmi,
int bit_depth, aom_writer *w) {
const int n = pmi->palette_size[1];
const uint16_t *colors_u = pmi->palette_colors + PALETTE_MAX_SIZE;
const uint16_t *colors_v = pmi->palette_colors + 2 * PALETTE_MAX_SIZE;
// U channel colors.
uint16_t color_cache[2 * PALETTE_MAX_SIZE];
const int n_cache = av1_get_palette_cache(xd, 1, color_cache);
int out_cache_colors[PALETTE_MAX_SIZE];
uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
const int n_out_cache = av1_index_color_cache(
color_cache, n_cache, colors_u, n, cache_color_found, out_cache_colors);
int n_in_cache = 0;
for (int i = 0; i < n_cache && n_in_cache < n; ++i) {
const int found = cache_color_found[i];
aom_write_bit(w, found);
n_in_cache += found;
}
delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 0, w);
// V channel colors. Don't use color cache as the colors are not sorted.
const int max_val = 1 << bit_depth;
int zero_count = 0, min_bits_v = 0;
int bits_v =
av1_get_palette_delta_bits_v(pmi, bit_depth, &zero_count, &min_bits_v);
const int rate_using_delta =
2 + bit_depth + (bits_v + 1) * (n - 1) - zero_count;
const int rate_using_raw = bit_depth * n;
if (rate_using_delta < rate_using_raw) { // delta encoding
assert(colors_v[0] < (1 << bit_depth));
aom_write_bit(w, 1);
aom_write_literal(w, bits_v - min_bits_v, 2);
aom_write_literal(w, colors_v[0], bit_depth);
for (int i = 1; i < n; ++i) {
assert(colors_v[i] < (1 << bit_depth));
if (colors_v[i] == colors_v[i - 1]) { // No need to signal sign bit.
aom_write_literal(w, 0, bits_v);
continue;
}
const int delta = abs((int)colors_v[i] - colors_v[i - 1]);
const int sign_bit = colors_v[i] < colors_v[i - 1];
if (delta <= max_val - delta) {
aom_write_literal(w, delta, bits_v);
aom_write_bit(w, sign_bit);
} else {
aom_write_literal(w, max_val - delta, bits_v);
aom_write_bit(w, !sign_bit);
}
}
} else { // Transmit raw values.
aom_write_bit(w, 0);
for (int i = 0; i < n; ++i) {
assert(colors_v[i] < (1 << bit_depth));
aom_write_literal(w, colors_v[i], bit_depth);
}
}
}
static inline void write_palette_mode_info(const AV1_COMMON *cm,
const MACROBLOCKD *xd,
const MB_MODE_INFO *const mbmi,
aom_writer *w) {
const int num_planes = av1_num_planes(cm);
const BLOCK_SIZE bsize = mbmi->bsize;
assert(av1_allow_palette(cm->features.allow_screen_content_tools, bsize));
const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
if (mbmi->mode == DC_PRED) {
const int n = pmi->palette_size[0];
const int palette_y_mode_ctx = av1_get_palette_mode_ctx(xd);
aom_write_symbol(
w, n > 0,
xd->tile_ctx->palette_y_mode_cdf[bsize_ctx][palette_y_mode_ctx], 2);
if (n > 0) {
aom_write_symbol(w, n - PALETTE_MIN_SIZE,
xd->tile_ctx->palette_y_size_cdf[bsize_ctx],
PALETTE_SIZES);
write_palette_colors_y(xd, pmi, cm->seq_params->bit_depth, w);
}
}
const int uv_dc_pred =
num_planes > 1 && mbmi->uv_mode == UV_DC_PRED && xd->is_chroma_ref;
if (uv_dc_pred) {
const int n = pmi->palette_size[1];
const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
aom_write_symbol(w, n > 0,
xd->tile_ctx->palette_uv_mode_cdf[palette_uv_mode_ctx], 2);
if (n > 0) {
aom_write_symbol(w, n - PALETTE_MIN_SIZE,
xd->tile_ctx->palette_uv_size_cdf[bsize_ctx],
PALETTE_SIZES);
write_palette_colors_uv(xd, pmi, cm->seq_params->bit_depth, w);
}
}
}
void av1_write_tx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd,
TX_TYPE tx_type, TX_SIZE tx_size, aom_writer *w) {
MB_MODE_INFO *mbmi = xd->mi[0];
const FeatureFlags *const features = &cm->features;
const int is_inter = is_inter_block(mbmi);
if (get_ext_tx_types(tx_size, is_inter, features->reduced_tx_set_used) > 1 &&
((!cm->seg.enabled && cm->quant_params.base_qindex > 0) ||
(cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) &&
!mbmi->skip_txfm &&
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const TX_SIZE square_tx_size = txsize_sqr_map[tx_size];
const TxSetType tx_set_type = av1_get_ext_tx_set_type(
tx_size, is_inter, features->reduced_tx_set_used);
const int eset =
get_ext_tx_set(tx_size, is_inter, features->reduced_tx_set_used);
// eset == 0 should correspond to a set with only DCT_DCT and there
// is no need to send the tx_type
assert(eset > 0);
assert(av1_ext_tx_used[tx_set_type][tx_type]);
if (is_inter) {
aom_write_symbol(w, av1_ext_tx_ind[tx_set_type][tx_type],
ec_ctx->inter_ext_tx_cdf[eset][square_tx_size],
av1_num_ext_tx_set[tx_set_type]);
} else {
PREDICTION_MODE intra_dir;
if (mbmi->filter_intra_mode_info.use_filter_intra)
intra_dir =
fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode];
else
intra_dir = mbmi->mode;
aom_write_symbol(
w, av1_ext_tx_ind[tx_set_type][tx_type],
ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_dir],
av1_num_ext_tx_set[tx_set_type]);
}
}
}
static inline void write_intra_y_mode_nonkf(FRAME_CONTEXT *frame_ctx,
BLOCK_SIZE bsize,
PREDICTION_MODE mode,
aom_writer *w) {
aom_write_symbol(w, mode, frame_ctx->y_mode_cdf[size_group_lookup[bsize]],
INTRA_MODES);
}
static inline void write_intra_uv_mode(FRAME_CONTEXT *frame_ctx,
UV_PREDICTION_MODE uv_mode,
PREDICTION_MODE y_mode,
CFL_ALLOWED_TYPE cfl_allowed,
aom_writer *w) {
aom_write_symbol(w, uv_mode, frame_ctx->uv_mode_cdf[cfl_allowed][y_mode],
UV_INTRA_MODES - !cfl_allowed);
}
static inline void write_cfl_alphas(FRAME_CONTEXT *const ec_ctx, uint8_t idx,
int8_t joint_sign, aom_writer *w) {
aom_write_symbol(w, joint_sign, ec_ctx->cfl_sign_cdf, CFL_JOINT_SIGNS);
// Magnitudes are only signaled for nonzero codes.
if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) {
aom_cdf_prob *cdf_u = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
aom_write_symbol(w, CFL_IDX_U(idx), cdf_u, CFL_ALPHABET_SIZE);
}
if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) {
aom_cdf_prob *cdf_v = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
aom_write_symbol(w, CFL_IDX_V(idx), cdf_v, CFL_ALPHABET_SIZE);
}
}
static inline void write_cdef(AV1_COMMON *cm, MACROBLOCKD *const xd,
aom_writer *w, int skip) {
if (cm->features.coded_lossless || cm->features.allow_intrabc) return;
// At the start of a superblock, mark that we haven't yet written CDEF
// strengths for any of the CDEF units contained in this superblock.
const int sb_mask = (cm->seq_params->mib_size - 1);
const int mi_row_in_sb = (xd->mi_row & sb_mask);
const int mi_col_in_sb = (xd->mi_col & sb_mask);
if (mi_row_in_sb == 0 && mi_col_in_sb == 0) {
xd->cdef_transmitted[0] = xd->cdef_transmitted[1] =
xd->cdef_transmitted[2] = xd->cdef_transmitted[3] = false;
}
// CDEF unit size is 64x64 irrespective of the superblock size.
const int cdef_size = 1 << (6 - MI_SIZE_LOG2);
// Find index of this CDEF unit in this superblock.
const int index_mask = cdef_size;
const int cdef_unit_row_in_sb = ((xd->mi_row & index_mask) != 0);
const int cdef_unit_col_in_sb = ((xd->mi_col & index_mask) != 0);
const int index = (cm->seq_params->sb_size == BLOCK_128X128)
? cdef_unit_col_in_sb + 2 * cdef_unit_row_in_sb
: 0;
// Write CDEF strength to the first non-skip coding block in this CDEF unit.
if (!xd->cdef_transmitted[index] && !skip) {
// CDEF strength for this CDEF unit needs to be stored in the MB_MODE_INFO
// of the 1st block in this CDEF unit.
const int first_block_mask = ~(cdef_size - 1);
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const int grid_idx =
get_mi_grid_idx(mi_params, xd->mi_row & first_block_mask,
xd->mi_col & first_block_mask);
const MB_MODE_INFO *const mbmi = mi_params->mi_grid_base[grid_idx];
aom_write_literal(w, mbmi->cdef_strength, cm->cdef_info.cdef_bits);
xd->cdef_transmitted[index] = true;
}
}
static inline void write_inter_segment_id(AV1_COMP *cpi, MACROBLOCKD *const xd,
aom_writer *w,
const struct segmentation *const seg,
struct segmentation_probs *const segp,
int skip, int preskip) {
MB_MODE_INFO *const mbmi = xd->mi[0];
AV1_COMMON *const cm = &cpi->common;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
if (seg->update_map) {
if (preskip) {
if (!seg->segid_preskip) return;
} else {
if (seg->segid_preskip) return;
if (skip) {
write_segment_id(cpi, xd, mbmi, w, seg, segp, 1);
if (seg->temporal_update) mbmi->seg_id_predicted = 0;
return;
}
}
if (seg->temporal_update) {
const int pred_flag = mbmi->seg_id_predicted;
aom_cdf_prob *pred_cdf = av1_get_pred_cdf_seg_id(segp, xd);
aom_write_symbol(w, pred_flag, pred_cdf, 2);
if (!pred_flag) {
write_segment_id(cpi, xd, mbmi, w, seg, segp, 0);
}
if (pred_flag) {
set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map,
mbmi->bsize, mi_row, mi_col, mbmi->segment_id);
}
} else {
write_segment_id(cpi, xd, mbmi, w, seg, segp, 0);
}
}
}
// If delta q is present, writes delta_q index.
// Also writes delta_q loop filter levels, if present.
static inline void write_delta_q_params(AV1_COMMON *const cm,
MACROBLOCKD *const xd, int skip,
aom_writer *w) {
const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
if (delta_q_info->delta_q_present_flag) {
const MB_MODE_INFO *const mbmi = xd->mi[0];
const BLOCK_SIZE bsize = mbmi->bsize;
const int super_block_upper_left =
((xd->mi_row & (cm->seq_params->mib_size - 1)) == 0) &&
((xd->mi_col & (cm->seq_params->mib_size - 1)) == 0);
if ((bsize != cm->seq_params->sb_size || skip == 0) &&
super_block_upper_left) {
assert(mbmi->current_qindex > 0);
const int reduced_delta_qindex =
(mbmi->current_qindex - xd->current_base_qindex) /
delta_q_info->delta_q_res;
write_delta_qindex(xd, reduced_delta_qindex, w);
xd->current_base_qindex = mbmi->current_qindex;
if (delta_q_info->delta_lf_present_flag) {
if (delta_q_info->delta_lf_multi) {
const int frame_lf_count =
av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
int reduced_delta_lflevel =
(mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) /
delta_q_info->delta_lf_res;
write_delta_lflevel(cm, xd, lf_id, reduced_delta_lflevel, 1, w);
xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id];
}
} else {
int reduced_delta_lflevel =
(mbmi->delta_lf_from_base - xd->delta_lf_from_base) /
delta_q_info->delta_lf_res;
write_delta_lflevel(cm, xd, -1, reduced_delta_lflevel, 0, w);
xd->delta_lf_from_base = mbmi->delta_lf_from_base;
}
}
}
}
}
static inline void write_intra_prediction_modes(const AV1_COMMON *cm,
MACROBLOCKD *const xd,
int is_keyframe,
aom_writer *w) {
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const MB_MODE_INFO *const mbmi = xd->mi[0];
const PREDICTION_MODE mode = mbmi->mode;
const BLOCK_SIZE bsize = mbmi->bsize;
// Y mode.
if (is_keyframe) {
const MB_MODE_INFO *const above_mi = xd->above_mbmi;
const MB_MODE_INFO *const left_mi = xd->left_mbmi;
write_intra_y_mode_kf(ec_ctx, mbmi, above_mi, left_mi, mode, w);
} else {
write_intra_y_mode_nonkf(ec_ctx, bsize, mode, w);
}
// Y angle delta.
const int use_angle_delta = av1_use_angle_delta(bsize);
if (use_angle_delta && av1_is_directional_mode(mode)) {
write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_Y],
ec_ctx->angle_delta_cdf[mode - V_PRED]);
}
// UV mode and UV angle delta.
if (!cm->seq_params->monochrome && xd->is_chroma_ref) {
const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
write_intra_uv_mode(ec_ctx, uv_mode, mode, is_cfl_allowed(xd), w);
if (uv_mode == UV_CFL_PRED)
write_cfl_alphas(ec_ctx, mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, w);
const PREDICTION_MODE intra_mode = get_uv_mode(uv_mode);
if (use_angle_delta && av1_is_directional_mode(intra_mode)) {
write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_UV],
ec_ctx->angle_delta_cdf[intra_mode - V_PRED]);
}
}
// Palette.
if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) {
write_palette_mode_info(cm, xd, mbmi, w);
}
// Filter intra.
write_filter_intra_mode_info(cm, xd, mbmi, w);
}
static inline int16_t mode_context_analyzer(
const int16_t mode_context, const MV_REFERENCE_FRAME *const rf) {
if (rf[1] <= INTRA_FRAME) return mode_context;
const int16_t newmv_ctx = mode_context & NEWMV_CTX_MASK;
const int16_t refmv_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
const int16_t comp_ctx = compound_mode_ctx_map[refmv_ctx >> 1][AOMMIN(
newmv_ctx, COMP_NEWMV_CTXS - 1)];
return comp_ctx;
}
static inline int_mv get_ref_mv_from_stack(
int ref_idx, const MV_REFERENCE_FRAME *ref_frame, int ref_mv_idx,
const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame) {
const int8_t ref_frame_type = av1_ref_frame_type(ref_frame);
const CANDIDATE_MV *curr_ref_mv_stack = mbmi_ext_frame->ref_mv_stack;
if (ref_frame[1] > INTRA_FRAME) {
assert(ref_idx == 0 || ref_idx == 1);
return ref_idx ? curr_ref_mv_stack[ref_mv_idx].comp_mv
: curr_ref_mv_stack[ref_mv_idx].this_mv;
}
assert(ref_idx == 0);
return ref_mv_idx < mbmi_ext_frame->ref_mv_count
? curr_ref_mv_stack[ref_mv_idx].this_mv
: mbmi_ext_frame->global_mvs[ref_frame_type];
}
static inline int_mv get_ref_mv(const MACROBLOCK *x, int ref_idx) {
const MACROBLOCKD *xd = &x->e_mbd;
const MB_MODE_INFO *mbmi = xd->mi[0];
int ref_mv_idx = mbmi->ref_mv_idx;
if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEW_NEARMV) {
assert(has_second_ref(mbmi));
ref_mv_idx += 1;
}
return get_ref_mv_from_stack(ref_idx, mbmi->ref_frame, ref_mv_idx,
x->mbmi_ext_frame);
}
static inline void pack_inter_mode_mvs(AV1_COMP *cpi, ThreadData *const td,
aom_writer *w) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const struct segmentation *const seg = &cm->seg;
struct segmentation_probs *const segp = &ec_ctx->seg;
const MB_MODE_INFO *const mbmi = xd->mi[0];
const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame = x->mbmi_ext_frame;
const PREDICTION_MODE mode = mbmi->mode;
const uint8_t segment_id = mbmi->segment_id;
const BLOCK_SIZE bsize = mbmi->bsize;
const int allow_hp = cm->features.allow_high_precision_mv;
const int is_inter = is_inter_block(mbmi);
const int is_compound = has_second_ref(mbmi);
int ref;
write_inter_segment_id(cpi, xd, w, seg, segp, 0, 1);
write_skip_mode(cm, xd, segment_id, mbmi, w);
assert(IMPLIES(mbmi->skip_mode, mbmi->skip_txfm));
const int skip =
mbmi->skip_mode ? 1 : write_skip(cm, xd, segment_id, mbmi, w);
write_inter_segment_id(cpi, xd, w, seg, segp, skip, 0);
write_cdef(cm, xd, w, skip);
write_delta_q_params(cm, xd, skip, w);
if (!mbmi->skip_mode) write_is_inter(cm, xd, mbmi->segment_id, w, is_inter);
if (mbmi->skip_mode) return;
if (!is_inter) {
write_intra_prediction_modes(cm, xd, 0, w);
} else {
int16_t mode_ctx;
av1_collect_neighbors_ref_counts(xd);
write_ref_frames(cm, xd, w);
mode_ctx =
mode_context_analyzer(mbmi_ext_frame->mode_context, mbmi->ref_frame);
// If segment skip is not enabled code the mode.
