1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
|
/*
* Copyright (c) 2019, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <math.h>
#include <stdbool.h>
#include "aom_dsp/aom_dsp_common.h"
#include "av1/common/av1_common_int.h"
#include "av1/encoder/cnn.h"
#define CLAMPINDEX(a, hi) ((a) < 0 ? 0 : ((a) >= (hi) ? ((hi) - 1) : (a)))
typedef struct {
const float **input;
int in_width;
int in_height;
int in_stride;
const CNN_LAYER_CONFIG *layer_config;
float **output;
int out_stride;
int start_idx;
int th_step;
} CONVOLVE_OPS;
static inline float softsign(float x) { return x / (fabsf(x) + 1.0f); }
static inline float relu(float x) { return (x < 0) ? 0 : x; }
typedef struct {
int allocsize;
int channels;
int width, height, stride;
float *buf[CNN_MAX_CHANNELS];
} TENSOR;
static void init_tensor(TENSOR *tensor) { memset(tensor, 0, sizeof(*tensor)); }
static void free_tensor(TENSOR *tensor) {
if (tensor->allocsize) {
aom_free(tensor->buf[0]);
tensor->buf[0] = NULL;
tensor->allocsize = 0;
}
}
static bool realloc_tensor(TENSOR *tensor, int channels, int width,
int height) {
const int newallocsize = channels * width * height;
if (tensor->allocsize < newallocsize) {
free_tensor(tensor);
tensor->buf[0] =
(float *)aom_malloc(sizeof(*tensor->buf[0]) * newallocsize);
if (!tensor->buf[0]) return false;
tensor->allocsize = newallocsize;
}
tensor->width = width;
tensor->height = height;
tensor->stride = width;
tensor->channels = channels;
for (int c = 1; c < channels; ++c)
tensor->buf[c] = &tensor->buf[0][c * width * height];
return true;
}
static void copy_tensor(const TENSOR *src, int copy_channels, int dst_offset,
TENSOR *dst) {
assert(src->width == dst->width);
assert(src->height == dst->height);
assert(copy_channels <= src->channels);
if (src->stride == dst->width && dst->stride == dst->width) {
for (int c = 0; c < copy_channels; ++c) {
memcpy(dst->buf[dst_offset + c], src->buf[c],
sizeof(*dst->buf[0]) * src->width * src->height);
}
} else {
for (int c = 0; c < copy_channels; ++c) {
for (int r = 0; r < dst->height; ++r) {
memcpy(&dst->buf[dst_offset + c][r * dst->stride],
&src->buf[c][r * src->stride],
dst->width * sizeof(*dst->buf[c]));
}
}
}
}
static void assign_tensor(TENSOR *tensor, float *buf[CNN_MAX_CHANNELS],
int channels, int width, int height, int stride) {
tensor->allocsize = 0;
tensor->channels = channels;
tensor->width = width;
tensor->height = height;
tensor->stride = stride;
if (buf) {
for (int c = 0; c < channels; ++c) tensor->buf[c] = buf[c];
} else {
for (int c = 0; c < channels; ++c) tensor->buf[c] = NULL;
}
}
static void swap_tensor(TENSOR *t1, TENSOR *t2) {
TENSOR t = *t1;
*t1 = *t2;
*t2 = t;
}
// The concatenated tensor goes into dst with first the channels in
// original dst followed by the channels in the src
static bool concat_tensor(const TENSOR *src, TENSOR *dst) {
assert(src->width == dst->width);
assert(src->height == dst->height);
const int dst_channels = dst->channels;
const int channels = dst->channels + src->channels;
const int newallocsize = channels * dst->width * dst->height;
if (dst->allocsize < newallocsize) {
TENSOR t;
init_tensor(&t);
// allocate new buffers and copy first the dst channels
if (!realloc_tensor(&t, channels, dst->width, dst->height)) return false;
copy_tensor(dst, dst->channels, 0, &t);
// Swap the tensors and free the old buffers
swap_tensor(dst, &t);
free_tensor(&t);
}
for (int c = 1; c < channels; ++c)
dst->buf[c] = &dst->buf[0][c * dst->width * dst->height];
// Copy the channels in src after the first dst_channels channels.