if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
if (is_inter_compound_mode(mode))
write_inter_compound_mode(xd, w, mode, mode_ctx);
else if (is_inter_singleref_mode(mode))
write_inter_mode(w, mode, ec_ctx, mode_ctx);
if (mode == NEWMV || mode == NEW_NEWMV || have_nearmv_in_inter_mode(mode))
write_drl_idx(ec_ctx, mbmi, mbmi_ext_frame, w);
else
assert(mbmi->ref_mv_idx == 0);
}
if (mode == NEWMV || mode == NEW_NEWMV) {
for (ref = 0; ref < 1 + is_compound; ++ref) {
nmv_context *nmvc = &ec_ctx->nmvc;
const int_mv ref_mv = get_ref_mv(x, ref);
av1_encode_mv(cpi, w, td, &mbmi->mv[ref].as_mv, &ref_mv.as_mv, nmvc,
allow_hp);
}
} else if (mode == NEAREST_NEWMV || mode == NEAR_NEWMV) {
nmv_context *nmvc = &ec_ctx->nmvc;
const int_mv ref_mv = get_ref_mv(x, 1);
av1_encode_mv(cpi, w, td, &mbmi->mv[1].as_mv, &ref_mv.as_mv, nmvc,
allow_hp);
} else if (mode == NEW_NEARESTMV || mode == NEW_NEARMV) {
nmv_context *nmvc = &ec_ctx->nmvc;
const int_mv ref_mv = get_ref_mv(x, 0);
av1_encode_mv(cpi, w, td, &mbmi->mv[0].as_mv, &ref_mv.as_mv, nmvc,
allow_hp);
}
if (cpi->common.current_frame.reference_mode != COMPOUND_REFERENCE &&
cpi->common.seq_params->enable_interintra_compound &&
is_interintra_allowed(mbmi)) {
const int interintra = mbmi->ref_frame[1] == INTRA_FRAME;
const int bsize_group = size_group_lookup[bsize];
aom_write_symbol(w, interintra, ec_ctx->interintra_cdf[bsize_group], 2);
if (interintra) {
aom_write_symbol(w, mbmi->interintra_mode,
ec_ctx->interintra_mode_cdf[bsize_group],
INTERINTRA_MODES);
if (av1_is_wedge_used(bsize)) {
aom_write_symbol(w, mbmi->use_wedge_interintra,
ec_ctx->wedge_interintra_cdf[bsize], 2);
if (mbmi->use_wedge_interintra) {
aom_write_symbol(w, mbmi->interintra_wedge_index,
ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES);
}
}
}
}
if (mbmi->ref_frame[1] != INTRA_FRAME) write_motion_mode(cm, xd, mbmi, w);
// First write idx to indicate current compound inter prediction mode group
// Group A (0): dist_wtd_comp, compound_average
// Group B (1): interintra, compound_diffwtd, wedge
if (has_second_ref(mbmi)) {
const int masked_compound_used = is_any_masked_compound_used(bsize) &&
cm->seq_params->enable_masked_compound;
if (masked_compound_used) {
const int ctx_comp_group_idx = get_comp_group_idx_context(xd);
aom_write_symbol(w, mbmi->comp_group_idx,
ec_ctx->comp_group_idx_cdf[ctx_comp_group_idx], 2);
} else {
assert(mbmi->comp_group_idx == 0);
}
if (mbmi->comp_group_idx == 0) {
if (mbmi->compound_idx)
assert(mbmi->interinter_comp.type == COMPOUND_AVERAGE);
if (cm->seq_params->order_hint_info.enable_dist_wtd_comp) {
const int comp_index_ctx = get_comp_index_context(cm, xd);
aom_write_symbol(w, mbmi->compound_idx,
ec_ctx->compound_index_cdf[comp_index_ctx], 2);
} else {
assert(mbmi->compound_idx == 1);
}
} else {
assert(cpi->common.current_frame.reference_mode != SINGLE_REFERENCE &&
is_inter_compound_mode(mbmi->mode) &&
mbmi->motion_mode == SIMPLE_TRANSLATION);
assert(masked_compound_used);
// compound_diffwtd, wedge
assert(mbmi->interinter_comp.type == COMPOUND_WEDGE ||
mbmi->interinter_comp.type == COMPOUND_DIFFWTD);
if (is_interinter_compound_used(COMPOUND_WEDGE, bsize))
aom_write_symbol(w, mbmi->interinter_comp.type - COMPOUND_WEDGE,
ec_ctx->compound_type_cdf[bsize],
MASKED_COMPOUND_TYPES);
if (mbmi->interinter_comp.type == COMPOUND_WEDGE) {
assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize));
aom_write_symbol(w, mbmi->interinter_comp.wedge_index,
ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES);
aom_write_bit(w, mbmi->interinter_comp.wedge_sign);
} else {
assert(mbmi->interinter_comp.type == COMPOUND_DIFFWTD);
aom_write_literal(w, mbmi->interinter_comp.mask_type,
MAX_DIFFWTD_MASK_BITS);
}
}
}
write_mb_interp_filter(cm, td, w);
}
}
static inline void write_intrabc_info(
MACROBLOCKD *xd, const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame,
aom_writer *w) {
const MB_MODE_INFO *const mbmi = xd->mi[0];
int use_intrabc = is_intrabc_block(mbmi);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf, 2);
if (use_intrabc) {
assert(mbmi->mode == DC_PRED);
assert(mbmi->uv_mode == UV_DC_PRED);
assert(mbmi->motion_mode == SIMPLE_TRANSLATION);
int_mv dv_ref = mbmi_ext_frame->ref_mv_stack[0].this_mv;
av1_encode_dv(w, &mbmi->mv[0].as_mv, &dv_ref.as_mv, &ec_ctx->ndvc);
}
}
static inline void write_mb_modes_kf(
AV1_COMP *cpi, MACROBLOCKD *xd,
const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, aom_writer *w) {
AV1_COMMON *const cm = &cpi->common;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const struct segmentation *const seg = &cm->seg;
struct segmentation_probs *const segp = &ec_ctx->seg;
const MB_MODE_INFO *const mbmi = xd->mi[0];
if (seg->segid_preskip && seg->update_map)
write_segment_id(cpi, xd, mbmi, w, seg, segp, 0);
const int skip = write_skip(cm, xd, mbmi->segment_id, mbmi, w);
if (!seg->segid_preskip && seg->update_map)
write_segment_id(cpi, xd, mbmi, w, seg, segp, skip);
write_cdef(cm, xd, w, skip);
write_delta_q_params(cm, xd, skip, w);
if (av1_allow_intrabc(cm)) {
write_intrabc_info(xd, mbmi_ext_frame, w);
if (is_intrabc_block(mbmi)) return;
}
write_intra_prediction_modes(cm, xd, 1, w);
}
#if CONFIG_RD_DEBUG
static inline void dump_mode_info(MB_MODE_INFO *mi) {
printf("\nmi->mi_row == %d\n", mi->mi_row);
printf("&& mi->mi_col == %d\n", mi->mi_col);
printf("&& mi->bsize == %d\n", mi->bsize);
printf("&& mi->tx_size == %d\n", mi->tx_size);
printf("&& mi->mode == %d\n", mi->mode);
}
static int rd_token_stats_mismatch(RD_STATS *rd_stats, TOKEN_STATS *token_stats,
int plane) {
if (rd_stats->txb_coeff_cost[plane] != token_stats->cost) {
printf("\nplane %d rd_stats->txb_coeff_cost %d token_stats->cost %d\n",
plane, rd_stats->txb_coeff_cost[plane], token_stats->cost);
return 1;
}
return 0;
}
#endif
#if ENC_MISMATCH_DEBUG
static inline void enc_dump_logs(
const AV1_COMMON *const cm,
const MBMIExtFrameBufferInfo *const mbmi_ext_info, int mi_row, int mi_col) {
const MB_MODE_INFO *const mbmi = *(
cm->mi_params.mi_grid_base + (mi_row * cm->mi_params.mi_stride + mi_col));
const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame =
mbmi_ext_info->frame_base + get_mi_ext_idx(mi_row, mi_col,
cm->mi_params.mi_alloc_bsize,
mbmi_ext_info->stride);
if (is_inter_block(mbmi)) {
#define FRAME_TO_CHECK 11
if (cm->current_frame.frame_number == FRAME_TO_CHECK &&
cm->show_frame == 1) {
const BLOCK_SIZE bsize = mbmi->bsize;
int_mv mv[2] = { 0 };
const int is_comp_ref = has_second_ref(mbmi);
for (int ref = 0; ref < 1 + is_comp_ref; ++ref)
mv[ref].as_mv = mbmi->mv[ref].as_mv;
if (!is_comp_ref) {
mv[1].as_int = 0;
}
const int16_t mode_ctx =
is_comp_ref ? 0
: mode_context_analyzer(mbmi_ext_frame->mode_context,
mbmi->ref_frame);
const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
int16_t zeromv_ctx = -1;
int16_t refmv_ctx = -1;
if (mbmi->mode != NEWMV) {
zeromv_ctx = (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
if (mbmi->mode != GLOBALMV)
refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
}
printf(
"=== ENCODER ===: "
"Frame=%d, (mi_row,mi_col)=(%d,%d), skip_mode=%d, mode=%d, bsize=%d, "
"show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, "
"ref[1]=%d, motion_mode=%d, mode_ctx=%d, "
"newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d, tx_size=%d\n",
cm->current_frame.frame_number, mi_row, mi_col, mbmi->skip_mode,
mbmi->mode, bsize, cm->show_frame, mv[0].as_mv.row, mv[0].as_mv.col,
mv[1].as_mv.row, mv[1].as_mv.col, mbmi->ref_frame[0],
mbmi->ref_frame[1], mbmi->motion_mode, mode_ctx, newmv_ctx,
zeromv_ctx, refmv_ctx, mbmi->tx_size);
}
}
}
#endif // ENC_MISMATCH_DEBUG
static inline void write_mbmi_b(AV1_COMP *cpi, ThreadData *const td,
aom_writer *w) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &td->mb.e_mbd;
MB_MODE_INFO *m = xd->mi[0];
if (frame_is_intra_only(cm)) {
write_mb_modes_kf(cpi, xd, td->mb.mbmi_ext_frame, w);
} else {
// has_subpel_mv_component needs the ref frame buffers set up to look
// up if they are scaled. has_subpel_mv_component is in turn needed by
// write_switchable_interp_filter, which is called by pack_inter_mode_mvs.
set_ref_ptrs(cm, xd, m->ref_frame[0], m->ref_frame[1]);
#if ENC_MISMATCH_DEBUG
enc_dump_logs(cm, &cpi->mbmi_ext_info, xd->mi_row, xd->mi_col);
#endif // ENC_MISMATCH_DEBUG
pack_inter_mode_mvs(cpi, td, w);
}
}
static inline void write_inter_txb_coeff(
AV1_COMMON *const cm, MACROBLOCK *const x, MB_MODE_INFO *const mbmi,
aom_writer *w, const TokenExtra **tok, const TokenExtra *const tok_end,
TOKEN_STATS *token_stats, const int row, const int col, int *block,
const int plane) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblockd_plane *const pd = &xd->plane[plane];
const BLOCK_SIZE bsize = mbmi->bsize;
assert(bsize < BLOCK_SIZES_ALL);
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y);
assert(plane_bsize < BLOCK_SIZES_ALL);
const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane);
const int step =
tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
const int bkw = tx_size_wide_unit[max_tx_size];
const int bkh = tx_size_high_unit[max_tx_size];
const BLOCK_SIZE max_unit_bsize =
get_plane_block_size(BLOCK_64X64, ss_x, ss_y);
const int num_4x4_w = mi_size_wide[plane_bsize];
const int num_4x4_h = mi_size_high[plane_bsize];
const int mu_blocks_wide = mi_size_wide[max_unit_bsize];
const int mu_blocks_high = mi_size_high[max_unit_bsize];
const int unit_height = AOMMIN(mu_blocks_high + (row >> ss_y), num_4x4_h);
const int unit_width = AOMMIN(mu_blocks_wide + (col >> ss_x), num_4x4_w);
for (int blk_row = row >> ss_y; blk_row < unit_height; blk_row += bkh) {
for (int blk_col = col >> ss_x; blk_col < unit_width; blk_col += bkw) {
pack_txb_tokens(w, cm, x, tok, tok_end, xd, mbmi, plane, plane_bsize,
cm->seq_params->bit_depth, *block, blk_row, blk_col,
max_tx_size, token_stats);
*block += step;
}
}
}
static inline void write_tokens_b(AV1_COMP *cpi, MACROBLOCK *const x,
aom_writer *w, const TokenExtra **tok,
const TokenExtra *const tok_end) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
const BLOCK_SIZE bsize = mbmi->bsize;
assert(!mbmi->skip_txfm);
const int is_inter = is_inter_block(mbmi);
if (!is_inter) {
av1_write_intra_coeffs_mb(cm, x, w, bsize);
} else {
int block[MAX_MB_PLANE] = { 0 };
assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x,
xd->plane[0].subsampling_y));
const int num_4x4_w = mi_size_wide[bsize];
const int num_4x4_h = mi_size_high[bsize];
TOKEN_STATS token_stats;
init_token_stats(&token_stats);
const BLOCK_SIZE max_unit_bsize = BLOCK_64X64;
assert(max_unit_bsize == get_plane_block_size(BLOCK_64X64,
xd->plane[0].subsampling_x,
xd->plane[0].subsampling_y));
int mu_blocks_wide = mi_size_wide[max_unit_bsize];
int mu_blocks_high = mi_size_high[max_unit_bsize];
mu_blocks_wide = AOMMIN(num_4x4_w, mu_blocks_wide);
mu_blocks_high = AOMMIN(num_4x4_h, mu_blocks_high);
const int num_planes = av1_num_planes(cm);
for (int row = 0; row < num_4x4_h; row += mu_blocks_high) {
for (int col = 0; col < num_4x4_w; col += mu_blocks_wide) {
for (int plane = 0; plane < num_planes; ++plane) {
if (plane && !xd->is_chroma_ref) break;
write_inter_txb_coeff(cm, x, mbmi, w, tok, tok_end, &token_stats, row,
col, &block[plane], plane);
}
}
}
#if CONFIG_RD_DEBUG
for (int plane = 0; plane < num_planes; ++plane) {
if (mbmi->bsize >= BLOCK_8X8 &&
rd_token_stats_mismatch(&mbmi->rd_stats, &token_stats, plane)) {
dump_mode_info(mbmi);
assert(0);
}
}
#endif // CONFIG_RD_DEBUG
}
}
static inline void write_modes_b(AV1_COMP *cpi, ThreadData *const td,
const TileInfo *const tile, aom_writer *w,
const TokenExtra **tok,
const TokenExtra *const tok_end, int mi_row,
int mi_col) {
const AV1_COMMON *cm = &cpi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
MACROBLOCKD *xd = &td->mb.e_mbd;
FRAME_CONTEXT *tile_ctx = xd->tile_ctx;
const int grid_idx = mi_row * mi_params->mi_stride + mi_col;
xd->mi = mi_params->mi_grid_base + grid_idx;
td->mb.mbmi_ext_frame =
cpi->mbmi_ext_info.frame_base +
get_mi_ext_idx(mi_row, mi_col, cm->mi_params.mi_alloc_bsize,
cpi->mbmi_ext_info.stride);
xd->tx_type_map = mi_params->tx_type_map + grid_idx;
xd->tx_type_map_stride = mi_params->mi_stride;
const MB_MODE_INFO *mbmi = xd->mi[0];
const BLOCK_SIZE bsize = mbmi->bsize;
assert(bsize <= cm->seq_params->sb_size ||
(bsize >= BLOCK_SIZES && bsize < BLOCK_SIZES_ALL));
const int bh = mi_size_high[bsize];
const int bw = mi_size_wide[bsize];
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows,
mi_params->mi_cols);
xd->above_txfm_context = cm->above_contexts.txfm[tile->tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
write_mbmi_b(cpi, td, w);
for (int plane = 0; plane < AOMMIN(2, av1_num_planes(cm)); ++plane) {
const uint8_t palette_size_plane =
mbmi->palette_mode_info.palette_size[plane];
assert(!mbmi->skip_mode || !palette_size_plane);
if (palette_size_plane > 0) {
assert(mbmi->use_intrabc == 0);
assert(av1_allow_palette(cm->features.allow_screen_content_tools,
mbmi->bsize));
assert(!plane || xd->is_chroma_ref);
int rows, cols;
av1_get_block_dimensions(mbmi->bsize, plane, xd, NULL, NULL, &rows,
&cols);
assert(*tok < tok_end);
MapCdf map_pb_cdf = plane ? tile_ctx->palette_uv_color_index_cdf
: tile_ctx->palette_y_color_index_cdf;
pack_map_tokens(w, tok, palette_size_plane, rows * cols, map_pb_cdf);
}
}
const int is_inter_tx = is_inter_block(mbmi);
const int skip_txfm = mbmi->skip_txfm;
const uint8_t segment_id = mbmi->segment_id;
if (cm->features.tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) &&
!(is_inter_tx && skip_txfm) && !xd->lossless[segment_id]) {
if (is_inter_tx) { // This implies skip flag is 0.