copy_tensor(src, src->channels, dst_channels, dst);
return true;
}
#ifndef NDEBUG
static int check_tensor_equal_dims(TENSOR *t1, TENSOR *t2) {
return (t1->width == t2->width && t1->height == t2->height);
}
static int check_tensor_equal_size(TENSOR *t1, TENSOR *t2) {
return (t1->channels == t2->channels && t1->width == t2->width &&
t1->height == t2->height);
}
#endif // NDEBUG
void av1_find_cnn_layer_output_size(int in_width, int in_height,
const CNN_LAYER_CONFIG *layer_config,
int *out_width, int *out_height) {
assert(layer_config->skip_width > 0);
assert(layer_config->skip_height > 0);
if (!layer_config->deconvolve) {
switch (layer_config->pad) {
case PADDING_SAME_ZERO:
case PADDING_SAME_REPLICATE:
*out_width = (in_width + layer_config->skip_width - 1) /
layer_config->skip_width;
*out_height = (in_height + layer_config->skip_height - 1) /
layer_config->skip_height;
break;
case PADDING_VALID:
*out_width =
(in_width - layer_config->filter_width + layer_config->skip_width) /
layer_config->skip_width;
*out_height = (in_height - layer_config->filter_height +
layer_config->skip_height) /
layer_config->skip_height;
break;
default: assert(0 && "Unknown padding type");
}
} else {
switch (layer_config->pad) {
case PADDING_SAME_ZERO:
case PADDING_SAME_REPLICATE:
*out_width = in_width * layer_config->skip_width;
*out_height = in_height * layer_config->skip_height;
break;
case PADDING_VALID:
*out_width = (in_width - 1) * layer_config->skip_width +
layer_config->filter_width;
*out_height = (in_height - 1) * layer_config->skip_height +
layer_config->filter_height;
break;
default: assert(0 && "Unknown padding type");
}
}
}
static void find_cnn_out_channels(const CNN_LAYER_CONFIG *layer_config,
int channels_per_branch[]) {
int branch = layer_config->branch;
const CNN_BRANCH_CONFIG *branch_config = &layer_config->branch_config;
for (int b = 0; b < CNN_MAX_BRANCHES; ++b) {
if ((branch_config->input_to_branches & (1 << b)) && b != branch) {
if (layer_config->branch_copy_type == BRANCH_INPUT) {
channels_per_branch[b] = layer_config->in_channels;
} else if (layer_config->branch_copy_type == BRANCH_OUTPUT) {
channels_per_branch[b] = layer_config->out_channels;
} else if (layer_config->branch_copy_type == BRANCH_COMBINED) {
channels_per_branch[b] = layer_config->out_channels;
for (int c = 0; c < CNN_MAX_BRANCHES; ++c) {
if ((branch_config->branches_to_combine & (1 << c)) && c != branch) {
assert(channels_per_branch[c] > 0);
channels_per_branch[b] += channels_per_branch[c];
}
}
}
}
}
channels_per_branch[branch] = layer_config->out_channels;
for (int c = 0; c < CNN_MAX_BRANCHES; ++c) {
if ((branch_config->branches_to_combine & (1 << c)) && c != branch) {
assert(channels_per_branch[c] > 0);
channels_per_branch[branch] += channels_per_branch[c];
}
}
}
#if CONFIG_DEBUG
static inline int cnn_has_at_least_one_output(const CNN_CONFIG *cnn_config) {
const int num_layers = cnn_config->num_layers;
const CNN_LAYER_CONFIG *layer_configs = cnn_config->layer_config;
for (int idx = 0; idx < num_layers; idx++) {
if (layer_configs[idx].output_num != -1) {
return 1;
}
}
return 0;
}
#endif
void av1_find_cnn_output_size(int in_width, int in_height,
const CNN_CONFIG *cnn_config, int *out_width,
int *out_height, int *out_channels) {
int channels_per_branch[CNN_MAX_BRANCHES] = { 0 };
int i_width[CNN_MAX_BRANCHES] = { 0 };
int i_height[CNN_MAX_BRANCHES] = { 0 };
i_width[0] = in_width + cnn_config->ext_width * 2;
i_height[0] = in_height + cnn_config->ext_height * 2;
#if CONFIG_DEBUG
assert(cnn_has_at_least_one_output(cnn_config));
#endif
for (int i = 0; i < cnn_config->num_layers; ++i) {
const CNN_LAYER_CONFIG *layer_config = &cnn_config->layer_config[i];
const CNN_BRANCH_CONFIG *branch_config = &layer_config->branch_config;
const int branch = layer_config->branch;
int o_width = 0, o_height = 0;
if (layer_config->branch_copy_type == BRANCH_INPUT) {
for (int b = 0; b < CNN_MAX_BRANCHES; ++b) {
if ((branch_config->input_to_branches & (1 << b)) && b != branch) {
assert(i_width[branch] > 0 && i_height[branch] > 0);
i_width[b] = i_width[branch];
i_height[b] = i_height[branch];
}
}
}
av1_find_cnn_layer_output_size(i_width[branch], i_height[branch],
layer_config, &o_width, &o_height);
i_width[branch] = o_width;
i_height[branch] = o_height;
if (layer_config->branch_copy_type == BRANCH_OUTPUT) {
for (int b = 0; b < CNN_MAX_BRANCHES; ++b) {
if ((branch_config->input_to_branches & (1 << b)) && b != branch) {
i_width[b] = o_width;
i_height[b] = o_height;
}
}
}
find_cnn_out_channels(layer_config, channels_per_branch);
const int output_num = layer_config->output_num;
if (output_num != -1) { // Current layer is an output layer
out_width[output_num] = o_width;
out_height[output_num] = o_height;
out_channels[output_num] = channels_per_branch[layer_config->branch];
}
}
}
static inline int get_start_shift_convolve(int width, int filt_width,
int stride) {
const int mod = (width % stride);
const int filt_off = (filt_width - 1) / 2;
const int dif = (mod ? mod - 1 : stride - 1);
return AOMMIN((dif + (filt_width % 2)) / 2, filt_off);
}
void av1_cnn_add_c(float **output, int channels, int width, int height,
int stride, const float **add) {
for (int c = 0; c < channels; ++c) {
for (int i = 0; i < height; ++i)
for (int j = 0; j < width; ++j)
output[c][i * stride + j] += add[c][i * stride + j];
}
}
void av1_cnn_activate_c(float **output, int channels, int width, int height,
int stride, ACTIVATION layer_activation) {
if (layer_activation == RELU) {
for (int c = 0; c < channels; ++c) {
for (int i = 0; i < height; ++i)
for (int j = 0; j < width; ++j)
output[c][i * stride + j] = relu(output[c][i * stride + j]);
}
} else if (layer_activation == SOFTSIGN) {
for (int c = 0; c < channels; ++c) {
for (int i = 0; i < height; ++i)
for (int j = 0; j < width; ++j)
output[c][i * stride + j] = softsign(output[c][i * stride + j]);
}
} else if (layer_activation == SIGMOID) {
assert(0 && "Sigmoid has not been supported in CNN."); // TO DO
} else if (layer_activation != NONE) {
assert(0 && "Unknown activation type");
}
}
static bool copy_active_tensor_to_branches(const TENSOR *layer_active_tensor,
const CNN_LAYER_CONFIG *layer_config,
int branch, TENSOR branch_output[]) {
const CNN_BRANCH_CONFIG *branch_config = &layer_config->branch_config;
for (int b = 0; b < CNN_MAX_BRANCHES; ++b) {
if ((branch_config->input_to_branches & (1 << b)) && b != branch) {
// Copy layer's active tensor to output tensor of branch b if set in
// mask. The output becomes the input of the first layer of the branch
// because the layer of the branch is not the first layer.
int copy_channels = branch_config->channels_to_copy > 0
? branch_config->channels_to_copy
: layer_active_tensor->channels;
if (!realloc_tensor(&branch_output[b], copy_channels,
layer_active_tensor->width,
layer_active_tensor->height)) {
return false;
}
copy_tensor(layer_active_tensor, copy_channels, 0, &branch_output[b]);
}
}
return true;
}
// CNNConvolve specific to maxpool set as 1, either skip_width or skip_height
// greater than 1 and padding equal to PADDING_SAME_ZERO.
static void convolve_maxpool_padding_zero(
const float **input, int in_width, int in_height, int in_stride,
const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride,
const int cstep, const int filter_width_half,
const int filter_height_half) {
for (int i = 0; i < layer_config->out_channels; ++i) {
for (int h = 0, u = 0; h < in_height; h += layer_config->skip_height, ++u) {
for (int w = 0, v = 0; w < in_width; w += layer_config->skip_width, ++v) {
for (int hh = h; hh < AOMMIN(in_height, h + layer_config->skip_height);
++hh) {
for (int ww = w; ww < AOMMIN(in_width, w + layer_config->skip_width);
++ww) {
float sum = layer_config->bias[i];
for (int k = 0; k < layer_config->in_channels; ++k) {
int off = k * layer_config->out_channels + i;
for (int l = 0; l < layer_config->filter_height; ++l) {
const int ii = hh + l - filter_height_half;
for (int m = 0; m < layer_config->filter_width;
++m, off += cstep) {
const int jj = ww + m - filter_width_half;
if (ii < 0 || ii >= in_height || jj < 0 || jj >= in_width)
continue;
sum += layer_config->weights[off] *
input[k][ii * in_stride + jj];
}
}
}
const float a = sum;
if (h == hh && w == ww)
output[i][u * out_stride + v] = a;
else
output[i][u * out_stride + v] =
AOMMAX(output[i][u * out_stride + v], a);
}
}
}
}
}
}
// CNNConvolve specific to maxpool set as 1, either skip_width or skip_height
// greater than 1 and padding equal to PADDING_SAME_REPLICATE.
static void convolve_maxpool_padding_replicate(
const float **input, int in_width, int in_height, int in_stride,
const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride,
const int cstep, const int filter_width_half,
const int filter_height_half) {
for (int i = 0; i < layer_config->out_channels; ++i) {
for (int h = 0, u = 0; h < in_height; h += layer_config->skip_height, ++u) {
for (int w = 0, v = 0; w < in_width; w += layer_config->skip_width, ++v) {
for (int hh = h; hh < AOMMIN(in_height, h + layer_config->skip_height);
++hh) {
for (int ww = w; ww < AOMMIN(in_width, w + layer_config->skip_width);
++ww) {
float sum = layer_config->bias[i];
for (int k = 0; k < layer_config->in_channels; ++k) {
int off = k * layer_config->out_channels + i;
for (int l = 0; l < layer_config->filter_height; ++l) {
const int ii =
CLAMPINDEX(hh + l - filter_height_half, in_height);
for (int m = 0; m < layer_config->filter_width;
++m, off += cstep) {
const int jj =
CLAMPINDEX(ww + m - filter_width_half, in_width);
assert(ii >= 0 && ii < in_height && jj >= 0 && jj < in_width);
sum += layer_config->weights[off] *
input[k][ii * in_stride + jj];
}
}
}
const float a = sum;
if (h == hh && w == ww)
output[i][u * out_stride + v] = a;
else
output[i][u * out_stride + v] =
AOMMAX(output[i][u * out_stride + v], a);
}
}
}
}
}
}
// CNNConvolve specific to maxpool set as 1, either skip_width or skip_height
// greater than 1 and padding equal to PADDING_VALID.
static void convolve_maxpool_padding_valid(
const float **input, int in_width, int in_height, int in_stride,
const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride,
const int cstep) {
for (int i = 0; i < layer_config->out_channels; ++i) {
for (int h = 0, u = 0; h < in_height - layer_config->filter_height + 1;
h += layer_config->skip_height, ++u) {
for (int w = 0, v = 0; w < in_width - layer_config->filter_width + 1;
w += layer_config->skip_width, ++v) {
for (int hh = h; hh < AOMMIN(in_height, h + layer_config->skip_height);
++hh) {
for (int ww = w; ww < AOMMIN(in_width, w + layer_config->skip_width);
++ww) {
float sum = layer_config->bias[i];
for (int k = 0; k < layer_config->in_channels; ++k) {
int off = k * layer_config->out_channels + i;
for (int l = 0; l < layer_config->filter_height; ++l) {
const int ii = hh + l;
for (int m = 0; m < layer_config->filter_width;
++m, off += cstep) {
const int jj = ww + m;
assert(ii >= 0 && ii < in_height && jj >= 0 && jj < in_width);
sum += layer_config->weights[off] *
input[k][ii * in_stride + jj];
}
}
}
const float a = sum;
if (h == hh && w == ww)
output[i][u * out_stride + v] = a;
else
output[i][u * out_stride + v] =
AOMMAX(output[i][u * out_stride + v], a);
}
}
}
}
}
}
// CNNConvolve specific to maxpool set as 0 with filter_height and filter_width
// equal to 1.