const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, bsize, 0);
const int txbh = tx_size_high_unit[max_tx_size];
const int txbw = tx_size_wide_unit[max_tx_size];
const int width = mi_size_wide[bsize];
const int height = mi_size_high[bsize];
for (int idy = 0; idy < height; idy += txbh) {
for (int idx = 0; idx < width; idx += txbw) {
write_tx_size_vartx(xd, mbmi, max_tx_size, 0, idy, idx, w);
}
}
} else {
write_selected_tx_size(xd, w);
set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height, 0, xd);
}
} else {
set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height,
skip_txfm && is_inter_tx, xd);
}
if (!mbmi->skip_txfm) {
int start = aom_tell_size(w);
write_tokens_b(cpi, &td->mb, w, tok, tok_end);
const int end = aom_tell_size(w);
td->coefficient_size += end - start;
}
}
static inline void write_partition(const AV1_COMMON *const cm,
const MACROBLOCKD *const xd, int hbs,
int mi_row, int mi_col, PARTITION_TYPE p,
BLOCK_SIZE bsize, aom_writer *w) {
const int is_partition_point = bsize >= BLOCK_8X8;
if (!is_partition_point) return;
const int has_rows = (mi_row + hbs) < cm->mi_params.mi_rows;
const int has_cols = (mi_col + hbs) < cm->mi_params.mi_cols;
const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
if (!has_rows && !has_cols) {
assert(p == PARTITION_SPLIT);
return;
}
if (has_rows && has_cols) {
aom_write_symbol(w, p, ec_ctx->partition_cdf[ctx],
partition_cdf_length(bsize));
} else if (!has_rows && has_cols) {
assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
assert(bsize > BLOCK_8X8);
aom_cdf_prob cdf[2];
partition_gather_vert_alike(cdf, ec_ctx->partition_cdf[ctx], bsize);
aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2);
} else {
assert(has_rows && !has_cols);
assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
assert(bsize > BLOCK_8X8);
aom_cdf_prob cdf[2];
partition_gather_horz_alike(cdf, ec_ctx->partition_cdf[ctx], bsize);
aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2);
}
}
static inline void write_modes_sb(AV1_COMP *const cpi, ThreadData *const td,
const TileInfo *const tile,
aom_writer *const w, const TokenExtra **tok,
const TokenExtra *const tok_end, int mi_row,
int mi_col, BLOCK_SIZE bsize) {
const AV1_COMMON *const cm = &cpi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
MACROBLOCKD *const xd = &td->mb.e_mbd;
assert(bsize < BLOCK_SIZES_ALL);
const int hbs = mi_size_wide[bsize] / 2;
const int quarter_step = mi_size_wide[bsize] / 4;
int i;
const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize);
const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;
#if !CONFIG_REALTIME_ONLY
const int num_planes = av1_num_planes(cm);
for (int plane = 0; plane < num_planes; ++plane) {
int rcol0, rcol1, rrow0, rrow1;
// Skip some unnecessary work if loop restoration is disabled
if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
if (av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize,
&rcol0, &rcol1, &rrow0, &rrow1)) {
const int rstride = cm->rst_info[plane].horz_units;
for (int rrow = rrow0; rrow < rrow1; ++rrow) {
for (int rcol = rcol0; rcol < rcol1; ++rcol) {
const int runit_idx = rcol + rrow * rstride;
loop_restoration_write_sb_coeffs(cm, xd, runit_idx, w, plane,
td->counts);
}
}
}
}
#endif
write_partition(cm, xd, hbs, mi_row, mi_col, partition, bsize, w);
switch (partition) {
case PARTITION_NONE:
write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
break;
case PARTITION_HORZ:
write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
if (mi_row + hbs < mi_params->mi_rows)
write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
break;
case PARTITION_VERT:
write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
if (mi_col + hbs < mi_params->mi_cols)
write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
break;
case PARTITION_SPLIT:
write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row, mi_col, subsize);
write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs,
subsize);
write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col,
subsize);
write_modes_sb(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs,
subsize);
break;
case PARTITION_HORZ_A:
write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
break;
case PARTITION_HORZ_B:
write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs);
break;
case PARTITION_VERT_A:
write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col);
write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
break;
case PARTITION_VERT_B:
write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col);
write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, mi_col + hbs);
write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs);
break;
case PARTITION_HORZ_4:
for (i = 0; i < 4; ++i) {
int this_mi_row = mi_row + i * quarter_step;
if (i > 0 && this_mi_row >= mi_params->mi_rows) break;
write_modes_b(cpi, td, tile, w, tok, tok_end, this_mi_row, mi_col);
}
break;
case PARTITION_VERT_4:
for (i = 0; i < 4; ++i) {
int this_mi_col = mi_col + i * quarter_step;
if (i > 0 && this_mi_col >= mi_params->mi_cols) break;
write_modes_b(cpi, td, tile, w, tok, tok_end, mi_row, this_mi_col);
}
break;
default: assert(0);
}
// update partition context
update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
}
// Populate token pointers appropriately based on token_info.
static inline void get_token_pointers(const TokenInfo *token_info,
const int tile_row, int tile_col,
const int sb_row_in_tile,
const TokenExtra **tok,
const TokenExtra **tok_end) {
if (!is_token_info_allocated(token_info)) {
*tok = NULL;
*tok_end = NULL;
return;
}
*tok = token_info->tplist[tile_row][tile_col][sb_row_in_tile].start;
*tok_end =
*tok + token_info->tplist[tile_row][tile_col][sb_row_in_tile].count;
}
static inline void write_modes(AV1_COMP *const cpi, ThreadData *const td,
const TileInfo *const tile, aom_writer *const w,
int tile_row, int tile_col) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &td->mb.e_mbd;
const int mi_row_start = tile->mi_row_start;
const int mi_row_end = tile->mi_row_end;
const int mi_col_start = tile->mi_col_start;
const int mi_col_end = tile->mi_col_end;
const int num_planes = av1_num_planes(cm);
av1_zero_above_context(cm, xd, mi_col_start, mi_col_end, tile->tile_row);
av1_init_above_context(&cm->above_contexts, num_planes, tile->tile_row, xd);
if (cpi->common.delta_q_info.delta_q_present_flag) {
xd->current_base_qindex = cpi->common.quant_params.base_qindex;
if (cpi->common.delta_q_info.delta_lf_present_flag) {
av1_reset_loop_filter_delta(xd, num_planes);
}
}
for (int mi_row = mi_row_start; mi_row < mi_row_end;
mi_row += cm->seq_params->mib_size) {
const int sb_row_in_tile =
(mi_row - tile->mi_row_start) >> cm->seq_params->mib_size_log2;
const TokenInfo *token_info = &cpi->token_info;
const TokenExtra *tok;
const TokenExtra *tok_end;
get_token_pointers(token_info, tile_row, tile_col, sb_row_in_tile, &tok,
&tok_end);
av1_zero_left_context(xd);
for (int mi_col = mi_col_start; mi_col < mi_col_end;
mi_col += cm->seq_params->mib_size) {
td->mb.cb_coef_buff = av1_get_cb_coeff_buffer(cpi, mi_row, mi_col);
write_modes_sb(cpi, td, tile, w, &tok, tok_end, mi_row, mi_col,
cm->seq_params->sb_size);
}
assert(tok == tok_end);
}
}
static inline void encode_restoration_mode(AV1_COMMON *cm,
struct aom_write_bit_buffer *wb) {
assert(!cm->features.all_lossless);
if (!cm->seq_params->enable_restoration) return;
if (cm->features.allow_intrabc) return;
const int num_planes = av1_num_planes(cm);
int all_none = 1, chroma_none = 1;
for (int p = 0; p < num_planes; ++p) {
RestorationInfo *rsi = &cm->rst_info[p];
if (rsi->frame_restoration_type != RESTORE_NONE) {
all_none = 0;
chroma_none &= p == 0;
}
switch (rsi->frame_restoration_type) {
case RESTORE_NONE:
aom_wb_write_bit(wb, 0);
aom_wb_write_bit(wb, 0);
break;
case RESTORE_WIENER:
aom_wb_write_bit(wb, 1);
aom_wb_write_bit(wb, 0);
break;
case RESTORE_SGRPROJ:
aom_wb_write_bit(wb, 1);
aom_wb_write_bit(wb, 1);
break;
case RESTORE_SWITCHABLE:
aom_wb_write_bit(wb, 0);
aom_wb_write_bit(wb, 1);
break;
default: assert(0);
}
}
if (!all_none) {
assert(cm->seq_params->sb_size == BLOCK_64X64 ||
cm->seq_params->sb_size == BLOCK_128X128);
const int sb_size = cm->seq_params->sb_size == BLOCK_128X128 ? 128 : 64;
RestorationInfo *rsi = &cm->rst_info[0];
assert(rsi->restoration_unit_size >= sb_size);
assert(RESTORATION_UNITSIZE_MAX == 256);
if (sb_size == 64) {
aom_wb_write_bit(wb, rsi->restoration_unit_size > 64);
}
if (rsi->restoration_unit_size > 64) {
aom_wb_write_bit(wb, rsi->restoration_unit_size > 128);
}
}
if (num_planes > 1) {
int s =
AOMMIN(cm->seq_params->subsampling_x, cm->seq_params->subsampling_y);
if (s && !chroma_none) {
aom_wb_write_bit(wb, cm->rst_info[1].restoration_unit_size !=
cm->rst_info[0].restoration_unit_size);
assert(cm->rst_info[1].restoration_unit_size ==
cm->rst_info[0].restoration_unit_size ||
cm->rst_info[1].restoration_unit_size ==
(cm->rst_info[0].restoration_unit_size >> s));
assert(cm->rst_info[2].restoration_unit_size ==
cm->rst_info[1].restoration_unit_size);
} else if (!s) {
assert(cm->rst_info[1].restoration_unit_size ==
cm->rst_info[0].restoration_unit_size);
assert(cm->rst_info[2].restoration_unit_size ==
cm->rst_info[1].restoration_unit_size);
}
}
}
#if !CONFIG_REALTIME_ONLY
static inline void write_wiener_filter(int wiener_win,
const WienerInfo *wiener_info,
WienerInfo *ref_wiener_info,
aom_writer *wb) {
if (wiener_win == WIENER_WIN)
aom_write_primitive_refsubexpfin(
wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
WIENER_FILT_TAP0_SUBEXP_K,
ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV,
wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV);
else
assert(wiener_info->vfilter[0] == 0 &&
wiener_info->vfilter[WIENER_WIN - 1] == 0);
aom_write_primitive_refsubexpfin(
wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
WIENER_FILT_TAP1_SUBEXP_K,
ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV,
wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV);
aom_write_primitive_refsubexpfin(
wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
WIENER_FILT_TAP2_SUBEXP_K,
ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV,
wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV);
if (wiener_win == WIENER_WIN)
aom_write_primitive_refsubexpfin(
wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
WIENER_FILT_TAP0_SUBEXP_K,
ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV,
wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV);
else
assert(wiener_info->hfilter[0] == 0 &&
wiener_info->hfilter[WIENER_WIN - 1] == 0);
aom_write_primitive_refsubexpfin(
wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
WIENER_FILT_TAP1_SUBEXP_K,
ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV,
wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV);
aom_write_primitive_refsubexpfin(
wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
WIENER_FILT_TAP2_SUBEXP_K,
ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV,
wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV);
*ref_wiener_info = *wiener_info;
}
static inline void write_sgrproj_filter(const SgrprojInfo *sgrproj_info,
SgrprojInfo *ref_sgrproj_info,
aom_writer *wb) {
aom_write_literal(wb, sgrproj_info->ep, SGRPROJ_PARAMS_BITS);
const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep];
if (params->r[0] == 0) {
assert(sgrproj_info->xqd[0] == 0);
aom_write_primitive_refsubexpfin(
wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
} else if (params->r[1] == 0) {
aom_write_primitive_refsubexpfin(
wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
} else {
aom_write_primitive_refsubexpfin(
wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
aom_write_primitive_refsubexpfin(
wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
}
*ref_sgrproj_info = *sgrproj_info;
}
static inline void loop_restoration_write_sb_coeffs(
const AV1_COMMON *const cm, MACROBLOCKD *xd, int runit_idx,
aom_writer *const w, int plane, FRAME_COUNTS *counts) {
const RestorationUnitInfo *rui = &cm->rst_info[plane].unit_info[runit_idx];
const RestorationInfo *rsi = cm->rst_info + plane;
RestorationType frame_rtype = rsi->frame_restoration_type;
assert(frame_rtype != RESTORE_NONE);
(void)counts;
assert(!cm->features.all_lossless);
const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN;
WienerInfo *ref_wiener_info = &xd->wiener_info[plane];
SgrprojInfo *ref_sgrproj_info = &xd->sgrproj_info[plane];
RestorationType unit_rtype = rui->restoration_type;
if (frame_rtype == RESTORE_SWITCHABLE) {
aom_write_symbol(w, unit_rtype, xd->tile_ctx->switchable_restore_cdf,
RESTORE_SWITCHABLE_TYPES);
#if CONFIG_ENTROPY_STATS
++counts->switchable_restore[unit_rtype];
#endif
switch (unit_rtype) {
case RESTORE_WIENER:
#if DEBUG_LR_COSTING
assert(!memcmp(
ref_wiener_info,
&lr_ref_params[RESTORE_SWITCHABLE][plane][runit_idx].wiener_info,
sizeof(*ref_wiener_info)));
#endif
write_wiener_filter(wiener_win, &rui->wiener_info, ref_wiener_info, w);
break;
case RESTORE_SGRPROJ:
#if DEBUG_LR_COSTING
assert(!memcmp(&ref_sgrproj_info->xqd,
&lr_ref_params[RESTORE_SWITCHABLE][plane][runit_idx]
.sgrproj_info.xqd,
sizeof(ref_sgrproj_info->xqd)));
#endif
write_sgrproj_filter(&rui->sgrproj_info, ref_sgrproj_info, w);
break;
default: assert(unit_rtype == RESTORE_NONE); break;
}
} else if (frame_rtype == RESTORE_WIENER) {
aom_write_symbol(w, unit_rtype != RESTORE_NONE,
xd->tile_ctx->wiener_restore_cdf, 2);
#if CONFIG_ENTROPY_STATS
++counts->wiener_restore[unit_rtype != RESTORE_NONE];
#endif
if (unit_rtype != RESTORE_NONE) {
#if DEBUG_LR_COSTING
assert(
!memcmp(ref_wiener_info,
&lr_ref_params[RESTORE_WIENER][plane][runit_idx].wiener_info,
sizeof(*ref_wiener_info)));
#endif
write_wiener_filter(wiener_win, &rui->wiener_info, ref_wiener_info, w);
}
} else if (frame_rtype == RESTORE_SGRPROJ) {
aom_write_symbol(w, unit_rtype != RESTORE_NONE,
xd->tile_ctx->sgrproj_restore_cdf, 2);
#if CONFIG_ENTROPY_STATS
++counts->sgrproj_restore[unit_rtype != RESTORE_NONE];
#endif
if (unit_rtype != RESTORE_NONE) {
#if DEBUG_LR_COSTING
assert(!memcmp(
&ref_sgrproj_info->xqd,
&lr_ref_params[RESTORE_SGRPROJ][plane][runit_idx].sgrproj_info.xqd,
sizeof(ref_sgrproj_info->xqd)));
#endif
write_sgrproj_filter(&rui->sgrproj_info, ref_sgrproj_info, w);
}
}
}
#endif // !CONFIG_REALTIME_ONLY
// Only write out the ref delta section if any of the elements
// will signal a delta.
static bool is_mode_ref_delta_meaningful(AV1_COMMON *cm) {
struct loopfilter *lf = &cm->lf;
if (!lf->mode_ref_delta_update) {
return 0;
}
const RefCntBuffer *buf = get_primary_ref_frame_buf(cm);
int8_t last_ref_deltas[REF_FRAMES];
int8_t last_mode_deltas[MAX_MODE_LF_DELTAS];
if (buf == NULL) {
av1_set_default_ref_deltas(last_ref_deltas);
av1_set_default_mode_deltas(last_mode_deltas);
} else {
memcpy(last_ref_deltas, buf->ref_deltas, REF_FRAMES);
memcpy(last_mode_deltas, buf->mode_deltas, MAX_MODE_LF_DELTAS);
}
for (int i = 0; i < REF_FRAMES; i++) {
if (lf->ref_deltas[i] != last_ref_deltas[i]) {
return true;
}
}
for (int i = 0; i < MAX_MODE_LF_DELTAS; i++) {
if (lf->mode_deltas[i] != last_mode_deltas[i]) {
return true;
}
}
return false;
}
static inline void encode_loopfilter(AV1_COMMON *cm,
struct aom_write_bit_buffer *wb) {
assert(!cm->features.coded_lossless);
if (cm->features.allow_intrabc) return;
const int num_planes = av1_num_planes(cm);
struct loopfilter *lf = &cm->lf;
// Encode the loop filter level and type
aom_wb_write_literal(wb, lf->filter_level[0], 6);
aom_wb_write_literal(wb, lf->filter_level[1], 6);
if (num_planes > 1) {
if (lf->filter_level[0] || lf->filter_level[1]) {
aom_wb_write_literal(wb, lf->filter_level_u, 6);
aom_wb_write_literal(wb, lf->filter_level_v, 6);
}
}
aom_wb_write_literal(wb, lf->sharpness_level, 3);
aom_wb_write_bit(wb, lf->mode_ref_delta_enabled);
// Write out loop filter deltas applied at the MB level based on mode or
// ref frame (if they are enabled), only if there is information to write.