static void convolve_element_wise(const float **input, int in_width,
int in_height, int in_stride,
const CNN_LAYER_CONFIG *const layer_config,
float **output, int out_stride, int start_idx,
int step) {
const int start_h = get_start_shift_convolve(
in_height, layer_config->filter_height, layer_config->skip_height);
const int start_w =
get_start_shift_convolve(in_width, layer_config->filter_width,
layer_config->skip_width) +
start_idx * layer_config->skip_width;
const int out_w_step = AOMMAX(step, 1);
const int in_w_step = layer_config->skip_width * out_w_step;
for (int i = 0; i < layer_config->out_channels; ++i) {
for (int h = start_h, u = 0; h < in_height;
h += layer_config->skip_height, ++u) {
const int in_h = h * in_stride;
const int out_h = u * out_stride + start_idx;
for (int w = start_w, out_index = out_h; w < in_width;
w += in_w_step, out_index += out_w_step) {
float sum = layer_config->bias[i];
for (int k = 0; k < layer_config->in_channels; ++k) {
sum += layer_config->weights[k * layer_config->out_channels + i] *
input[k][in_h + w];
}
output[i][out_index] = sum;
}
}
}
}
// CNNConvolve specific to maxpool set as 0 and padding equal to
// PADDING_SAME_ZERO.
static void convolve_no_maxpool_padding_zero(
const float **input, int in_width, int in_height, int in_stride,
const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride,
int start_idx, const int cstep, const int filter_width_half,
const int filter_height_half, const int ii_shift, const int jj_shift,
const int channel_step) {
const int start_h = get_start_shift_convolve(
in_height, layer_config->filter_height, layer_config->skip_height);
const int start_w = get_start_shift_convolve(
in_width, layer_config->filter_width, layer_config->skip_width);
const int end_ii_shift = filter_height_half + 1;
const int end_jj_shift = filter_width_half + 1;
// *_filter_margin stores the number of pixels along a dimension in the
// intersection of the complement of the image in the extended image
// and the filter.
const int top_filter_margin = layer_config->filter_width * ii_shift;
const int right_filter_margin = end_jj_shift - in_width;
for (int i = start_idx; i < layer_config->out_channels; i += channel_step) {
for (int h = start_h, u = 0; h < in_height;
h += layer_config->skip_height, ++u) {
const int out_h = u * out_stride;
const int top_cstep =
AOMMAX(0, top_filter_margin - h * layer_config->filter_width) *
cstep +
i;
const int start_ii = AOMMAX(0, h - ii_shift);
const int end_ii = AOMMIN(in_height, h + end_ii_shift);
for (int w = start_w, out_index = out_h; w < in_width;
w += layer_config->skip_width, ++out_index) {
const int left_cstep = AOMMAX(0, jj_shift - w) * cstep;
const int right_cstep = AOMMAX(0, right_filter_margin + w) * cstep;
const int start_jj = AOMMAX(0, w - jj_shift);
const int end_jj = AOMMIN(in_width, w + end_jj_shift);
float sum = layer_config->bias[i];
for (int k = 0; k < layer_config->in_channels; ++k) {
int off = k * layer_config->out_channels + top_cstep;
for (int ii = start_ii; ii < end_ii; ++ii) {
off += left_cstep;
for (int jj = start_jj; jj < end_jj; ++jj, off += cstep) {
sum += layer_config->weights[off] * input[k][ii * in_stride + jj];
}
off += right_cstep;
}
}
output[i][out_index] = sum;
}
}
}
}
// CNNConvolve specific to maxpool set as 0 and padding equal to
// PADDING_SAME_REPLICATE.
static void convolve_no_maxpool_padding_replicate(
const float **input, int in_width, int in_height, int in_stride,
const CNN_LAYER_CONFIG *const layer_config, float **output, int out_stride,
int start_idx, const int cstep, const int ii_shift, const int jj_shift,
const int channel_step) {
// h and w are shifted to an offset coordinate system to reduce in-loop
// computation.
const int start_h =
get_start_shift_convolve(in_height, layer_config->filter_height,
layer_config->skip_height) -
ii_shift;
const int start_w =
get_start_shift_convolve(in_width, layer_config->filter_width,
layer_config->skip_width) -
jj_shift;
const int end_h = in_height - ii_shift;
const int end_w = in_width - jj_shift;
for (int i = start_idx; i < layer_config->out_channels; i += channel_step) {
for (int h = start_h, u = 0; h < end_h;
h += layer_config->skip_height, ++u) {
const int out_h = u * out_stride;
const int upper_ii_index = layer_config->filter_height + h;
for (int w = start_w, out_index = out_h; w < end_w;
w += layer_config->skip_width, ++out_index) {
const int upper_jj_index = layer_config->filter_width + w;
float sum = layer_config->bias[i];
for (int k = 0; k < layer_config->in_channels; ++k) {
int off = k * layer_config->out_channels + i;
for (int ii = h; ii < upper_ii_index; ++ii) {
const int clamped_ii = CLAMPINDEX(ii, in_height);
for (int jj = w; jj < upper_jj_index; ++jj) {
const int clamped_jj = CLAMPINDEX(jj, in_width);
assert(clamped_ii >= 0 && clamped_ii < in_height &&
clamped_jj >= 0 && clamped_jj < in_width);
sum += layer_config->weights[off] *
input[k][clamped_ii * in_stride + clamped_jj];
off += cstep;
}
}
}
output[i][out_index] = sum;
}
}
}
}
// CNNConvolve specific to maxpool set as 0 and padding equal to
// PADDING_VALID.
void av1_cnn_convolve_no_maxpool_padding_valid_c(
const float **input, int in_width, int in_height, int in_stride,
const CNN_LAYER_CONFIG *layer_config, float **output, int out_stride,
int start_idx, int cstep, int channel_step) {
assert((layer_config->skip_height == 1 && layer_config->skip_width == 1) ||
!layer_config->maxpool);
assert(layer_config->filter_height > 1 || layer_config->filter_width > 1);
assert(layer_config->pad == PADDING_VALID);
for (int i = start_idx; i < layer_config->out_channels; i += channel_step) {
for (int h = 0, u = 0; h < in_height - layer_config->filter_height + 1;
h += layer_config->skip_height, ++u) {
const int out_h = u * out_stride;
const int upper_ii_index = layer_config->filter_height + h;
for (int w = 0, out_index = out_h;
w < in_width - layer_config->filter_width + 1;
w += layer_config->skip_width, ++out_index) {
const int upper_jj_index = layer_config->filter_width + w;
float sum = layer_config->bias[i];
for (int k = 0; k < layer_config->in_channels; ++k) {
int off = k * layer_config->out_channels + i;
for (int ii = h; ii < upper_ii_index; ++ii) {
for (int jj = w; jj < upper_jj_index; ++jj) {
assert(ii >= 0 && ii < in_height && jj >= 0 && jj < in_width);
sum += layer_config->weights[off] * input[k][ii * in_stride + jj];
off += cstep;
}
}
}
output[i][out_index] = sum;
}
}
}
}
static void av1_cnn_convolve(const float **input, int in_width, int in_height,
int in_stride,
const CNN_LAYER_CONFIG *layer_config,
float **output, int out_stride, int start_idx,
int step) {
assert(!layer_config->deconvolve);
const int cstep = layer_config->in_channels * layer_config->out_channels;
const int filter_height_half = layer_config->filter_height >> 1;
const int filter_width_half = layer_config->filter_width >> 1;
const int channel_step = AOMMAX(step, 1);
if (layer_config->maxpool &&
(layer_config->skip_height > 1 || layer_config->skip_width > 1)) {
switch (layer_config->pad) {
case PADDING_SAME_ZERO:
convolve_maxpool_padding_zero(input, in_width, in_height, in_stride,
layer_config, output, out_stride, cstep,
filter_width_half, filter_height_half);
break;
case PADDING_SAME_REPLICATE:
convolve_maxpool_padding_replicate(
input, in_width, in_height, in_stride, layer_config, output,
out_stride, cstep, filter_width_half, filter_height_half);
break;
case PADDING_VALID:
convolve_maxpool_padding_valid(input, in_width, in_height, in_stride,
layer_config, output, out_stride, cstep);
break;
default: assert(0 && "Unknown padding type");
}
} else {
// Results in element-wise matrix multiplication.
if (layer_config->filter_height == 1 && layer_config->filter_width == 1) {
convolve_element_wise(input, in_width, in_height, in_stride, layer_config,
output, out_stride, start_idx, step);
return;
}
const int ii_shift =
filter_height_half - (layer_config->filter_height - 1) % 2;
const int jj_shift =
filter_width_half - (layer_config->filter_width - 1) % 2;
switch (layer_config->pad) {
case PADDING_SAME_ZERO:
convolve_no_maxpool_padding_zero(
input, in_width, in_height, in_stride, layer_config, output,
out_stride, start_idx, cstep, filter_width_half, filter_height_half,
ii_shift, jj_shift, channel_step);
break;
case PADDING_SAME_REPLICATE:
convolve_no_maxpool_padding_replicate(
input, in_width, in_height, in_stride, layer_config, output,
out_stride, start_idx, cstep, ii_shift, jj_shift, channel_step);
break;
case PADDING_VALID:
av1_cnn_convolve_no_maxpool_padding_valid(
input, in_width, in_height, in_stride, layer_config, output,
out_stride, start_idx, cstep, channel_step);
break;
default: assert(0 && "Unknown padding type");
}
}
}
static int convolve_layer(void *arg1, void *arg2) {
const CONVOLVE_OPS *convolve_ops = arg1;
(void)arg2;
av1_cnn_convolve(
convolve_ops->input, convolve_ops->in_width, convolve_ops->in_height,
convolve_ops->in_stride, convolve_ops->layer_config, convolve_ops->output,
convolve_ops->out_stride, convolve_ops->start_idx, convolve_ops->th_step);
return 1;
}
static void convolve_layer_mt(const float **input, int in_width, int in_height,
int in_stride,
const CNN_LAYER_CONFIG *layer_config,
const CNN_THREAD_DATA *thread_data,
float **output, int out_stride) {
const AVxWorkerInterface *const winterface = aom_get_worker_interface();
const int num_workers = thread_data->num_workers;
assert(thread_data->workers);
CONVOLVE_OPS convolve_ops[CNN_MAX_THREADS];
for (int th = 0; th < AOMMIN(num_workers, CNN_MAX_THREADS); ++th) {
AVxWorker *const worker = &thread_data->workers[th];
winterface->reset(worker);
CONVOLVE_OPS convolve_op = { input, in_width, in_height,
in_stride, layer_config, output,
out_stride, th, num_workers };
convolve_ops[th] = convolve_op;
worker->hook = convolve_layer;
worker->data1 = &(convolve_ops[th]);
worker->data2 = NULL;
// Start convolving.
if (th == num_workers - 1) {
winterface->execute(worker);
} else {
winterface->launch(worker);
}
}
// Wait until all workers have finished.