int meaningful = is_mode_ref_delta_meaningful(cm);
aom_wb_write_bit(wb, meaningful);
if (!meaningful) {
return;
}
const RefCntBuffer *buf = get_primary_ref_frame_buf(cm);
int8_t last_ref_deltas[REF_FRAMES];
int8_t last_mode_deltas[MAX_MODE_LF_DELTAS];
if (buf == NULL) {
av1_set_default_ref_deltas(last_ref_deltas);
av1_set_default_mode_deltas(last_mode_deltas);
} else {
memcpy(last_ref_deltas, buf->ref_deltas, REF_FRAMES);
memcpy(last_mode_deltas, buf->mode_deltas, MAX_MODE_LF_DELTAS);
}
for (int i = 0; i < REF_FRAMES; i++) {
const int delta = lf->ref_deltas[i];
const int changed = delta != last_ref_deltas[i];
aom_wb_write_bit(wb, changed);
if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6);
}
for (int i = 0; i < MAX_MODE_LF_DELTAS; i++) {
const int delta = lf->mode_deltas[i];
const int changed = delta != last_mode_deltas[i];
aom_wb_write_bit(wb, changed);
if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6);
}
}
static inline void encode_cdef(const AV1_COMMON *cm,
struct aom_write_bit_buffer *wb) {
assert(!cm->features.coded_lossless);
if (!cm->seq_params->enable_cdef) return;
if (cm->features.allow_intrabc) return;
const int num_planes = av1_num_planes(cm);
int i;
aom_wb_write_literal(wb, cm->cdef_info.cdef_damping - 3, 2);
aom_wb_write_literal(wb, cm->cdef_info.cdef_bits, 2);
for (i = 0; i < cm->cdef_info.nb_cdef_strengths; i++) {
aom_wb_write_literal(wb, cm->cdef_info.cdef_strengths[i],
CDEF_STRENGTH_BITS);
if (num_planes > 1)
aom_wb_write_literal(wb, cm->cdef_info.cdef_uv_strengths[i],
CDEF_STRENGTH_BITS);
}
}
static inline void write_delta_q(struct aom_write_bit_buffer *wb, int delta_q) {
if (delta_q != 0) {
aom_wb_write_bit(wb, 1);
aom_wb_write_inv_signed_literal(wb, delta_q, 6);
} else {
aom_wb_write_bit(wb, 0);
}
}
static inline void encode_quantization(
const CommonQuantParams *const quant_params, int num_planes,
bool separate_uv_delta_q, struct aom_write_bit_buffer *wb) {
aom_wb_write_literal(wb, quant_params->base_qindex, QINDEX_BITS);
write_delta_q(wb, quant_params->y_dc_delta_q);
if (num_planes > 1) {
int diff_uv_delta =
(quant_params->u_dc_delta_q != quant_params->v_dc_delta_q) ||
(quant_params->u_ac_delta_q != quant_params->v_ac_delta_q);
if (separate_uv_delta_q) aom_wb_write_bit(wb, diff_uv_delta);
write_delta_q(wb, quant_params->u_dc_delta_q);
write_delta_q(wb, quant_params->u_ac_delta_q);
if (diff_uv_delta) {
write_delta_q(wb, quant_params->v_dc_delta_q);
write_delta_q(wb, quant_params->v_ac_delta_q);
}
}
aom_wb_write_bit(wb, quant_params->using_qmatrix);
if (quant_params->using_qmatrix) {
aom_wb_write_literal(wb, quant_params->qmatrix_level_y, QM_LEVEL_BITS);
aom_wb_write_literal(wb, quant_params->qmatrix_level_u, QM_LEVEL_BITS);
if (!separate_uv_delta_q)
assert(quant_params->qmatrix_level_u == quant_params->qmatrix_level_v);
else
aom_wb_write_literal(wb, quant_params->qmatrix_level_v, QM_LEVEL_BITS);
}
}
static inline void encode_segmentation(AV1_COMMON *cm,
struct aom_write_bit_buffer *wb) {
int i, j;
struct segmentation *seg = &cm->seg;
aom_wb_write_bit(wb, seg->enabled);
if (!seg->enabled) return;
// Write update flags
if (cm->features.primary_ref_frame != PRIMARY_REF_NONE) {
aom_wb_write_bit(wb, seg->update_map);
if (seg->update_map) aom_wb_write_bit(wb, seg->temporal_update);
aom_wb_write_bit(wb, seg->update_data);
}
// Segmentation data
if (seg->update_data) {
for (i = 0; i < MAX_SEGMENTS; i++) {
for (j = 0; j < SEG_LVL_MAX; j++) {
const int active = segfeature_active(seg, i, j);
aom_wb_write_bit(wb, active);
if (active) {
const int data_max = av1_seg_feature_data_max(j);
const int data_min = -data_max;
const int ubits = get_unsigned_bits(data_max);
const int data = clamp(get_segdata(seg, i, j), data_min, data_max);
if (av1_is_segfeature_signed(j)) {
aom_wb_write_inv_signed_literal(wb, data, ubits);
} else {
aom_wb_write_literal(wb, data, ubits);
}
}
}
}
}
}
static inline void write_frame_interp_filter(InterpFilter filter,
struct aom_write_bit_buffer *wb) {
aom_wb_write_bit(wb, filter == SWITCHABLE);
if (filter != SWITCHABLE)
aom_wb_write_literal(wb, filter, LOG_SWITCHABLE_FILTERS);
}
// Same function as write_uniform but writing to uncompresses header wb
static inline void wb_write_uniform(struct aom_write_bit_buffer *wb, int n,
int v) {
const int l = get_unsigned_bits(n);
const int m = (1 << l) - n;
if (l == 0) return;
if (v < m) {
aom_wb_write_literal(wb, v, l - 1);
} else {
aom_wb_write_literal(wb, m + ((v - m) >> 1), l - 1);
aom_wb_write_literal(wb, (v - m) & 1, 1);
}
}
static inline void write_tile_info_max_tile(const AV1_COMMON *const cm,
struct aom_write_bit_buffer *wb) {
int width_sb =
CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, cm->seq_params->mib_size_log2);
int height_sb =
CEIL_POWER_OF_TWO(cm->mi_params.mi_rows, cm->seq_params->mib_size_log2);
int size_sb, i;
const CommonTileParams *const tiles = &cm->tiles;
aom_wb_write_bit(wb, tiles->uniform_spacing);
if (tiles->uniform_spacing) {
int ones = tiles->log2_cols - tiles->min_log2_cols;
while (ones--) {
aom_wb_write_bit(wb, 1);
}
if (tiles->log2_cols < tiles->max_log2_cols) {
aom_wb_write_bit(wb, 0);
}
// rows
ones = tiles->log2_rows - tiles->min_log2_rows;
while (ones--) {
aom_wb_write_bit(wb, 1);
}
if (tiles->log2_rows < tiles->max_log2_rows) {
aom_wb_write_bit(wb, 0);
}
} else {
// Explicit tiles with configurable tile widths and heights
// columns
for (i = 0; i < tiles->cols; i++) {
size_sb = tiles->col_start_sb[i + 1] - tiles->col_start_sb[i];
wb_write_uniform(wb, AOMMIN(width_sb, tiles->max_width_sb), size_sb - 1);
width_sb -= size_sb;
}
assert(width_sb == 0);
// rows
for (i = 0; i < tiles->rows; i++) {
size_sb = tiles->row_start_sb[i + 1] - tiles->row_start_sb[i];
wb_write_uniform(wb, AOMMIN(height_sb, tiles->max_height_sb),
size_sb - 1);
height_sb -= size_sb;
}
assert(height_sb == 0);
}
}
static inline void write_tile_info(const AV1_COMMON *const cm,
struct aom_write_bit_buffer *saved_wb,
struct aom_write_bit_buffer *wb) {
write_tile_info_max_tile(cm, wb);
*saved_wb = *wb;
if (cm->tiles.rows * cm->tiles.cols > 1) {
// tile id used for cdf update
aom_wb_write_literal(wb, 0, cm->tiles.log2_cols + cm->tiles.log2_rows);
// Number of bytes in tile size - 1
aom_wb_write_literal(wb, 3, 2);
}
}
static inline void write_ext_tile_info(const AV1_COMMON *const cm,
struct aom_write_bit_buffer *saved_wb,
struct aom_write_bit_buffer *wb) {
// This information is stored as a separate byte.
int mod = wb->bit_offset % CHAR_BIT;
if (mod > 0) aom_wb_write_literal(wb, 0, CHAR_BIT - mod);
assert(aom_wb_is_byte_aligned(wb));
*saved_wb = *wb;
if (cm->tiles.rows * cm->tiles.cols > 1) {
// Note that the last item in the uncompressed header is the data
// describing tile configuration.
// Number of bytes in tile column size - 1
aom_wb_write_literal(wb, 0, 2);
// Number of bytes in tile size - 1
aom_wb_write_literal(wb, 0, 2);
}
}
static inline int find_identical_tile(
const int tile_row, const int tile_col,
TileBufferEnc (*const tile_buffers)[MAX_TILE_COLS]) {
const MV32 candidate_offset[1] = { { 1, 0 } };
const uint8_t *const cur_tile_data =
tile_buffers[tile_row][tile_col].data + 4;
const size_t cur_tile_size = tile_buffers[tile_row][tile_col].size;
int i;
if (tile_row == 0) return 0;
// (TODO: yunqingwang) For now, only above tile is checked and used.
// More candidates such as left tile can be added later.
for (i = 0; i < 1; i++) {
int row_offset = candidate_offset[0].row;
int col_offset = candidate_offset[0].col;
int row = tile_row - row_offset;
int col = tile_col - col_offset;
const uint8_t *tile_data;
TileBufferEnc *candidate;
if (row < 0 || col < 0) continue;
const uint32_t tile_hdr = mem_get_le32(tile_buffers[row][col].data);
// Read out tile-copy-mode bit:
if ((tile_hdr >> 31) == 1) {
// The candidate is a copy tile itself: the offset is stored in bits
// 30 through 24 inclusive.
row_offset += (tile_hdr >> 24) & 0x7f;
row = tile_row - row_offset;
}
candidate = &tile_buffers[row][col];
if (row_offset >= 128 || candidate->size != cur_tile_size) continue;
tile_data = candidate->data + 4;
if (memcmp(tile_data, cur_tile_data, cur_tile_size) != 0) continue;
// Identical tile found
assert(row_offset > 0);
return row_offset;
}
// No identical tile found
return 0;
}
static inline void write_render_size(const AV1_COMMON *cm,
struct aom_write_bit_buffer *wb) {
const int scaling_active = av1_resize_scaled(cm);
aom_wb_write_bit(wb, scaling_active);
if (scaling_active) {
aom_wb_write_literal(wb, cm->render_width - 1, 16);
aom_wb_write_literal(wb, cm->render_height - 1, 16);
}
}
static inline void write_superres_scale(const AV1_COMMON *const cm,
struct aom_write_bit_buffer *wb) {
const SequenceHeader *const seq_params = cm->seq_params;
if (!seq_params->enable_superres) {
assert(cm->superres_scale_denominator == SCALE_NUMERATOR);
return;
}
// First bit is whether to to scale or not
if (cm->superres_scale_denominator == SCALE_NUMERATOR) {
aom_wb_write_bit(wb, 0); // no scaling
} else {
aom_wb_write_bit(wb, 1); // scaling, write scale factor
assert(cm->superres_scale_denominator >= SUPERRES_SCALE_DENOMINATOR_MIN);
assert(cm->superres_scale_denominator <
SUPERRES_SCALE_DENOMINATOR_MIN + (1 << SUPERRES_SCALE_BITS));
aom_wb_write_literal(
wb, cm->superres_scale_denominator - SUPERRES_SCALE_DENOMINATOR_MIN,
SUPERRES_SCALE_BITS);
}
}
static inline void write_frame_size(const AV1_COMMON *cm,
int frame_size_override,
struct aom_write_bit_buffer *wb) {
const int coded_width = cm->superres_upscaled_width - 1;
const int coded_height = cm->superres_upscaled_height - 1;
if (frame_size_override) {
const SequenceHeader *seq_params = cm->seq_params;
int num_bits_width = seq_params->num_bits_width;
int num_bits_height = seq_params->num_bits_height;
aom_wb_write_literal(wb, coded_width, num_bits_width);
aom_wb_write_literal(wb, coded_height, num_bits_height);
}
write_superres_scale(cm, wb);
write_render_size(cm, wb);
}
static inline void write_frame_size_with_refs(const AV1_COMMON *const cm,
struct aom_write_bit_buffer *wb) {
int found = 0;
MV_REFERENCE_FRAME ref_frame;
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
const YV12_BUFFER_CONFIG *cfg = get_ref_frame_yv12_buf(cm, ref_frame);
if (cfg != NULL) {
found = cm->superres_upscaled_width == cfg->y_crop_width &&
cm->superres_upscaled_height == cfg->y_crop_height;
found &= cm->render_width == cfg->render_width &&
cm->render_height == cfg->render_height;
}
aom_wb_write_bit(wb, found);
if (found) {
write_superres_scale(cm, wb);
break;
}
}
if (!found) {
int frame_size_override = 1; // Always equal to 1 in this function
write_frame_size(cm, frame_size_override, wb);
}
}
static inline void write_profile(BITSTREAM_PROFILE profile,
struct aom_write_bit_buffer *wb) {
assert(profile >= PROFILE_0 && profile < MAX_PROFILES);
aom_wb_write_literal(wb, profile, PROFILE_BITS);
}
static inline void write_bitdepth(const SequenceHeader *const seq_params,
struct aom_write_bit_buffer *wb) {
// Profile 0/1: [0] for 8 bit, [1] 10-bit
// Profile 2: [0] for 8 bit, [10] 10-bit, [11] - 12-bit
aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_8 ? 0 : 1);
if (seq_params->profile == PROFILE_2 && seq_params->bit_depth != AOM_BITS_8) {
aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_10 ? 0 : 1);
}
}
static inline void write_color_config(const SequenceHeader *const seq_params,
struct aom_write_bit_buffer *wb) {
write_bitdepth(seq_params, wb);
const int is_monochrome = seq_params->monochrome;
// monochrome bit
if (seq_params->profile != PROFILE_1)
aom_wb_write_bit(wb, is_monochrome);
else
assert(!is_monochrome);
if (seq_params->color_primaries == AOM_CICP_CP_UNSPECIFIED &&
seq_params->transfer_characteristics == AOM_CICP_TC_UNSPECIFIED &&
seq_params->matrix_coefficients == AOM_CICP_MC_UNSPECIFIED) {
aom_wb_write_bit(wb, 0); // No color description present
} else {
aom_wb_write_bit(wb, 1); // Color description present
aom_wb_write_literal(wb, seq_params->color_primaries, 8);
aom_wb_write_literal(wb, seq_params->transfer_characteristics, 8);
aom_wb_write_literal(wb, seq_params->matrix_coefficients, 8);
}
if (is_monochrome) {
// 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
aom_wb_write_bit(wb, seq_params->color_range);
return;
}
if (seq_params->color_primaries == AOM_CICP_CP_BT_709 &&
seq_params->transfer_characteristics == AOM_CICP_TC_SRGB &&
seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) {
assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
assert(seq_params->profile == PROFILE_1 ||
(seq_params->profile == PROFILE_2 &&
seq_params->bit_depth == AOM_BITS_12));
} else {
// 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
aom_wb_write_bit(wb, seq_params->color_range);
if (seq_params->profile == PROFILE_0) {
// 420 only
assert(seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1);
} else if (seq_params->profile == PROFILE_1) {
// 444 only
assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
} else if (seq_params->profile == PROFILE_2) {
if (seq_params->bit_depth == AOM_BITS_12) {
// 420, 444 or 422
aom_wb_write_bit(wb, seq_params->subsampling_x);
if (seq_params->subsampling_x == 0) {
assert(seq_params->subsampling_y == 0 &&
"4:4:0 subsampling not allowed in AV1");
} else {
aom_wb_write_bit(wb, seq_params->subsampling_y);
}
} else {
// 422 only
assert(seq_params->subsampling_x == 1 &&
seq_params->subsampling_y == 0);
}
}
if (seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) {
assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
}
if (seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1) {
aom_wb_write_literal(wb, seq_params->chroma_sample_position, 2);
}
}
aom_wb_write_bit(wb, seq_params->separate_uv_delta_q);
}
static inline void write_timing_info_header(
const aom_timing_info_t *const timing_info,
struct aom_write_bit_buffer *wb) {
aom_wb_write_unsigned_literal(wb, timing_info->num_units_in_display_tick, 32);
aom_wb_write_unsigned_literal(wb, timing_info->time_scale, 32);
aom_wb_write_bit(wb, timing_info->equal_picture_interval);
if (timing_info->equal_picture_interval) {
aom_wb_write_uvlc(wb, timing_info->num_ticks_per_picture - 1);
}
}
static inline void write_decoder_model_info(
const aom_dec_model_info_t *const decoder_model_info,
struct aom_write_bit_buffer *wb) {
aom_wb_write_literal(
wb, decoder_model_info->encoder_decoder_buffer_delay_length - 1, 5);
aom_wb_write_unsigned_literal(
wb, decoder_model_info->num_units_in_decoding_tick, 32);
aom_wb_write_literal(wb, decoder_model_info->buffer_removal_time_length - 1,
5);
aom_wb_write_literal(
wb, decoder_model_info->frame_presentation_time_length - 1, 5);
}
static inline void write_dec_model_op_parameters(
const aom_dec_model_op_parameters_t *op_params, int buffer_delay_length,
struct aom_write_bit_buffer *wb) {
aom_wb_write_unsigned_literal(wb, op_params->decoder_buffer_delay,
buffer_delay_length);
aom_wb_write_unsigned_literal(wb, op_params->encoder_buffer_delay,
buffer_delay_length);
aom_wb_write_bit(wb, op_params->low_delay_mode_flag);
}
static inline void write_tu_pts_info(AV1_COMMON *const cm,
struct aom_write_bit_buffer *wb) {
aom_wb_write_unsigned_literal(
wb, cm->frame_presentation_time,
cm->seq_params->decoder_model_info.frame_presentation_time_length);
}
static inline void write_film_grain_params(const AV1_COMP *const cpi,
struct aom_write_bit_buffer *wb) {
const AV1_COMMON *const cm = &cpi->common;
const aom_film_grain_t *const pars = &cm->cur_frame->film_grain_params;
aom_wb_write_bit(wb, pars->apply_grain);
if (!pars->apply_grain) return;
aom_wb_write_literal(wb, pars->random_seed, 16);
if (cm->current_frame.frame_type == INTER_FRAME)
aom_wb_write_bit(wb, pars->update_parameters);
if (!pars->update_parameters) {
int ref_frame, ref_idx;
for (ref_frame = LAST_FRAME; ref_frame < REF_FRAMES; ref_frame++) {
ref_idx = get_ref_frame_map_idx(cm, ref_frame);
assert(ref_idx != INVALID_IDX);
const RefCntBuffer *const buf = cm->ref_frame_map[ref_idx];
if (buf->film_grain_params_present &&
aom_check_grain_params_equiv(pars, &buf->film_grain_params)) {
break;
}
}
assert(ref_frame < REF_FRAMES);
aom_wb_write_literal(wb, ref_idx, 3);
return;
}
// Scaling functions parameters
aom_wb_write_literal(wb, pars->num_y_points, 4); // max 14
for (int i = 0; i < pars->num_y_points; i++) {
aom_wb_write_literal(wb, pars->scaling_points_y[i][0], 8);
aom_wb_write_literal(wb, pars->scaling_points_y[i][1], 8);
}
if (!cm->seq_params->monochrome) {
aom_wb_write_bit(wb, pars->chroma_scaling_from_luma);
} else {
assert(!pars->chroma_scaling_from_luma);
}
if (cm->seq_params->monochrome || pars->chroma_scaling_from_luma ||
((cm->seq_params->subsampling_x == 1) &&
(cm->seq_params->subsampling_y == 1) && (pars->num_y_points == 0))) {
assert(pars->num_cb_points == 0 && pars->num_cr_points == 0);
} else {
aom_wb_write_literal(wb, pars->num_cb_points, 4); // max 10
for (int i = 0; i < pars->num_cb_points; i++) {
aom_wb_write_literal(wb, pars->scaling_points_cb[i][0], 8);
aom_wb_write_literal(wb, pars->scaling_points_cb[i][1], 8);
}
aom_wb_write_literal(wb, pars->num_cr_points, 4); // max 10
for (int i = 0; i < pars->num_cr_points; i++) {
aom_wb_write_literal(wb, pars->scaling_points_cr[i][0], 8);
aom_wb_write_literal(wb, pars->scaling_points_cr[i][1], 8);
}
}
aom_wb_write_literal(wb, pars->scaling_shift - 8, 2); // 8 + value
// AR coefficients
// Only sent if the corresponsing scaling function has
// more than 0 points
aom_wb_write_literal(wb, pars->ar_coeff_lag, 2);
int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1);
int num_pos_chroma = num_pos_luma;
if (pars->num_y_points > 0) ++num_pos_chroma;
if (pars->num_y_points)
for (int i = 0; i < num_pos_luma; i++)
aom_wb_write_literal(wb, pars->ar_coeffs_y[i] + 128, 8);
if (pars->num_cb_points || pars->chroma_scaling_from_luma)
for (int i = 0; i < num_pos_chroma; i++)
aom_wb_write_literal(wb, pars->ar_coeffs_cb[i] + 128, 8);
if (pars->num_cr_points || pars->chroma_scaling_from_luma)
for (int i = 0; i < num_pos_chroma; i++)
aom_wb_write_literal(wb, pars->ar_coeffs_cr[i] + 128, 8);
aom_wb_write_literal(wb, pars->ar_coeff_shift - 6, 2); // 8 + value
aom_wb_write_literal(wb, pars->grain_scale_shift, 2);
if (pars->num_cb_points) {
aom_wb_write_literal(wb, pars->cb_mult, 8);
aom_wb_write_literal(wb, pars->cb_luma_mult, 8);
aom_wb_write_literal(wb, pars->cb_offset, 9);
}
if (pars->num_cr_points) {
aom_wb_write_literal(wb, pars->cr_mult, 8);
aom_wb_write_literal(wb, pars->cr_luma_mult, 8);
aom_wb_write_literal(wb, pars->cr_offset, 9);
}
aom_wb_write_bit(wb, pars->overlap_flag);
aom_wb_write_bit(wb, pars->clip_to_restricted_range);
}
static inline void write_sb_size(const SequenceHeader *const seq_params,
struct aom_write_bit_buffer *wb) {
(void)seq_params;
(void)wb;
assert(seq_params->mib_size == mi_size_wide[seq_params->sb_size]);
assert(seq_params->mib_size == 1 << seq_params->mib_size_log2);
assert(seq_params->sb_size == BLOCK_128X128 ||
seq_params->sb_size == BLOCK_64X64);
aom_wb_write_bit(wb, seq_params->sb_size == BLOCK_128X128 ? 1 : 0);
}
static inline void write_sequence_header(const SequenceHeader *const seq_params,
struct aom_write_bit_buffer *wb) {
aom_wb_write_literal(wb, seq_params->num_bits_width - 1, 4);
aom_wb_write_literal(wb, seq_params->num_bits_height - 1, 4);
aom_wb_write_literal(wb, seq_params->max_frame_width - 1,
seq_params->num_bits_width);
aom_wb_write_literal(wb, seq_params->max_frame_height - 1,
seq_params->num_bits_height);
if (!seq_params->reduced_still_picture_hdr) {
aom_wb_write_bit(wb, seq_params->frame_id_numbers_present_flag);
if (seq_params->frame_id_numbers_present_flag) {
// We must always have delta_frame_id_length < frame_id_length,
// in order for a frame to be referenced with a unique delta.