for (int th = 0; th < AOMMIN(num_workers, CNN_MAX_THREADS); ++th) {
winterface->sync(&thread_data->workers[th]);
}
}
static inline int get_start_shift_deconvolve(int filt_width, int stride) {
const int dif = AOMMAX(filt_width - stride, 0);
return dif / 2;
}
void av1_cnn_batchnorm_c(float **image, int channels, int width, int height,
int stride, const float *gamma, const float *beta,
const float *mean, const float *std) {
assert(gamma && beta && beta && std && "batchnorm has null parameter!");
for (int ch = 0; ch < channels; ch++) {
const float ch_gamma = gamma[ch];
const float ch_beta = beta[ch];
const float ch_mean = mean[ch];
const float ch_std = std[ch];
float *image_row = image[ch];
for (int row = 0; row < height; row++) {
for (int col = 0; col < width; col++) {
image_row[col] =
ch_gamma * (image_row[col] - ch_mean) / ch_std + ch_beta;
}
image_row += stride;
}
}
}
void av1_cnn_deconvolve_c(const float **input, int in_width, int in_height,
int in_stride, const CNN_LAYER_CONFIG *layer_config,
float **output, int out_stride) {
assert(layer_config->deconvolve);
const int cstep = layer_config->in_channels * layer_config->out_channels;
int out_width = 0;
int out_height = 0;
av1_find_cnn_layer_output_size(in_width, in_height, layer_config, &out_width,
&out_height);
switch (layer_config->pad) {
case PADDING_SAME_ZERO:
for (int i = 0; i < layer_config->out_channels; ++i) {
for (int u = 0; u < out_height; ++u) {
for (int v = 0; v < out_width; ++v) {
float sum = layer_config->bias[i];
for (int k = 0; k < layer_config->in_channels; ++k) {
int off = k * layer_config->out_channels + i;
for (int l = 0; l < layer_config->filter_height; ++l) {
const int h =
u - l +
get_start_shift_deconvolve(layer_config->filter_height,
layer_config->skip_height);
for (int m = 0; m < layer_config->filter_width;
++m, off += cstep) {
const int w =
v - m +
get_start_shift_deconvolve(layer_config->filter_width,
layer_config->skip_width);
if ((h % layer_config->skip_height) != 0 ||
(w % layer_config->skip_width) != 0)
continue;
const int ii = h / layer_config->skip_height;
const int jj = w / layer_config->skip_width;
if (ii < 0 || ii >= in_height || jj < 0 || jj >= in_width)
continue;
sum += layer_config->weights[off] *
input[k][ii * in_stride + jj];
}
}
}
output[i][u * out_stride + v] = sum;
}
}
}
break;
case PADDING_SAME_REPLICATE:
for (int i = 0; i < layer_config->out_channels; ++i) {
for (int u = 0; u < out_height; ++u) {
for (int v = 0; v < out_width; ++v) {
float sum = layer_config->bias[i];
for (int k = 0; k < layer_config->in_channels; ++k) {
int off = k * layer_config->out_channels + i;
for (int l = 0; l < layer_config->filter_height; ++l) {
const int h =
u - l +
get_start_shift_deconvolve(layer_config->filter_height,
layer_config->skip_height);
for (int m = 0; m < layer_config->filter_width;
++m, off += cstep) {
const int w =
v - m +
get_start_shift_deconvolve(layer_config->filter_width,
layer_config->skip_width);
if ((h % layer_config->skip_height) != 0 ||
(w % layer_config->skip_width) != 0)
continue;
const int ii =
CLAMPINDEX(h / layer_config->skip_height, in_height);
const int jj =
CLAMPINDEX(w / layer_config->skip_width, in_width);
assert(ii >= 0 && ii < in_height && jj >= 0 && jj < in_width);
sum += layer_config->weights[off] *
input[k][ii * in_stride + jj];
}
}
}
output[i][u * out_stride + v] = sum;
}
}
}
break;
case PADDING_VALID:
for (int i = 0; i < layer_config->out_channels; ++i) {
for (int u = 0; u < out_height; ++u) {
for (int v = 0; v < out_width; ++v) {
float sum = layer_config->bias[i];
for (int k = 0; k < layer_config->in_channels; ++k) {
int off = k * layer_config->out_channels + i;
for (int l = 0; l < layer_config->filter_height; ++l) {
const int h = u - l;
for (int m = 0; m < layer_config->filter_width;
++m, off += cstep) {
const int w = v - m;
if ((h % layer_config->skip_height) != 0 ||
(w % layer_config->skip_width) != 0)
continue;
const int ii = h / layer_config->skip_height;
const int jj = w / layer_config->skip_width;
if (ii < 0 || ii >= in_height || jj < 0 || jj >= in_width)
continue;
sum += layer_config->weights[off] *
input[k][ii * in_stride + jj];
}
}
}
output[i][u * out_stride + v] = sum;
}
}
}
break;
default: assert(0 && "Unknown padding type");
}
}
bool av1_cnn_predict_c(const float **input, int in_width, int in_height,
int in_stride, const CNN_CONFIG *cnn_config,
const CNN_THREAD_DATA *thread_data,
CNN_MULTI_OUT *output_struct) {
bool success = false;
TENSOR tensor1[CNN_MAX_BRANCHES] = { { 0 } };
TENSOR tensor2[CNN_MAX_BRANCHES] = { { 0 } };
float **output[CNN_MAX_BRANCHES];
const int *out_chs = output_struct->output_channels;
output[0] = output_struct->output_buffer;
for (int out_idx = 1; out_idx < output_struct->num_outputs; out_idx++) {
output[out_idx] = output[out_idx - 1] + out_chs[out_idx - 1];