// Avoid wasting bits by using a coding that enforces this restriction.
aom_wb_write_literal(wb, seq_params->delta_frame_id_length - 2, 4);
aom_wb_write_literal(
wb,
seq_params->frame_id_length - seq_params->delta_frame_id_length - 1,
3);
}
}
write_sb_size(seq_params, wb);
aom_wb_write_bit(wb, seq_params->enable_filter_intra);
aom_wb_write_bit(wb, seq_params->enable_intra_edge_filter);
if (!seq_params->reduced_still_picture_hdr) {
aom_wb_write_bit(wb, seq_params->enable_interintra_compound);
aom_wb_write_bit(wb, seq_params->enable_masked_compound);
aom_wb_write_bit(wb, seq_params->enable_warped_motion);
aom_wb_write_bit(wb, seq_params->enable_dual_filter);
aom_wb_write_bit(wb, seq_params->order_hint_info.enable_order_hint);
if (seq_params->order_hint_info.enable_order_hint) {
aom_wb_write_bit(wb, seq_params->order_hint_info.enable_dist_wtd_comp);
aom_wb_write_bit(wb, seq_params->order_hint_info.enable_ref_frame_mvs);
}
if (seq_params->force_screen_content_tools == 2) {
aom_wb_write_bit(wb, 1);
} else {
aom_wb_write_bit(wb, 0);
aom_wb_write_bit(wb, seq_params->force_screen_content_tools);
}
if (seq_params->force_screen_content_tools > 0) {
if (seq_params->force_integer_mv == 2) {
aom_wb_write_bit(wb, 1);
} else {
aom_wb_write_bit(wb, 0);
aom_wb_write_bit(wb, seq_params->force_integer_mv);
}
} else {
assert(seq_params->force_integer_mv == 2);
}
if (seq_params->order_hint_info.enable_order_hint)
aom_wb_write_literal(
wb, seq_params->order_hint_info.order_hint_bits_minus_1, 3);
}
aom_wb_write_bit(wb, seq_params->enable_superres);
aom_wb_write_bit(wb, seq_params->enable_cdef);
aom_wb_write_bit(wb, seq_params->enable_restoration);
}
static inline void write_global_motion_params(
const WarpedMotionParams *params, const WarpedMotionParams *ref_params,
struct aom_write_bit_buffer *wb, int allow_hp) {
const TransformationType type = params->wmtype;
// As a workaround for an AV1 spec bug, we avoid choosing TRANSLATION
// type models. Check here that we don't accidentally pick one somehow.
// See comments in gm_get_motion_vector() for details on the bug we're
// working around here
assert(type != TRANSLATION);
aom_wb_write_bit(wb, type != IDENTITY);
if (type != IDENTITY) {
aom_wb_write_bit(wb, type == ROTZOOM);
if (type != ROTZOOM) aom_wb_write_bit(wb, type == TRANSLATION);
}
if (type >= ROTZOOM) {
aom_wb_write_signed_primitive_refsubexpfin(
wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) -
(1 << GM_ALPHA_PREC_BITS),
(params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
aom_wb_write_signed_primitive_refsubexpfin(
wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF),
(params->wmmat[3] >> GM_ALPHA_PREC_DIFF));
}
if (type >= AFFINE) {
aom_wb_write_signed_primitive_refsubexpfin(
wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF),
(params->wmmat[4] >> GM_ALPHA_PREC_DIFF));
aom_wb_write_signed_primitive_refsubexpfin(
wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) -
(1 << GM_ALPHA_PREC_BITS),
(params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
}
if (type >= TRANSLATION) {
const int trans_bits = (type == TRANSLATION)
? GM_ABS_TRANS_ONLY_BITS - !allow_hp
: GM_ABS_TRANS_BITS;
const int trans_prec_diff = (type == TRANSLATION)
? GM_TRANS_ONLY_PREC_DIFF + !allow_hp
: GM_TRANS_PREC_DIFF;
aom_wb_write_signed_primitive_refsubexpfin(
wb, (1 << trans_bits) + 1, SUBEXPFIN_K,
(ref_params->wmmat[0] >> trans_prec_diff),
(params->wmmat[0] >> trans_prec_diff));
aom_wb_write_signed_primitive_refsubexpfin(
wb, (1 << trans_bits) + 1, SUBEXPFIN_K,
(ref_params->wmmat[1] >> trans_prec_diff),
(params->wmmat[1] >> trans_prec_diff));
}
}
static inline void write_global_motion(AV1_COMP *cpi,
struct aom_write_bit_buffer *wb) {
AV1_COMMON *const cm = &cpi->common;
int frame;
for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) {
const WarpedMotionParams *ref_params =
cm->prev_frame ? &cm->prev_frame->global_motion[frame]
: &default_warp_params;
write_global_motion_params(&cm->global_motion[frame], ref_params, wb,
cm->features.allow_high_precision_mv);
// TODO(sarahparker, debargha): The logic in the commented out code below
// does not work currently and causes mismatches when resize is on.
// Fix it before turning the optimization back on.
/*
YV12_BUFFER_CONFIG *ref_buf = get_ref_frame_yv12_buf(cpi, frame);
if (cpi->source->y_crop_width == ref_buf->y_crop_width &&
cpi->source->y_crop_height == ref_buf->y_crop_height) {
write_global_motion_params(&cm->global_motion[frame],
&cm->prev_frame->global_motion[frame], wb,
cm->features.allow_high_precision_mv);
} else {
assert(cm->global_motion[frame].wmtype == IDENTITY &&
"Invalid warp type for frames of different resolutions");
}
*/
/*
printf("Frame %d/%d: Enc Ref %d: %d %d %d %d\n",
cm->current_frame.frame_number, cm->show_frame, frame,
cm->global_motion[frame].wmmat[0],
cm->global_motion[frame].wmmat[1], cm->global_motion[frame].wmmat[2],
cm->global_motion[frame].wmmat[3]);
*/
}
}
static int check_frame_refs_short_signaling(AV1_COMMON *const cm,
bool enable_ref_short_signaling) {
// In rtc case when res < 360p and speed >= 9, we turn on
// frame_refs_short_signaling if it won't break the decoder.
if (enable_ref_short_signaling) {
const int gld_map_idx = get_ref_frame_map_idx(cm, GOLDEN_FRAME);
const int base =
1 << (cm->seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
const int order_hint_group_cur =
cm->current_frame.display_order_hint / base;
const int order_hint_group_gld =
cm->ref_frame_map[gld_map_idx]->display_order_hint / base;
const int relative_dist = cm->current_frame.order_hint -
cm->ref_frame_map[gld_map_idx]->order_hint;
// If current frame and GOLDEN frame are in the same order_hint group, and
// they are not far apart (i.e., > 64 frames), then return 1.
if (order_hint_group_cur == order_hint_group_gld && relative_dist >= 0 &&
relative_dist <= 64) {
return 1;
}
return 0;
}
// Check whether all references are distinct frames.
const RefCntBuffer *seen_bufs[INTER_REFS_PER_FRAME] = { NULL };
int num_refs = 0;
for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame);
if (buf != NULL) {
int seen = 0;
for (int i = 0; i < num_refs; i++) {
if (seen_bufs[i] == buf) {
seen = 1;
break;
}
}
if (!seen) seen_bufs[num_refs++] = buf;
}
}
// We only turn on frame_refs_short_signaling when all references are
// distinct.
if (num_refs < INTER_REFS_PER_FRAME) {
// It indicates that there exist more than one reference frame pointing to
// the same reference buffer, i.e. two or more references are duplicate.
return 0;
}
// Check whether the encoder side ref frame choices are aligned with that to
// be derived at the decoder side.
int remapped_ref_idx_decoder[REF_FRAMES];
const int lst_map_idx = get_ref_frame_map_idx(cm, LAST_FRAME);
const int gld_map_idx = get_ref_frame_map_idx(cm, GOLDEN_FRAME);
// Set up the frame refs mapping indexes according to the
// frame_refs_short_signaling policy.
av1_set_frame_refs(cm, remapped_ref_idx_decoder, lst_map_idx, gld_map_idx);
// We only turn on frame_refs_short_signaling when the encoder side decision
// on ref frames is identical to that at the decoder side.
int frame_refs_short_signaling = 1;
for (int ref_idx = 0; ref_idx < INTER_REFS_PER_FRAME; ++ref_idx) {
// Compare the buffer index between two reference frames indexed
// respectively by the encoder and the decoder side decisions.
RefCntBuffer *ref_frame_buf_new = NULL;
if (remapped_ref_idx_decoder[ref_idx] != INVALID_IDX) {
ref_frame_buf_new = cm->ref_frame_map[remapped_ref_idx_decoder[ref_idx]];
}
if (get_ref_frame_buf(cm, LAST_FRAME + ref_idx) != ref_frame_buf_new) {
frame_refs_short_signaling = 0;
break;
}
}
#if 0 // For debug
printf("\nFrame=%d: \n", cm->current_frame.frame_number);
printf("***frame_refs_short_signaling=%d\n", frame_refs_short_signaling);
for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
printf("enc_ref(map_idx=%d)=%d, vs. "
"dec_ref(map_idx=%d)=%d\n",
get_ref_frame_map_idx(cm, ref_frame), ref_frame,
cm->remapped_ref_idx[ref_frame - LAST_FRAME],
ref_frame);
}
#endif // 0
return frame_refs_short_signaling;
}
// New function based on HLS R18
static inline void write_uncompressed_header_obu(
AV1_COMP *cpi, MACROBLOCKD *const xd, struct aom_write_bit_buffer *saved_wb,
struct aom_write_bit_buffer *wb) {
AV1_COMMON *const cm = &cpi->common;
const SequenceHeader *const seq_params = cm->seq_params;
const CommonQuantParams *quant_params = &cm->quant_params;
CurrentFrame *const current_frame = &cm->current_frame;
FeatureFlags *const features = &cm->features;
if (!cpi->sf.rt_sf.enable_ref_short_signaling ||
!seq_params->order_hint_info.enable_order_hint ||
seq_params->order_hint_info.enable_ref_frame_mvs) {
current_frame->frame_refs_short_signaling = 0;
} else {
current_frame->frame_refs_short_signaling = 1;
}
if (seq_params->still_picture) {
assert(cm->show_existing_frame == 0);
assert(cm->show_frame == 1);
assert(current_frame->frame_type == KEY_FRAME);
}
if (!seq_params->reduced_still_picture_hdr) {
if (encode_show_existing_frame(cm)) {
aom_wb_write_bit(wb, 1); // show_existing_frame
aom_wb_write_literal(wb, cpi->existing_fb_idx_to_show, 3);
if (seq_params->decoder_model_info_present_flag &&
seq_params->timing_info.equal_picture_interval == 0) {
write_tu_pts_info(cm, wb);
}
if (seq_params->frame_id_numbers_present_flag) {
int frame_id_len = seq_params->frame_id_length;
int display_frame_id = cm->ref_frame_id[cpi->existing_fb_idx_to_show];
aom_wb_write_literal(wb, display_frame_id, frame_id_len);
}
return;
} else {
aom_wb_write_bit(wb, 0); // show_existing_frame
}
aom_wb_write_literal(wb, current_frame->frame_type, 2);
aom_wb_write_bit(wb, cm->show_frame);
if (cm->show_frame) {
if (seq_params->decoder_model_info_present_flag &&
seq_params->timing_info.equal_picture_interval == 0)
write_tu_pts_info(cm, wb);
} else {
aom_wb_write_bit(wb, cm->showable_frame);
}
if (frame_is_sframe(cm)) {
assert(features->error_resilient_mode);
} else if (!(current_frame->frame_type == KEY_FRAME && cm->show_frame)) {
aom_wb_write_bit(wb, features->error_resilient_mode);
}
}
aom_wb_write_bit(wb, features->disable_cdf_update);
if (seq_params->force_screen_content_tools == 2) {
aom_wb_write_bit(wb, features->allow_screen_content_tools);
} else {
assert(features->allow_screen_content_tools ==
seq_params->force_screen_content_tools);
}
if (features->allow_screen_content_tools) {
if (seq_params->force_integer_mv == 2) {
aom_wb_write_bit(wb, features->cur_frame_force_integer_mv);
} else {
assert(features->cur_frame_force_integer_mv ==
seq_params->force_integer_mv);
}
} else {
assert(features->cur_frame_force_integer_mv == 0);
}
int frame_size_override_flag = 0;
if (seq_params->reduced_still_picture_hdr) {
assert(cm->superres_upscaled_width == seq_params->max_frame_width &&
cm->superres_upscaled_height == seq_params->max_frame_height);
} else {
if (seq_params->frame_id_numbers_present_flag) {
int frame_id_len = seq_params->frame_id_length;
aom_wb_write_literal(wb, cm->current_frame_id, frame_id_len);
}
if (cm->superres_upscaled_width > seq_params->max_frame_width ||
cm->superres_upscaled_height > seq_params->max_frame_height) {
aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Frame dimensions are larger than the maximum values");
}
frame_size_override_flag =
frame_is_sframe(cm)
? 1
: (cm->superres_upscaled_width != seq_params->max_frame_width ||
cm->superres_upscaled_height != seq_params->max_frame_height);
if (!frame_is_sframe(cm)) aom_wb_write_bit(wb, frame_size_override_flag);
if (seq_params->order_hint_info.enable_order_hint)
aom_wb_write_literal(
wb, current_frame->order_hint,
seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
if (!features->error_resilient_mode && !frame_is_intra_only(cm)) {
aom_wb_write_literal(wb, features->primary_ref_frame, PRIMARY_REF_BITS);
}
}
if (seq_params->decoder_model_info_present_flag) {
aom_wb_write_bit(wb, cpi->ppi->buffer_removal_time_present);
if (cpi->ppi->buffer_removal_time_present) {
for (int op_num = 0;
op_num < seq_params->operating_points_cnt_minus_1 + 1; op_num++) {
if (seq_params->op_params[op_num].decoder_model_param_present_flag) {
if (seq_params->operating_point_idc[op_num] == 0 ||
((seq_params->operating_point_idc[op_num] >>
cm->temporal_layer_id) &
0x1 &&
(seq_params->operating_point_idc[op_num] >>
(cm->spatial_layer_id + 8)) &
0x1)) {
aom_wb_write_unsigned_literal(
wb, cm->buffer_removal_times[op_num],
seq_params->decoder_model_info.buffer_removal_time_length);
cm->buffer_removal_times[op_num]++;
if (cm->buffer_removal_times[op_num] == 0) {
aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"buffer_removal_time overflowed");
}
}
}
}
}
}
// Shown keyframes and switch-frames automatically refreshes all reference
// frames. For all other frame types, we need to write refresh_frame_flags.
if ((current_frame->frame_type == KEY_FRAME && !cm->show_frame) ||
current_frame->frame_type == INTER_FRAME ||
current_frame->frame_type == INTRA_ONLY_FRAME)
aom_wb_write_literal(wb, current_frame->refresh_frame_flags, REF_FRAMES);
if (!frame_is_intra_only(cm) || current_frame->refresh_frame_flags != 0xff) {
// Write all ref frame order hints if error_resilient_mode == 1
if (features->error_resilient_mode &&
seq_params->order_hint_info.enable_order_hint) {
for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) {
aom_wb_write_literal(
wb, cm->ref_frame_map[ref_idx]->order_hint,
seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
}
}
}
if (current_frame->frame_type == KEY_FRAME) {
write_frame_size(cm, frame_size_override_flag, wb);
assert(!av1_superres_scaled(cm) || !features->allow_intrabc);
if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
aom_wb_write_bit(wb, features->allow_intrabc);
} else {
if (current_frame->frame_type == INTRA_ONLY_FRAME) {
write_frame_size(cm, frame_size_override_flag, wb);
assert(!av1_superres_scaled(cm) || !features->allow_intrabc);
if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
aom_wb_write_bit(wb, features->allow_intrabc);
} else if (current_frame->frame_type == INTER_FRAME ||
frame_is_sframe(cm)) {
MV_REFERENCE_FRAME ref_frame;
// NOTE: Error resilient mode turns off frame_refs_short_signaling
// automatically.
#define FRAME_REFS_SHORT_SIGNALING 0
#if FRAME_REFS_SHORT_SIGNALING
current_frame->frame_refs_short_signaling =
seq_params->order_hint_info.enable_order_hint;
#endif // FRAME_REFS_SHORT_SIGNALING
if (current_frame->frame_refs_short_signaling) {
// In rtc case when cpi->sf.rt_sf.enable_ref_short_signaling is true,
// we turn on frame_refs_short_signaling when the current frame and
// golden frame are in the same order_hint group, and their relative
// distance is <= 64 (in order to be decodable).
// For other cases, an example solution for encoder-side
// implementation on frame_refs_short_signaling is also provided in
// this function, where frame_refs_short_signaling is only turned on
// when the encoder side decision on ref frames is identical to that
// at the decoder side.
current_frame->frame_refs_short_signaling =
check_frame_refs_short_signaling(
cm, cpi->sf.rt_sf.enable_ref_short_signaling);
}
if (seq_params->order_hint_info.enable_order_hint)
aom_wb_write_bit(wb, current_frame->frame_refs_short_signaling);
if (current_frame->frame_refs_short_signaling) {
const int lst_ref = get_ref_frame_map_idx(cm, LAST_FRAME);
aom_wb_write_literal(wb, lst_ref, REF_FRAMES_LOG2);
const int gld_ref = get_ref_frame_map_idx(cm, GOLDEN_FRAME);
aom_wb_write_literal(wb, gld_ref, REF_FRAMES_LOG2);
}
int first_ref_map_idx = INVALID_IDX;
if (cpi->ppi->rtc_ref.set_ref_frame_config) {
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
if (cpi->ppi->rtc_ref.reference[ref_frame - 1] == 1) {
first_ref_map_idx = cpi->ppi->rtc_ref.ref_idx[ref_frame - 1];
break;
}
}
}
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
assert(get_ref_frame_map_idx(cm, ref_frame) != INVALID_IDX);
if (!current_frame->frame_refs_short_signaling) {
if (cpi->ppi->rtc_ref.set_ref_frame_config &&
first_ref_map_idx != INVALID_IDX &&
cpi->svc.number_spatial_layers == 1 &&
!seq_params->order_hint_info.enable_order_hint) {
// For the usage of set_ref_frame_config:
// for any reference not used set their ref_map_idx
// to the first used reference.
const int map_idx = cpi->ppi->rtc_ref.reference[ref_frame - 1]
? get_ref_frame_map_idx(cm, ref_frame)
: first_ref_map_idx;
aom_wb_write_literal(wb, map_idx, REF_FRAMES_LOG2);
} else {
aom_wb_write_literal(wb, get_ref_frame_map_idx(cm, ref_frame),
REF_FRAMES_LOG2);
}
}
if (seq_params->frame_id_numbers_present_flag) {
int i = get_ref_frame_map_idx(cm, ref_frame);
int frame_id_len = seq_params->frame_id_length;
int diff_len = seq_params->delta_frame_id_length;
int delta_frame_id_minus_1 =
((cm->current_frame_id - cm->ref_frame_id[i] +
(1 << frame_id_len)) %
(1 << frame_id_len)) -
1;
if (delta_frame_id_minus_1 < 0 ||
delta_frame_id_minus_1 >= (1 << diff_len)) {
aom_internal_error(cm->error, AOM_CODEC_ERROR,
"Invalid delta_frame_id_minus_1");
}
aom_wb_write_literal(wb, delta_frame_id_minus_1, diff_len);
}
}
if (!features->error_resilient_mode && frame_size_override_flag) {
write_frame_size_with_refs(cm, wb);
} else {
write_frame_size(cm, frame_size_override_flag, wb);
}
if (!features->cur_frame_force_integer_mv)
aom_wb_write_bit(wb, features->allow_high_precision_mv);
write_frame_interp_filter(features->interp_filter, wb);
aom_wb_write_bit(wb, features->switchable_motion_mode);
if (frame_might_allow_ref_frame_mvs(cm)) {
aom_wb_write_bit(wb, features->allow_ref_frame_mvs);
} else {
assert(features->allow_ref_frame_mvs == 0);
}
}
}
const int might_bwd_adapt = !(seq_params->reduced_still_picture_hdr) &&
!(features->disable_cdf_update);
if (cm->tiles.large_scale)
assert(features->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED);
if (might_bwd_adapt) {
aom_wb_write_bit(
wb, features->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED);
}
write_tile_info(cm, saved_wb, wb);
encode_quantization(quant_params, av1_num_planes(cm),
cm->seq_params->separate_uv_delta_q, wb);
encode_segmentation(cm, wb);
const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
if (delta_q_info->delta_q_present_flag) assert(quant_params->base_qindex > 0);
if (quant_params->base_qindex > 0) {
aom_wb_write_bit(wb, delta_q_info->delta_q_present_flag);
if (delta_q_info->delta_q_present_flag) {
aom_wb_write_literal(wb, get_msb(delta_q_info->delta_q_res), 2);
xd->current_base_qindex = quant_params->base_qindex;
if (features->allow_intrabc)
assert(delta_q_info->delta_lf_present_flag == 0);
else
aom_wb_write_bit(wb, delta_q_info->delta_lf_present_flag);
if (delta_q_info->delta_lf_present_flag) {
aom_wb_write_literal(wb, get_msb(delta_q_info->delta_lf_res), 2);
aom_wb_write_bit(wb, delta_q_info->delta_lf_multi);
av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
}
}
}
if (features->all_lossless) {
assert(!av1_superres_scaled(cm));
} else {
if (!features->coded_lossless) {
encode_loopfilter(cm, wb);
encode_cdef(cm, wb);
}
encode_restoration_mode(cm, wb);
}
// Write TX mode
if (features->coded_lossless)
assert(features->tx_mode == ONLY_4X4);
else
aom_wb_write_bit(wb, features->tx_mode == TX_MODE_SELECT);
if (!frame_is_intra_only(cm)) {
const int use_hybrid_pred =
current_frame->reference_mode == REFERENCE_MODE_SELECT;
aom_wb_write_bit(wb, use_hybrid_pred);
}
if (current_frame->skip_mode_info.skip_mode_allowed)
aom_wb_write_bit(wb, current_frame->skip_mode_info.skip_mode_flag);
if (frame_might_allow_warped_motion(cm))
aom_wb_write_bit(wb, features->allow_warped_motion);
else
assert(!features->allow_warped_motion);
aom_wb_write_bit(wb, features->reduced_tx_set_used);
if (!frame_is_intra_only(cm)) write_global_motion(cpi, wb);
if (seq_params->film_grain_params_present &&
(cm->show_frame || cm->showable_frame))
write_film_grain_params(cpi, wb);
if (cm->tiles.large_scale) write_ext_tile_info(cm, saved_wb, wb);
}
static int choose_size_bytes(uint32_t size, int spare_msbs) {
// Choose the number of bytes required to represent size, without
// using the 'spare_msbs' number of most significant bits.
// Make sure we will fit in 4 bytes to start with..
if (spare_msbs > 0 && size >> (32 - spare_msbs) != 0) return -1;
// Normalise to 32 bits
size <<= spare_msbs;
if (size >> 24 != 0)
return 4;
else if (size >> 16 != 0)
return 3;
else if (size >> 8 != 0)
return 2;
else
return 1;
}
static inline void mem_put_varsize(uint8_t *const dst, const int sz,
const int val) {
switch (sz) {
case 1: dst[0] = (uint8_t)(val & 0xff); break;
case 2: mem_put_le16(dst, val); break;
case 3: mem_put_le24(dst, val); break;
case 4: mem_put_le32(dst, val); break;
default: assert(0 && "Invalid size"); break;
}
}
static int remux_tiles(const CommonTileParams *const tiles, uint8_t *dst,
const uint32_t data_size, const uint32_t max_tile_size,
const uint32_t max_tile_col_size,
int *const tile_size_bytes,
int *const tile_col_size_bytes) {
// Choose the tile size bytes (tsb) and tile column size bytes (tcsb)
int tsb;
int tcsb;
if (tiles->large_scale) {
// The top bit in the tile size field indicates tile copy mode, so we
// have 1 less bit to code the tile size
tsb = choose_size_bytes(max_tile_size, 1);
tcsb = choose_size_bytes(max_tile_col_size, 0);
} else {
tsb = choose_size_bytes(max_tile_size, 0);
tcsb = 4; // This is ignored
(void)max_tile_col_size;
}
assert(tsb > 0);
assert(tcsb > 0);
*tile_size_bytes = tsb;
*tile_col_size_bytes = tcsb;
if (tsb == 4 && tcsb == 4) return data_size;
uint32_t wpos = 0;
uint32_t rpos = 0;
if (tiles->large_scale) {
int tile_row;
int tile_col;
for (tile_col = 0; tile_col < tiles->cols; tile_col++) {
// All but the last column has a column header
if (tile_col < tiles->cols - 1) {
uint32_t tile_col_size = mem_get_le32(dst + rpos);
rpos += 4;
// Adjust the tile column size by the number of bytes removed
// from the tile size fields.
tile_col_size -= (4 - tsb) * tiles->rows;
mem_put_varsize(dst + wpos, tcsb, tile_col_size);
wpos += tcsb;
}
for (tile_row = 0; tile_row < tiles->rows; tile_row++) {
// All, including the last row has a header
uint32_t tile_header = mem_get_le32(dst + rpos);
rpos += 4;
// If this is a copy tile, we need to shift the MSB to the
// top bit of the new width, and there is no data to copy.
if (tile_header >> 31 != 0) {
if (tsb < 4) tile_header >>= 32 - 8 * tsb;
mem_put_varsize(dst + wpos, tsb, tile_header);
wpos += tsb;
} else {
mem_put_varsize(dst + wpos, tsb, tile_header);
wpos += tsb;
tile_header += AV1_MIN_TILE_SIZE_BYTES;
memmove(dst + wpos, dst + rpos, tile_header);
rpos += tile_header;
wpos += tile_header;
}
}
}
assert(rpos > wpos);
assert(rpos == data_size);
return wpos;
}
const int n_tiles = tiles->cols * tiles->rows;
int n;
for (n = 0; n < n_tiles; n++) {
int tile_size;
if (n == n_tiles - 1) {
tile_size = data_size - rpos;
} else {
tile_size = mem_get_le32(dst + rpos);
rpos += 4;
mem_put_varsize(dst + wpos, tsb, tile_size);
tile_size += AV1_MIN_TILE_SIZE_BYTES;
wpos += tsb;
}
memmove(dst + wpos, dst + rpos, tile_size);
rpos += tile_size;
wpos += tile_size;
}
assert(rpos > wpos);
assert(rpos == data_size);
return wpos;
}
uint32_t av1_write_obu_header(AV1LevelParams *const level_params,
int *frame_header_count, OBU_TYPE obu_type,
bool has_nonzero_operating_point_idc,
bool is_layer_specific_obu, int obu_extension,
uint8_t *const dst) {
assert(IMPLIES(!has_nonzero_operating_point_idc, obu_extension == 0));
if (level_params->keep_level_stats &&
(obu_type == OBU_FRAME || obu_type == OBU_FRAME_HEADER))
++(*frame_header_count);
uint32_t size = 0;
// The AV1 spec draft version (as of git commit 5e04f)
// has the following requirements on the OBU extension header:
//
// 6.4.1. General sequence header OBU semantics:
// If operating_point_idc[ op ] is not equal to 0 for any value of op from 0
// to operating_points_cnt_minus_1, it is a requirement of bitstream
// conformance that obu_extension_flag is equal to 1 for all layer-specific
// OBUs in the coded video sequence.
// (...)
// It is a requirement of bitstream conformance that if OperatingPointIdc
// is equal to 0, then obu_extension_flag is equal to 0 for all OBUs that
// follow this sequence header until the next sequence header.
//
// Set obu_extension_flag to satisfy these requirements.
const int obu_extension_flag =
has_nonzero_operating_point_idc && is_layer_specific_obu;
const int obu_has_size_field = 1;
dst[0] = ((int)obu_type << 3) | (obu_extension_flag << 2) |
(obu_has_size_field << 1);
size++;
if (obu_extension_flag) {
dst[1] = obu_extension & 0xFF;
size++;
}
return size;
}
int av1_write_uleb_obu_size(size_t obu_payload_size, uint8_t *dest,
size_t dest_size) {
size_t coded_obu_size = 0;
if (aom_uleb_encode(obu_payload_size, dest_size, dest, &coded_obu_size) !=
0) {
return AOM_CODEC_ERROR;
}
if (coded_obu_size != dest_size) {
return AOM_CODEC_ERROR;
}
return AOM_CODEC_OK;
}
// Deprecated. Use av1_write_uleb_obu_size() instead.
static int av1_write_uleb_obu_size_unsafe(size_t obu_payload_size,
uint8_t *dest) {
size_t coded_obu_size = 0;
if (aom_uleb_encode(obu_payload_size, sizeof(uint32_t), dest,
&coded_obu_size) != 0) {
return AOM_CODEC_ERROR;
}
return AOM_CODEC_OK;
}
// Returns 0 on failure.
static size_t obu_memmove(size_t obu_header_size, size_t obu_payload_size,
uint8_t *data, size_t data_size) {
const size_t length_field_size = aom_uleb_size_in_bytes(obu_payload_size);
const size_t move_dst_offset = obu_header_size + length_field_size;
const size_t move_src_offset = obu_header_size;
const size_t move_size = obu_payload_size;
if (move_size > data_size || move_src_offset > data_size - move_size) {
assert(0 && "obu_memmove: output buffer overflow");
return 0;
}
if (move_dst_offset > data_size - move_size) {
// Buffer full.
return 0;
}
memmove(data + move_dst_offset, data + move_src_offset, move_size);
return length_field_size;
}
// Deprecated. Use obu_memmove() instead.
static size_t obu_memmove_unsafe(size_t obu_header_size,
size_t obu_payload_size, uint8_t *data) {
const size_t length_field_size = aom_uleb_size_in_bytes(obu_payload_size);
const size_t move_dst_offset = obu_header_size + length_field_size;
const size_t move_src_offset = obu_header_size;
const size_t move_size = obu_payload_size;
memmove(data + move_dst_offset, data + move_src_offset, move_size);
return length_field_size;
}
static inline void add_trailing_bits(struct aom_write_bit_buffer *wb) {
if (aom_wb_is_byte_aligned(wb)) {
aom_wb_write_literal(wb, 0x80, 8);
} else {
// assumes that the other bits are already 0s
aom_wb_write_bit(wb, 1);
}
}
static inline void write_bitstream_level(AV1_LEVEL seq_level_idx,
struct aom_write_bit_buffer *wb) {
assert(is_valid_seq_level_idx(seq_level_idx));
aom_wb_write_literal(wb, seq_level_idx, LEVEL_BITS);
}
uint32_t av1_write_sequence_header_obu(const SequenceHeader *seq_params,
uint8_t *const dst, size_t dst_size) {
// TODO: bug 42302568 - Use dst_size.