}
int i_width = in_width;
int i_height = in_height;
int o_width = 0, o_height = 0;
for (int b = 0; b < CNN_MAX_BRANCHES; ++b) {
init_tensor(&tensor1[b]);
init_tensor(&tensor2[b]);
}
const int *out_stride = output_struct->output_strides;
for (int layer = 0; layer < cnn_config->num_layers; ++layer) {
const CNN_LAYER_CONFIG *layer_config = &cnn_config->layer_config[layer];
const int branch = layer_config->branch;
const CNN_BRANCH_CONFIG *branch_config = &layer_config->branch_config;
// Allocate input tensor
if (layer == 0) { // First layer
assert(branch == 0); // First layer must be primary branch
assign_tensor(&tensor1[branch], (float **)input,
layer_config->in_channels, in_width, in_height, in_stride);
} else { // Non-first layer
// Swap tensor1 and tensor2
swap_tensor(&tensor1[branch], &tensor2[branch]);
i_width = tensor1[branch].width;
i_height = tensor1[branch].height;
}
// Allocate output tensor
av1_find_cnn_layer_output_size(i_width, i_height, layer_config, &o_width,
&o_height);
const int output_num = layer_config->output_num;
if (output_num == -1) { // Non-output layer
if (!realloc_tensor(&tensor2[branch], layer_config->out_channels, o_width,
o_height)) {
goto Error;
}
} else { // Output layer
free_tensor(&tensor2[branch]);
assign_tensor(&tensor2[branch], output[output_num],
layer_config->out_channels, o_width, o_height,
out_stride[output_num]);
}
// If we are combining branches make sure that the branch to combine
// is different from the current branch.
assert(IMPLIES(layer_config->branch_combine_type != BRANCH_NOC,
!(branch_config->branches_to_combine & (1 << branch))));
if (layer_config->branch_copy_type == BRANCH_INPUT) {
if (!copy_active_tensor_to_branches(&tensor1[branch], layer_config,
branch, tensor2)) {
goto Error;
}
}
// Check consistency of input and output channels
assert(tensor1[branch].channels == layer_config->in_channels);
assert(tensor2[branch].channels == layer_config->out_channels);
// Convolve/Deconvolve
if (!cnn_config->layer_config[layer].deconvolve) {
if (thread_data->num_workers > 1) {
convolve_layer_mt((const float **)tensor1[branch].buf,
tensor1[branch].width, tensor1[branch].height,
tensor1[branch].stride, layer_config, thread_data,
tensor2[branch].buf, tensor2[branch].stride);
} else {
av1_cnn_convolve((const float **)tensor1[branch].buf,
tensor1[branch].width, tensor1[branch].height,
tensor1[branch].stride, layer_config,
tensor2[branch].buf, tensor2[branch].stride, 0, 1);
}
} else {
av1_cnn_deconvolve((const float **)tensor1[branch].buf,
tensor1[branch].width, tensor1[branch].height,
tensor1[branch].stride, layer_config,
tensor2[branch].buf, tensor2[branch].stride);
}
if (layer_config->branch_copy_type == BRANCH_OUTPUT) {
if (!copy_active_tensor_to_branches(&tensor2[branch], layer_config,
branch, tensor2)) {
goto Error;
}
}
// Add tensors from other branches if needed
if (layer_config->branch_combine_type == BRANCH_ADD) {
for (int b = 0; b < CNN_MAX_BRANCHES; ++b) {
if ((branch_config->branches_to_combine & (1 << b)) && b != branch) {
assert(check_tensor_equal_size(&tensor2[b], &tensor2[branch]));
av1_cnn_add(tensor2[branch].buf, tensor2[branch].channels,
tensor2[branch].width, tensor2[branch].height,
tensor2[branch].stride, (const float **)tensor2[b].buf);
}
}
}
// Non-linearity
av1_cnn_activate(tensor2[branch].buf, tensor2[branch].channels,
tensor2[branch].width, tensor2[branch].height,
tensor2[branch].stride, layer_config->activation);
if (layer_config->bn_params.bn_gamma) {
av1_cnn_batchnorm(
tensor2[branch].buf, tensor2[branch].channels, tensor2[branch].width,
tensor2[branch].height, tensor2[branch].stride,
layer_config->bn_params.bn_gamma, layer_config->bn_params.bn_beta,
layer_config->bn_params.bn_mean, layer_config->bn_params.bn_std);
}
// Concatenate tensors
if (layer_config->branch_combine_type == BRANCH_CAT) {
if (output_num == -1) { // Non-output layer
for (int b = 0; b < CNN_MAX_BRANCHES; ++b) {
if ((branch_config->branches_to_combine & (1 << b)) && b != branch) {
assert(check_tensor_equal_dims(&tensor2[b], &tensor2[branch]));
assert(tensor2[b].channels > 0);
if (!concat_tensor(&tensor2[b], &tensor2[branch])) goto Error;
}
}
} else { // Output layer
const int existing_channels = tensor2[branch].channels;
int num_chs = existing_channels;
for (int b = 0; b < CNN_MAX_BRANCHES; ++b) {
if ((branch_config->branches_to_combine & (1 << b)) && b != branch) {
assert(check_tensor_equal_dims(&tensor2[b], &tensor2[branch]));
// Needed only to assign the new channel buffers
num_chs += tensor2[b].channels;
}
}
assign_tensor(&tensor2[branch], output[output_num], num_chs, o_width,
o_height, out_stride[output_num]);
num_chs = existing_channels;
for (int b = 0; b < CNN_MAX_BRANCHES; ++b) {
if ((branch_config->branches_to_combine & (1 << b)) && b != branch) {