(void)dst_size;
struct aom_write_bit_buffer wb = { dst, 0 };
uint32_t size = 0;
write_profile(seq_params->profile, &wb);
// Still picture or not
aom_wb_write_bit(&wb, seq_params->still_picture);
assert(IMPLIES(!seq_params->still_picture,
!seq_params->reduced_still_picture_hdr));
// whether to use reduced still picture header
aom_wb_write_bit(&wb, seq_params->reduced_still_picture_hdr);
if (seq_params->reduced_still_picture_hdr) {
assert(seq_params->timing_info_present == 0);
assert(seq_params->decoder_model_info_present_flag == 0);
assert(seq_params->display_model_info_present_flag == 0);
write_bitstream_level(seq_params->seq_level_idx[0], &wb);
} else {
aom_wb_write_bit(
&wb, seq_params->timing_info_present); // timing info present flag
if (seq_params->timing_info_present) {
// timing_info
write_timing_info_header(&seq_params->timing_info, &wb);
aom_wb_write_bit(&wb, seq_params->decoder_model_info_present_flag);
if (seq_params->decoder_model_info_present_flag) {
write_decoder_model_info(&seq_params->decoder_model_info, &wb);
}
}
aom_wb_write_bit(&wb, seq_params->display_model_info_present_flag);
aom_wb_write_literal(&wb, seq_params->operating_points_cnt_minus_1,
OP_POINTS_CNT_MINUS_1_BITS);
int i;
for (i = 0; i < seq_params->operating_points_cnt_minus_1 + 1; i++) {
aom_wb_write_literal(&wb, seq_params->operating_point_idc[i],
OP_POINTS_IDC_BITS);
write_bitstream_level(seq_params->seq_level_idx[i], &wb);
if (seq_params->seq_level_idx[i] >= SEQ_LEVEL_4_0)
aom_wb_write_bit(&wb, seq_params->tier[i]);
if (seq_params->decoder_model_info_present_flag) {
aom_wb_write_bit(
&wb, seq_params->op_params[i].decoder_model_param_present_flag);
if (seq_params->op_params[i].decoder_model_param_present_flag) {
write_dec_model_op_parameters(
&seq_params->op_params[i],
seq_params->decoder_model_info
.encoder_decoder_buffer_delay_length,
&wb);
}
}
if (seq_params->display_model_info_present_flag) {
aom_wb_write_bit(
&wb, seq_params->op_params[i].display_model_param_present_flag);
if (seq_params->op_params[i].display_model_param_present_flag) {
assert(seq_params->op_params[i].initial_display_delay >= 1);
assert(seq_params->op_params[i].initial_display_delay <= 10);
aom_wb_write_literal(
&wb, seq_params->op_params[i].initial_display_delay - 1, 4);
}
}
}
}
write_sequence_header(seq_params, &wb);
write_color_config(seq_params, &wb);
aom_wb_write_bit(&wb, seq_params->film_grain_params_present);
add_trailing_bits(&wb);
size = aom_wb_bytes_written(&wb);
return size;
}
static uint32_t write_frame_header_obu(AV1_COMP *cpi, MACROBLOCKD *const xd,
struct aom_write_bit_buffer *saved_wb,
uint8_t *const dst,
int append_trailing_bits) {
struct aom_write_bit_buffer wb = { dst, 0 };
write_uncompressed_header_obu(cpi, xd, saved_wb, &wb);
if (append_trailing_bits) add_trailing_bits(&wb);
return aom_wb_bytes_written(&wb);
}
static uint32_t write_tile_group_header(uint8_t *const dst, int start_tile,
int end_tile, int tiles_log2,
int tile_start_and_end_present_flag) {
struct aom_write_bit_buffer wb = { dst, 0 };
uint32_t size = 0;
if (!tiles_log2) return size;
aom_wb_write_bit(&wb, tile_start_and_end_present_flag);
if (tile_start_and_end_present_flag) {
aom_wb_write_literal(&wb, start_tile, tiles_log2);
aom_wb_write_literal(&wb, end_tile, tiles_log2);
}
size = aom_wb_bytes_written(&wb);
return size;
}
typedef struct {
uint32_t tg_hdr_size;
uint32_t frame_header_size;
} LargeTileFrameOBU;
// Initialize OBU header for large scale tile case.
static uint32_t init_large_scale_tile_obu_header(
AV1_COMP *const cpi, uint8_t **data, struct aom_write_bit_buffer *saved_wb,
uint8_t obu_extension_header, LargeTileFrameOBU *lst_obu) {
AV1LevelParams *const level_params = &cpi->ppi->level_params;
CurrentFrame *const current_frame = &cpi->common.current_frame;
// For large_scale_tile case, we always have only one tile group, so it can
// be written as an OBU_FRAME.
const OBU_TYPE obu_type = OBU_FRAME;
lst_obu->tg_hdr_size = av1_write_obu_header(
level_params, &cpi->frame_header_count, obu_type,
cpi->common.seq_params->has_nonzero_operating_point_idc,
/*is_layer_specific_obu=*/true, obu_extension_header, *data);
*data += lst_obu->tg_hdr_size;
const uint32_t frame_header_size =
write_frame_header_obu(cpi, &cpi->td.mb.e_mbd, saved_wb, *data, 0);
*data += frame_header_size;
lst_obu->frame_header_size = frame_header_size;
// (yunqing) This test ensures the correctness of large scale tile coding.
if (cpi->oxcf.tile_cfg.enable_ext_tile_debug) {
char fn[20] = "./fh";
fn[4] = current_frame->frame_number / 100 + '0';
fn[5] = (current_frame->frame_number % 100) / 10 + '0';
fn[6] = (current_frame->frame_number % 10) + '0';
fn[7] = '\0';
av1_print_uncompressed_frame_header(*data - frame_header_size,
frame_header_size, fn);
}
return frame_header_size;
}
// Write total buffer size and related information into the OBU header for large
// scale tile case.
static void write_large_scale_tile_obu_size(
const CommonTileParams *const tiles, uint8_t *const dst, uint8_t *data,
struct aom_write_bit_buffer *saved_wb, LargeTileFrameOBU *const lst_obu,
int have_tiles, uint32_t *total_size, int max_tile_size,
int max_tile_col_size) {
int tile_size_bytes = 0;
int tile_col_size_bytes = 0;
if (have_tiles) {
*total_size = remux_tiles(
tiles, data, *total_size - lst_obu->frame_header_size, max_tile_size,
max_tile_col_size, &tile_size_bytes, &tile_col_size_bytes);
*total_size += lst_obu->frame_header_size;
}
// In EXT_TILE case, only use 1 tile group. Follow the obu syntax, write
// current tile group size before tile data(include tile column header).
// Tile group size doesn't include the bytes storing tg size.
*total_size += lst_obu->tg_hdr_size;
const uint32_t obu_payload_size = *total_size - lst_obu->tg_hdr_size;
const size_t length_field_size =
obu_memmove_unsafe(lst_obu->tg_hdr_size, obu_payload_size, dst);
if (av1_write_uleb_obu_size_unsafe(
obu_payload_size, dst + lst_obu->tg_hdr_size) != AOM_CODEC_OK)
assert(0);
*total_size += (uint32_t)length_field_size;
saved_wb->bit_buffer += length_field_size;
// Now fill in the gaps in the uncompressed header.
if (have_tiles) {
assert(tile_col_size_bytes >= 1 && tile_col_size_bytes <= 4);
aom_wb_overwrite_literal(saved_wb, tile_col_size_bytes - 1, 2);
assert(tile_size_bytes >= 1 && tile_size_bytes <= 4);
aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2);
}
}
// Store information on each large scale tile in the OBU header.
static void write_large_scale_tile_obu(
AV1_COMP *const cpi, uint8_t *const dst, LargeTileFrameOBU *const lst_obu,
int *const largest_tile_id, uint32_t *total_size, const int have_tiles,
unsigned int *const max_tile_size, unsigned int *const max_tile_col_size) {
AV1_COMMON *const cm = &cpi->common;
const CommonTileParams *const tiles = &cm->tiles;
TileBufferEnc tile_buffers[MAX_TILE_ROWS][MAX_TILE_COLS];
const int tile_cols = tiles->cols;
const int tile_rows = tiles->rows;
unsigned int tile_size = 0;
av1_reset_pack_bs_thread_data(&cpi->td);
for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
TileInfo tile_info;
const int is_last_col = (tile_col == tile_cols - 1);
const uint32_t col_offset = *total_size;
av1_tile_set_col(&tile_info, cm, tile_col);
// The last column does not have a column header
if (!is_last_col) *total_size += 4;
for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col];
const int data_offset = have_tiles ? 4 : 0;
const int tile_idx = tile_row * tile_cols + tile_col;
TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
av1_tile_set_row(&tile_info, cm, tile_row);
aom_writer mode_bc;
buf->data = dst + *total_size + lst_obu->tg_hdr_size;
// Is CONFIG_EXT_TILE = 1, every tile in the row has a header,
// even for the last one, unless no tiling is used at all.
*total_size += data_offset;
cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx;
mode_bc.allow_update_cdf = !tiles->large_scale;
mode_bc.allow_update_cdf =
mode_bc.allow_update_cdf && !cm->features.disable_cdf_update;
aom_start_encode(&mode_bc, buf->data + data_offset);
write_modes(cpi, &cpi->td, &tile_info, &mode_bc, tile_row, tile_col);
if (aom_stop_encode(&mode_bc) < 0) {
aom_internal_error(cm->error, AOM_CODEC_ERROR, "Error writing modes");
}
tile_size = mode_bc.pos;
buf->size = tile_size;
// Record the maximum tile size we see, so we can compact headers later.
if (tile_size > *max_tile_size) {
*max_tile_size = tile_size;
*largest_tile_id = tile_cols * tile_row + tile_col;
}
if (have_tiles) {
// tile header: size of this tile, or copy offset
uint32_t tile_header = tile_size - AV1_MIN_TILE_SIZE_BYTES;
const int tile_copy_mode =
((AOMMAX(tiles->width, tiles->height) << MI_SIZE_LOG2) <= 256) ? 1
: 0;
// If tile_copy_mode = 1, check if this tile is a copy tile.
// Very low chances to have copy tiles on the key frames, so don't
// search on key frames to reduce unnecessary search.
if (cm->current_frame.frame_type != KEY_FRAME && tile_copy_mode) {
const int identical_tile_offset =
find_identical_tile(tile_row, tile_col, tile_buffers);
// Indicate a copy-tile by setting the most significant bit.
// The row-offset to copy from is stored in the highest byte.
// remux_tiles will move these around later
if (identical_tile_offset > 0) {
tile_size = 0;
tile_header = identical_tile_offset | 0x80;
tile_header <<= 24;
}
}
mem_put_le32(buf->data, (MEM_VALUE_T)tile_header);
}
*total_size += tile_size;
}
if (!is_last_col) {
uint32_t col_size = *total_size - col_offset - 4;
mem_put_le32(dst + col_offset + lst_obu->tg_hdr_size, col_size);
// Record the maximum tile column size we see.
*max_tile_col_size = AOMMAX(*max_tile_col_size, col_size);
}
}
av1_accumulate_pack_bs_thread_data(cpi, &cpi->td);
}
// Packs information in the obu header for large scale tiles.
static inline uint32_t pack_large_scale_tiles_in_tg_obus(
AV1_COMP *const cpi, uint8_t *const dst,
struct aom_write_bit_buffer *saved_wb, uint8_t obu_extension_header,
int *const largest_tile_id) {
AV1_COMMON *const cm = &cpi->common;
const CommonTileParams *const tiles = &cm->tiles;
uint32_t total_size = 0;
unsigned int max_tile_size = 0;
unsigned int max_tile_col_size = 0;
const int have_tiles = tiles->cols * tiles->rows > 1;
uint8_t *data = dst;
LargeTileFrameOBU lst_obu;
total_size += init_large_scale_tile_obu_header(
cpi, &data, saved_wb, obu_extension_header, &lst_obu);
write_large_scale_tile_obu(cpi, dst, &lst_obu, largest_tile_id, &total_size,
have_tiles, &max_tile_size, &max_tile_col_size);
write_large_scale_tile_obu_size(tiles, dst, data, saved_wb, &lst_obu,
have_tiles, &total_size, max_tile_size,
max_tile_col_size);
return total_size;
}
// Writes obu, tile group and uncompressed headers to bitstream.
void av1_write_obu_tg_tile_headers(AV1_COMP *const cpi, MACROBLOCKD *const xd,
PackBSParams *const pack_bs_params,
const int tile_idx) {
AV1_COMMON *const cm = &cpi->common;
const CommonTileParams *const tiles = &cm->tiles;
int *const curr_tg_hdr_size = &pack_bs_params->curr_tg_hdr_size;
const int tg_size =
(tiles->rows * tiles->cols + cpi->num_tg - 1) / cpi->num_tg;
// Write Tile group, frame and OBU header
// A new tile group begins at this tile. Write the obu header and
// tile group header
const OBU_TYPE obu_type = (cpi->num_tg == 1) ? OBU_FRAME : OBU_TILE_GROUP;
*curr_tg_hdr_size = av1_write_obu_header(
&cpi->ppi->level_params, &cpi->frame_header_count, obu_type,
cm->seq_params->has_nonzero_operating_point_idc,
/*is_layer_specific_obu=*/true, pack_bs_params->obu_extn_header,
pack_bs_params->tile_data_curr);
pack_bs_params->obu_header_size = *curr_tg_hdr_size;
if (cpi->num_tg == 1)
*curr_tg_hdr_size += write_frame_header_obu(
cpi, xd, pack_bs_params->saved_wb,
pack_bs_params->tile_data_curr + *curr_tg_hdr_size, 0);
*curr_tg_hdr_size += write_tile_group_header(
pack_bs_params->tile_data_curr + *curr_tg_hdr_size, tile_idx,
AOMMIN(tile_idx + tg_size - 1, tiles->cols * tiles->rows - 1),
(tiles->log2_rows + tiles->log2_cols), cpi->num_tg > 1);
*pack_bs_params->total_size += *curr_tg_hdr_size;
}
// Pack tile data in the bitstream with tile_group, frame
// and OBU header.
void av1_pack_tile_info(AV1_COMP *const cpi, ThreadData *const td,
PackBSParams *const pack_bs_params) {
aom_writer mode_bc;
AV1_COMMON *const cm = &cpi->common;
int tile_row = pack_bs_params->tile_row;
int tile_col = pack_bs_params->tile_col;
uint32_t *const total_size = pack_bs_params->total_size;
TileInfo tile_info;
av1_tile_set_col(&tile_info, cm, tile_col);
av1_tile_set_row(&tile_info, cm, tile_row);
mode_bc.allow_update_cdf = 1;
mode_bc.allow_update_cdf =
mode_bc.allow_update_cdf && !cm->features.disable_cdf_update;
unsigned int tile_size;
const int num_planes = av1_num_planes(cm);
av1_reset_loop_restoration(&td->mb.e_mbd, num_planes);
pack_bs_params->buf.data = pack_bs_params->dst + *total_size;
// The last tile of the tile group does not have a header.
if (!pack_bs_params->is_last_tile_in_tg) *total_size += 4;
// Pack tile data
aom_start_encode(&mode_bc, pack_bs_params->dst + *total_size);
write_modes(cpi, td, &tile_info, &mode_bc, tile_row, tile_col);
if (aom_stop_encode(&mode_bc) < 0) {
aom_internal_error(td->mb.e_mbd.error_info, AOM_CODEC_ERROR,
"Error writing modes");
}
tile_size = mode_bc.pos;
assert(tile_size >= AV1_MIN_TILE_SIZE_BYTES);
pack_bs_params->buf.size = tile_size;
// Write tile size
if (!pack_bs_params->is_last_tile_in_tg) {
// size of this tile
mem_put_le32(pack_bs_params->buf.data, tile_size - AV1_MIN_TILE_SIZE_BYTES);
}
}
void av1_write_last_tile_info(
AV1_COMP *const cpi, const FrameHeaderInfo *fh_info,
struct aom_write_bit_buffer *saved_wb, size_t *curr_tg_data_size,
uint8_t *curr_tg_start, uint32_t *const total_size,
uint8_t **tile_data_start, int *const largest_tile_id,
int *const is_first_tg, uint32_t obu_header_size, uint8_t obu_extn_header) {
// write current tile group size
const size_t obu_payload_size = *curr_tg_data_size - obu_header_size;
const size_t length_field_size =
obu_memmove_unsafe(obu_header_size, obu_payload_size, curr_tg_start);
if (av1_write_uleb_obu_size_unsafe(
obu_payload_size, curr_tg_start + obu_header_size) != AOM_CODEC_OK) {
aom_internal_error(cpi->common.error, AOM_CODEC_ERROR,
"av1_write_last_tile_info: output buffer full");
}
*curr_tg_data_size += length_field_size;
*total_size += (uint32_t)length_field_size;
*tile_data_start += length_field_size;
if (cpi->num_tg == 1) {
// if this tg is combined with the frame header then update saved
// frame header base offset according to length field size
saved_wb->bit_buffer += length_field_size;
}
if (!(*is_first_tg) && cpi->common.features.error_resilient_mode) {
// Make room for a duplicate Frame Header OBU.
memmove(curr_tg_start + fh_info->total_length, curr_tg_start,
*curr_tg_data_size);
// Insert a copy of the Frame Header OBU.
memcpy(curr_tg_start, fh_info->frame_header, fh_info->total_length);
// Force context update tile to be the first tile in error
// resilient mode as the duplicate frame headers will have
// context_update_tile_id set to 0
*largest_tile_id = 0;
// Rewrite the OBU header to change the OBU type to Redundant Frame
// Header.
av1_write_obu_header(
&cpi->ppi->level_params, &cpi->frame_header_count,
OBU_REDUNDANT_FRAME_HEADER,
cpi->common.seq_params->has_nonzero_operating_point_idc,
/*is_layer_specific_obu=*/true, obu_extn_header,
&curr_tg_start[fh_info->obu_header_byte_offset]);
*curr_tg_data_size += fh_info->total_length;
*total_size += (uint32_t)fh_info->total_length;
}
*is_first_tg = 0;
}
void av1_reset_pack_bs_thread_data(ThreadData *const td) {
td->coefficient_size = 0;
td->max_mv_magnitude = 0;
av1_zero(td->interp_filter_selected);
}
void av1_accumulate_pack_bs_thread_data(AV1_COMP *const cpi,
ThreadData const *td) {
int do_max_mv_magnitude_update = 1;
cpi->rc.coefficient_size += td->coefficient_size;
// Disable max_mv_magnitude update for parallel frames based on update flag.
if (!cpi->do_frame_data_update) do_max_mv_magnitude_update = 0;
if (cpi->sf.mv_sf.auto_mv_step_size && do_max_mv_magnitude_update)
cpi->mv_search_params.max_mv_magnitude =
AOMMAX(cpi->mv_search_params.max_mv_magnitude, td->max_mv_magnitude);
for (InterpFilter filter = EIGHTTAP_REGULAR; filter < SWITCHABLE; filter++)
cpi->common.cur_frame->interp_filter_selected[filter] +=
td->interp_filter_selected[filter];
}
// Store information related to each default tile in the OBU header.
static void write_tile_obu(
AV1_COMP *const cpi, uint8_t *const dst, uint32_t *total_size,
struct aom_write_bit_buffer *saved_wb, uint8_t obu_extn_header,
const FrameHeaderInfo *fh_info, int *const largest_tile_id,
unsigned int *max_tile_size, uint32_t *const obu_header_size,
uint8_t **tile_data_start) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
const CommonTileParams *const tiles = &cm->tiles;
const int tile_cols = tiles->cols;
const int tile_rows = tiles->rows;
// Fixed size tile groups for the moment
const int num_tg_hdrs = cpi->num_tg;
const int tg_size = (tile_rows * tile_cols + num_tg_hdrs - 1) / num_tg_hdrs;
int tile_count = 0;
size_t curr_tg_data_size = 0;
uint8_t *tile_data_curr = dst;
int new_tg = 1;
int is_first_tg = 1;
av1_reset_pack_bs_thread_data(&cpi->td);
for (int tile_row = 0; tile_row < tile_rows; tile_row++) {
for (int tile_col = 0; tile_col < tile_cols; tile_col++) {
const int tile_idx = tile_row * tile_cols + tile_col;
TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
int is_last_tile_in_tg = 0;
if (new_tg) {
tile_data_curr = dst + *total_size;
tile_count = 0;
}
tile_count++;
if (tile_count == tg_size || tile_idx == (tile_cols * tile_rows - 1))
is_last_tile_in_tg = 1;
xd->tile_ctx = &this_tile->tctx;
// PackBSParams stores all parameters required to pack tile and header
// info.
PackBSParams pack_bs_params;
pack_bs_params.dst = dst;
pack_bs_params.curr_tg_hdr_size = 0;
pack_bs_params.is_last_tile_in_tg = is_last_tile_in_tg;
pack_bs_params.new_tg = new_tg;
pack_bs_params.obu_extn_header = obu_extn_header;
pack_bs_params.obu_header_size = 0;
pack_bs_params.saved_wb = saved_wb;
pack_bs_params.tile_col = tile_col;
pack_bs_params.tile_row = tile_row;
pack_bs_params.tile_data_curr = tile_data_curr;
pack_bs_params.total_size = total_size;
if (new_tg)
av1_write_obu_tg_tile_headers(cpi, xd, &pack_bs_params, tile_idx);
av1_pack_tile_info(cpi, &cpi->td, &pack_bs_params);
if (new_tg) {
curr_tg_data_size = pack_bs_params.curr_tg_hdr_size;
*tile_data_start += pack_bs_params.curr_tg_hdr_size;
*obu_header_size = pack_bs_params.obu_header_size;
new_tg = 0;
}
if (is_last_tile_in_tg) new_tg = 1;
curr_tg_data_size +=
(pack_bs_params.buf.size + (is_last_tile_in_tg ? 0 : 4));
if (pack_bs_params.buf.size > *max_tile_size) {
*largest_tile_id = tile_idx;
*max_tile_size = (unsigned int)pack_bs_params.buf.size;
}
if (is_last_tile_in_tg)
av1_write_last_tile_info(cpi, fh_info, saved_wb, &curr_tg_data_size,
tile_data_curr, total_size, tile_data_start,
largest_tile_id, &is_first_tg,
*obu_header_size, obu_extn_header);
*total_size += (uint32_t)pack_bs_params.buf.size;
}
}
av1_accumulate_pack_bs_thread_data(cpi, &cpi->td);
}
// Write total buffer size and related information into the OBU header for
// default tile case.
static void write_tile_obu_size(AV1_COMP *const cpi, uint8_t *const dst,
struct aom_write_bit_buffer *saved_wb,
int largest_tile_id, uint32_t *const total_size,
unsigned int max_tile_size,
uint32_t obu_header_size,
uint8_t *tile_data_start) {
const CommonTileParams *const tiles = &cpi->common.tiles;
// Fill in context_update_tile_id indicating the tile to use for the
// cdf update. The encoder currently sets it to the largest tile
// (but is up to the encoder)
aom_wb_overwrite_literal(saved_wb, largest_tile_id,
(tiles->log2_cols + tiles->log2_rows));
// If more than one tile group. tile_size_bytes takes the default value 4
// and does not need to be set. For a single tile group it is set in the
// section below.
if (cpi->num_tg != 1) return;
int tile_size_bytes = 4, unused;
const uint32_t tile_data_offset = (uint32_t)(tile_data_start - dst);
const uint32_t tile_data_size = *total_size - tile_data_offset;
*total_size = remux_tiles(tiles, tile_data_start, tile_data_size,
max_tile_size, 0, &tile_size_bytes, &unused);
*total_size += tile_data_offset;
assert(tile_size_bytes >= 1 && tile_size_bytes <= 4);
aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2);
// Update the OBU length if remux_tiles() reduced the size.
uint64_t payload_size;
size_t length_field_size;
int res =
aom_uleb_decode(dst + obu_header_size, *total_size - obu_header_size,
&payload_size, &length_field_size);
assert(res == 0);
(void)res;
const uint64_t new_payload_size =
*total_size - obu_header_size - length_field_size;
if (new_payload_size != payload_size) {
size_t new_length_field_size;
res = aom_uleb_encode(new_payload_size, length_field_size,
dst + obu_header_size, &new_length_field_size);
assert(res == 0);
if (new_length_field_size < length_field_size) {
const size_t src_offset = obu_header_size + length_field_size;
const size_t dst_offset = obu_header_size + new_length_field_size;
memmove(dst + dst_offset, dst + src_offset, (size_t)payload_size);
*total_size -= (int)(length_field_size - new_length_field_size);
}
}
}
// As per the experiments, single-thread bitstream packing is better for
// frames with a smaller bitstream size. This behavior is due to setup time
// overhead of multithread function would be more than that of time required
// to pack the smaller bitstream of such frames. This function computes the
// number of required number of workers based on setup time overhead and job
// dispatch time overhead for given tiles and available workers.
static int calc_pack_bs_mt_workers(const TileDataEnc *tile_data, int num_tiles,
int avail_workers, bool pack_bs_mt_enabled) {
if (!pack_bs_mt_enabled) return 1;
uint64_t frame_abs_sum_level = 0;
for (int idx = 0; idx < num_tiles; idx++)
frame_abs_sum_level += tile_data[idx].abs_sum_level;
int ideal_num_workers = 1;
const float job_disp_time_const = (float)num_tiles * JOB_DISP_TIME_OH_CONST;
float max_sum = 0.0;
for (int num_workers = avail_workers; num_workers > 1; num_workers--) {
const float fas_per_worker_const =
((float)(num_workers - 1) / num_workers) * frame_abs_sum_level;
const float setup_time_const = (float)num_workers * SETUP_TIME_OH_CONST;
const float this_sum = fas_per_worker_const - setup_time_const -
job_disp_time_const / num_workers;
if (this_sum > max_sum) {
max_sum = this_sum;
ideal_num_workers = num_workers;
}
}
return ideal_num_workers;
}
static inline uint32_t pack_tiles_in_tg_obus(
AV1_COMP *const cpi, uint8_t *const dst,
struct aom_write_bit_buffer *saved_wb, uint8_t obu_extension_header,
const FrameHeaderInfo *fh_info, int *const largest_tile_id) {
const CommonTileParams *const tiles = &cpi->common.tiles;
uint32_t total_size = 0;
unsigned int max_tile_size = 0;
uint32_t obu_header_size = 0;
uint8_t *tile_data_start = dst;
const int tile_cols = tiles->cols;
const int tile_rows = tiles->rows;
const int num_tiles = tile_rows * tile_cols;
const int num_workers = calc_pack_bs_mt_workers(
cpi->tile_data, num_tiles, cpi->mt_info.num_mod_workers[MOD_PACK_BS],
cpi->mt_info.pack_bs_mt_enabled);
if (num_workers > 1) {
av1_write_tile_obu_mt(cpi, dst, &total_size, saved_wb, obu_extension_header,
fh_info, largest_tile_id, &max_tile_size,
&obu_header_size, &tile_data_start, num_workers);
} else {
write_tile_obu(cpi, dst, &total_size, saved_wb, obu_extension_header,
fh_info, largest_tile_id, &max_tile_size, &obu_header_size,
&tile_data_start);
}
if (num_tiles > 1)
write_tile_obu_size(cpi, dst, saved_wb, *largest_tile_id, &total_size,
max_tile_size, obu_header_size, tile_data_start);
return total_size;
}
static uint32_t write_tiles_in_tg_obus(AV1_COMP *const cpi, uint8_t *const dst,
size_t dst_size,
struct aom_write_bit_buffer *saved_wb,
uint8_t obu_extension_header,
const FrameHeaderInfo *fh_info,
int *const largest_tile_id) {
// TODO: bug 42302568 - Use dst_size.
(void)dst_size;
AV1_COMMON *const cm = &cpi->common;
const CommonTileParams *const tiles = &cm->tiles;
*largest_tile_id = 0;
// Select the coding strategy (temporal or spatial)
if (cm->seg.enabled && cm->seg.update_map) {
if (cm->features.primary_ref_frame == PRIMARY_REF_NONE) {
cm->seg.temporal_update = 0;
} else {
cm->seg.temporal_update = 1;
if (cpi->td.rd_counts.seg_tmp_pred_cost[0] <
cpi->td.rd_counts.seg_tmp_pred_cost[1])
cm->seg.temporal_update = 0;
}
}
if (tiles->large_scale)
return pack_large_scale_tiles_in_tg_obus(
cpi, dst, saved_wb, obu_extension_header, largest_tile_id);
return pack_tiles_in_tg_obus(cpi, dst, saved_wb, obu_extension_header,
fh_info, largest_tile_id);
}
// Returns the number of bytes written on success. Returns 0 on failure.
static size_t av1_write_metadata_obu(const aom_metadata_t *metadata,
uint8_t *const dst, size_t dst_size) {
size_t coded_metadata_size = 0;
const uint64_t metadata_type = (uint64_t)metadata->type;
if (aom_uleb_encode(metadata_type, dst_size, dst, &coded_metadata_size) !=
0) {
return 0;
}
if (coded_metadata_size + metadata->sz + 1 > dst_size) {
return 0;
}
memcpy(dst + coded_metadata_size, metadata->payload, metadata->sz);
// Add trailing bits.
dst[coded_metadata_size + metadata->sz] = 0x80;
return coded_metadata_size + metadata->sz + 1;
}
static size_t av1_write_metadata_array(AV1_COMP *const cpi, uint8_t *dst,
size_t dst_size) {
if (!cpi->source) return 0;
AV1_COMMON *const cm = &cpi->common;
aom_metadata_array_t *arr = cpi->source->metadata;
if (!arr) return 0;
size_t obu_header_size = 0;
size_t obu_payload_size = 0;
size_t total_bytes_written = 0;
size_t length_field_size = 0;
for (size_t i = 0; i < arr->sz; i++) {
aom_metadata_t *current_metadata = arr->metadata_array[i];
if (current_metadata && current_metadata->payload) {
if ((cm->current_frame.frame_type == KEY_FRAME &&
current_metadata->insert_flag == AOM_MIF_KEY_FRAME) ||
(cm->current_frame.frame_type != KEY_FRAME &&
current_metadata->insert_flag == AOM_MIF_NON_KEY_FRAME) ||
current_metadata->insert_flag == AOM_MIF_ANY_FRAME) {
// OBU header is either one or two bytes.
if (dst_size < 2) {
aom_internal_error(cm->error, AOM_CODEC_ERROR,
"av1_write_metadata_array: output buffer full");
}
// According to the AV1 spec draft version (as of git commit 5e04f)
// Section 6.7.1, some metadata types can be layer specific, but we
// currently only support non-layer specific metadata.
obu_header_size = av1_write_obu_header(
&cpi->ppi->level_params, &cpi->frame_header_count, OBU_METADATA,
cm->seq_params->has_nonzero_operating_point_idc,
/*is_layer_specific_obu=*/false, 0, dst);
assert(obu_header_size <= 2);
obu_payload_size =
av1_write_metadata_obu(current_metadata, dst + obu_header_size,
dst_size - obu_header_size);
if (obu_payload_size == 0) {
aom_internal_error(cm->error, AOM_CODEC_ERROR,
"av1_write_metadata_array: output buffer full");
}
length_field_size =
obu_memmove(obu_header_size, obu_payload_size, dst, dst_size);
if (length_field_size == 0) {
aom_internal_error(cm->error, AOM_CODEC_ERROR,
"av1_write_metadata_array: output buffer full");
}
if (av1_write_uleb_obu_size(obu_payload_size, dst + obu_header_size,
length_field_size) == AOM_CODEC_OK) {
const size_t obu_size =
obu_header_size + length_field_size + obu_payload_size;
dst += obu_size;
dst_size -= obu_size;
total_bytes_written += obu_size;
} else {
aom_internal_error(cpi->common.error, AOM_CODEC_ERROR,
"av1_write_metadata_array: output buffer full");
}
}
}
}
return total_bytes_written;
}
int av1_pack_bitstream(AV1_COMP *const cpi, uint8_t *dst, size_t dst_size,
size_t *size, int *const largest_tile_id) {
uint8_t *data = dst;
size_t data_size = dst_size;
AV1_COMMON *const cm = &cpi->common;
AV1LevelParams *const level_params = &cpi->ppi->level_params;
uint32_t obu_header_size = 0;
uint32_t obu_payload_size = 0;
FrameHeaderInfo fh_info = { NULL, 0, 0 };
const uint8_t obu_extension_header =
cm->temporal_layer_id << 5 | cm->spatial_layer_id << 3 | 0;
// If no non-zero delta_q has been used, reset delta_q_present_flag
if (cm->delta_q_info.delta_q_present_flag && cpi->deltaq_used == 0) {
cm->delta_q_info.delta_q_present_flag = 0;
}
#if CONFIG_BITSTREAM_DEBUG
bitstream_queue_reset_write();
#endif
cpi->frame_header_count = 0;
// The TD is now written outside the frame encode loop
// write sequence header obu at each key frame or intra_only frame,
// preceded by 4-byte size
if (cm->current_frame.frame_type == INTRA_ONLY_FRAME ||
cm->current_frame.frame_type == KEY_FRAME) {
// OBU header is either one or two bytes.
if (data_size < 2) {
return AOM_CODEC_ERROR;
}
obu_header_size = av1_write_obu_header(
level_params, &cpi->frame_header_count, OBU_SEQUENCE_HEADER,
cm->seq_params->has_nonzero_operating_point_idc,
/*is_layer_specific_obu=*/false, 0, data);
assert(obu_header_size <= 2);
obu_payload_size = av1_write_sequence_header_obu(
cm->seq_params, data + obu_header_size, data_size - obu_header_size);
const size_t length_field_size =
obu_memmove(obu_header_size, obu_payload_size, data, data_size);
if (length_field_size == 0) {
return AOM_CODEC_ERROR;
}
if (av1_write_uleb_obu_size(obu_payload_size, data + obu_header_size,
length_field_size) != AOM_CODEC_OK) {
return AOM_CODEC_ERROR;
}
const size_t bytes_written =
obu_header_size + length_field_size + obu_payload_size;
data += bytes_written;
data_size -= bytes_written;
}
// write metadata obus before the frame obu that has the show_frame flag set
if (cm->show_frame) {
const size_t bytes_written = av1_write_metadata_array(cpi, data, data_size);
data += bytes_written;
data_size -= bytes_written;
}
const int write_frame_header =
(cpi->num_tg > 1 || encode_show_existing_frame(cm));
struct aom_write_bit_buffer saved_wb = { NULL, 0 };
size_t length_field = 0;
if (write_frame_header) {
// Write Frame Header OBU.
fh_info.frame_header = data;
// OBU header is either one or two bytes.
if (data_size < 2) {
return AOM_CODEC_ERROR;
}
obu_header_size = av1_write_obu_header(
level_params, &cpi->frame_header_count, OBU_FRAME_HEADER,
cm->seq_params->has_nonzero_operating_point_idc,
/*is_layer_specific_obu=*/true, obu_extension_header, data);
// TODO: bug 42302568 - Pass data_size - obu_header_size to
// write_frame_header_obu().
obu_payload_size = write_frame_header_obu(cpi, &cpi->td.mb.e_mbd, &saved_wb,
data + obu_header_size, 1);
length_field =
obu_memmove(obu_header_size, obu_payload_size, data, data_size);
if (length_field == 0) {
return AOM_CODEC_ERROR;
}
if (av1_write_uleb_obu_size(obu_payload_size, data + obu_header_size,
length_field) != AOM_CODEC_OK) {
return AOM_CODEC_ERROR;
}
fh_info.obu_header_byte_offset = 0;
fh_info.total_length = obu_header_size + length_field + obu_payload_size;
// Make sure it is safe to cast fh_info.total_length to uint32_t.
if (fh_info.total_length > UINT32_MAX) {
return AOM_CODEC_ERROR;
}
data += fh_info.total_length;
data_size -= fh_info.total_length;
}
if (!encode_show_existing_frame(cm)) {
// Since length_field is determined adaptively after frame header
// encoding, saved_wb must be adjusted accordingly.
if (saved_wb.bit_buffer != NULL) {
saved_wb.bit_buffer += length_field;
}
// Each tile group obu will be preceded by 4-byte size of the tile group
// obu
const size_t bytes_written =
write_tiles_in_tg_obus(cpi, data, data_size, &saved_wb,
obu_extension_header, &fh_info, largest_tile_id);
data += bytes_written;
data_size -= bytes_written;
}
*size = data - dst;
(void)data_size;
return AOM_CODEC_OK;
}
|