assert(check_tensor_equal_dims(&tensor2[b], &tensor2[branch]));
// Needed only to assign the new channel buffers
copy_tensor(&tensor2[b], tensor2[b].channels, num_chs,
&tensor2[branch]);
num_chs += tensor2[b].channels;
}
}
}
}
if (layer_config->branch_copy_type == BRANCH_COMBINED) {
if (!copy_active_tensor_to_branches(&tensor2[branch], layer_config,
branch, tensor2)) {
goto Error;
}
}
}
success = true;
Error:
for (int b = 0; b < CNN_MAX_BRANCHES; ++b) {
free_tensor(&tensor1[b]);
free_tensor(&tensor2[b]);
}
return success;
}
// Assume output already has proper allocation
// Assume input image buffers all have same resolution and strides
bool av1_cnn_predict_img_multi_out(uint8_t **dgd, int width, int height,
int stride, const CNN_CONFIG *cnn_config,
const CNN_THREAD_DATA *thread_data,
CNN_MULTI_OUT *output) {
const float max_val = 255.0;
const int in_width = width + 2 * cnn_config->ext_width;
const int in_height = height + 2 * cnn_config->ext_height;
const int in_channels = cnn_config->layer_config[0].in_channels;
float *inputs[CNN_MAX_CHANNELS];
float *input_ =
(float *)aom_malloc(in_width * in_height * in_channels * sizeof(*input_));
if (!input_) return false;
const int in_stride = in_width;
for (int c = 0; c < in_channels; ++c) {
inputs[c] = input_ + c * in_stride * in_height;
float *input =
inputs[c] + cnn_config->ext_height * in_stride + cnn_config->ext_width;
if (cnn_config->strict_bounds) {
for (int i = 0; i < height; ++i)
for (int j = 0; j < width; ++j)
input[i * in_stride + j] = (float)dgd[c][i * stride + j] / max_val;
// extend left and right
for (int i = 0; i < height; ++i) {
for (int j = -cnn_config->ext_width; j < 0; ++j)
input[i * in_stride + j] = input[i * in_stride];
for (int j = width; j < width + cnn_config->ext_width; ++j)
input[i * in_stride + j] = input[i * in_stride + width - 1];
}
// extend top and bottom
for (int i = -cnn_config->ext_height; i < 0; ++i)
memcpy(&input[i * in_stride - cnn_config->ext_width],
&input[-cnn_config->ext_width], in_width * sizeof(*input));
for (int i = height; i < height + cnn_config->ext_height; ++i)
memcpy(&input[i * in_stride - cnn_config->ext_width],
&input[(height - 1) * in_stride - cnn_config->ext_width],
in_width * sizeof(*input));
} else {
for (int i = -cnn_config->ext_height; i < height + cnn_config->ext_height;
++i)
for (int j = -cnn_config->ext_width; j < width + cnn_config->ext_width;
++j)
input[i * in_stride + j] = (float)dgd[c][i * stride + j] / max_val;
}
}
bool success = av1_cnn_predict((const float **)inputs, in_width, in_height,
in_stride, cnn_config, thread_data, output);
aom_free(input_);
return success;
}
// Assume output already has proper allocation
// Assume input image buffers all have same resolution and strides
bool av1_cnn_predict_img_multi_out_highbd(uint16_t **dgd, int width, int height,
int stride,
const CNN_CONFIG *cnn_config,
const CNN_THREAD_DATA *thread_data,
int bit_depth,
CNN_MULTI_OUT *output) {
const float max_val = (float)((1 << bit_depth) - 1);
const int in_width = width + 2 * cnn_config->ext_width;
const int in_height = height + 2 * cnn_config->ext_height;
const int in_channels = cnn_config->layer_config[0].in_channels;
float *inputs[CNN_MAX_CHANNELS];
float *input_ =
(float *)aom_malloc(in_width * in_height * in_channels * sizeof(*input_));
if (!input_) return false;
const int in_stride = in_width;
for (int c = 0; c < in_channels; ++c) {
inputs[c] = input_ + c * in_stride * in_height;
float *input =
inputs[c] + cnn_config->ext_height * in_stride + cnn_config->ext_width;
if (cnn_config->strict_bounds) {
for (int i = 0; i < height; ++i)
for (int j = 0; j < width; ++j)
input[i * in_stride + j] = (float)dgd[c][i * stride + j] / max_val;
// extend left and right
for (int i = 0; i < height; ++i) {
for (int j = -cnn_config->ext_width; j < 0; ++j)
input[i * in_stride + j] = input[i * in_stride];
for (int j = width; j < width + cnn_config->ext_width; ++j)
input[i * in_stride + j] = input[i * in_stride + width - 1];
}
// extend top and bottom
for (int i = -cnn_config->ext_height; i < 0; ++i)
memcpy(&input[i * in_stride - cnn_config->ext_width],
&input[-cnn_config->ext_width], in_width * sizeof(*input));
for (int i = height; i < height + cnn_config->ext_height; ++i)
memcpy(&input[i * in_stride - cnn_config->ext_width],
&input[(height - 1) * in_stride - cnn_config->ext_width],
in_width * sizeof(*input));
} else {
for (int i = -cnn_config->ext_height; i < height + cnn_config->ext_height;
++i)
for (int j = -cnn_config->ext_width; j < width + cnn_config->ext_width;
++j)
input[i * in_stride + j] = (float)dgd[c][i * stride + j] / max_val;
}
}
bool success = av1_cnn_predict((const float **)inputs, in_width, in_height,
in_stride, cnn_config, thread_data, output);
aom_free(input_);
return success;
}
|