1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "av1/encoder/context_tree.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/rd.h"
#include <assert.h>
void av1_copy_tree_context(PICK_MODE_CONTEXT *dst_ctx,
PICK_MODE_CONTEXT *src_ctx) {
dst_ctx->mic = src_ctx->mic;
dst_ctx->mbmi_ext_best = src_ctx->mbmi_ext_best;
dst_ctx->num_4x4_blk = src_ctx->num_4x4_blk;
dst_ctx->skippable = src_ctx->skippable;
#if CONFIG_INTERNAL_STATS
dst_ctx->best_mode_index = src_ctx->best_mode_index;
#endif // CONFIG_INTERNAL_STATS
memcpy(dst_ctx->blk_skip, src_ctx->blk_skip,
sizeof(uint8_t) * src_ctx->num_4x4_blk);
av1_copy_array(dst_ctx->tx_type_map, src_ctx->tx_type_map,
src_ctx->num_4x4_blk);
dst_ctx->rd_stats = src_ctx->rd_stats;
dst_ctx->rd_mode_is_ready = src_ctx->rd_mode_is_ready;
}
void av1_setup_shared_coeff_buffer(const SequenceHeader *const seq_params,
PC_TREE_SHARED_BUFFERS *shared_bufs,
struct aom_internal_error_info *error) {
const int num_planes = seq_params->monochrome ? 1 : MAX_MB_PLANE;
const int max_sb_square_y = 1 << num_pels_log2_lookup[seq_params->sb_size];
const int max_sb_square_uv = max_sb_square_y >> (seq_params->subsampling_x +
seq_params->subsampling_y);
for (int i = 0; i < num_planes; i++) {
const int max_num_pix =
(i == AOM_PLANE_Y) ? max_sb_square_y : max_sb_square_uv;
AOM_CHECK_MEM_ERROR(error, shared_bufs->coeff_buf[i],
aom_memalign(32, max_num_pix * sizeof(tran_low_t)));
AOM_CHECK_MEM_ERROR(error, shared_bufs->qcoeff_buf[i],
aom_memalign(32, max_num_pix * sizeof(tran_low_t)));
AOM_CHECK_MEM_ERROR(error, shared_bufs->dqcoeff_buf[i],
aom_memalign(32, max_num_pix * sizeof(tran_low_t)));
}
}
void av1_free_shared_coeff_buffer(PC_TREE_SHARED_BUFFERS *shared_bufs) {
for (int i = 0; i < 3; i++) {
aom_free(shared_bufs->coeff_buf[i]);
aom_free(shared_bufs->qcoeff_buf[i]);
aom_free(shared_bufs->dqcoeff_buf[i]);
shared_bufs->coeff_buf[i] = NULL;
shared_bufs->qcoeff_buf[i] = NULL;
shared_bufs->dqcoeff_buf[i] = NULL;
}
}
PICK_MODE_CONTEXT *av1_alloc_pmc(const struct AV1_COMP *const cpi,
BLOCK_SIZE bsize,
PC_TREE_SHARED_BUFFERS *shared_bufs) {
PICK_MODE_CONTEXT *volatile ctx = NULL;
const AV1_COMMON *const cm = &cpi->common;
struct aom_internal_error_info error;
if (setjmp(error.jmp)) {
av1_free_pmc(ctx, av1_num_planes(cm));
return NULL;
}
error.setjmp = 1;
AOM_CHECK_MEM_ERROR(&error, ctx, aom_calloc(1, sizeof(*ctx)));
ctx->rd_mode_is_ready = 0;
const int num_planes = av1_num_planes(cm);
const int num_pix = block_size_wide[bsize] * block_size_high[bsize];
const int num_blk = num_pix / 16;
AOM_CHECK_MEM_ERROR(&error, ctx->blk_skip,
aom_calloc(num_blk, sizeof(*ctx->blk_skip)));
AOM_CHECK_MEM_ERROR(&error, ctx->tx_type_map,
aom_calloc(num_blk, sizeof(*ctx->tx_type_map)));
ctx->num_4x4_blk = num_blk;
for (int i = 0; i < num_planes; ++i) {
ctx->coeff[i] = shared_bufs->coeff_buf[i];
ctx->qcoeff[i] = shared_bufs->qcoeff_buf[i];
ctx->dqcoeff[i] = shared_bufs->dqcoeff_buf[i];
AOM_CHECK_MEM_ERROR(&error, ctx->eobs[i],
aom_memalign(32, num_blk * sizeof(*ctx->eobs[i])));
AOM_CHECK_MEM_ERROR(
&error, ctx->txb_entropy_ctx[i],
aom_memalign(32, num_blk * sizeof(*ctx->txb_entropy_ctx[i])));
}
if (num_pix <= MAX_PALETTE_SQUARE) {
for (int i = 0; i < 2; ++i) {
if (cm->features.allow_screen_content_tools) {
AOM_CHECK_MEM_ERROR(
&error, ctx->color_index_map[i],
aom_memalign(32, num_pix * sizeof(*ctx->color_index_map[i])));
} else {
ctx->color_index_map[i] = NULL;
}
}
}
av1_invalid_rd_stats(&ctx->rd_stats);
return ctx;
}
void av1_reset_pmc(PICK_MODE_CONTEXT *ctx) {
av1_zero_array(ctx->blk_skip, ctx->num_4x4_blk);
av1_zero_array(ctx->tx_type_map, ctx->num_4x4_blk);
av1_invalid_rd_stats(&ctx->rd_stats);
}
void av1_free_pmc(PICK_MODE_CONTEXT *ctx, int num_planes) {
if (ctx == NULL) return;
aom_free(ctx->blk_skip);
ctx->blk_skip = NULL;
aom_free(ctx->tx_type_map);
for (int i = 0; i < num_planes; ++i) {
ctx->coeff[i] = NULL;
ctx->qcoeff[i] = NULL;
ctx->dqcoeff[i] = NULL;
aom_free(ctx->eobs[i]);
ctx->eobs[i] = NULL;
aom_free(ctx->txb_entropy_ctx[i]);
ctx->txb_entropy_ctx[i] = NULL;
}
for (int i = 0; i < 2; ++i) {
if (ctx->color_index_map[i]) {
aom_free(ctx->color_index_map[i]);
ctx->color_index_map[i] = NULL;
}
}
aom_free(ctx);
}
PC_TREE *av1_alloc_pc_tree_node(BLOCK_SIZE bsize) {
PC_TREE *pc_tree = aom_calloc(1, sizeof(*pc_tree));
if (pc_tree == NULL) return NULL;
pc_tree->partitioning = PARTITION_NONE;
pc_tree->block_size = bsize;
return pc_tree;
}
#define FREE_PMC_NODE(CTX) \
do { \
av1_free_pmc(CTX, num_planes); \
CTX = NULL; \
} while (0)
void av1_free_pc_tree_recursive(PC_TREE *pc_tree, int num_planes, int keep_best,
int keep_none,
PARTITION_SEARCH_TYPE partition_search_type) {
if (pc_tree == NULL) return;
// Avoid freeing of extended partitions as they are not supported when
// partition_search_type is VAR_BASED_PARTITION.
if (partition_search_type == VAR_BASED_PARTITION && !keep_best &&
!keep_none) {
FREE_PMC_NODE(pc_tree->none);
for (int i = 0; i < 2; ++i) {
FREE_PMC_NODE(pc_tree->horizontal[i]);
FREE_PMC_NODE(pc_tree->vertical[i]);
}
#if !defined(NDEBUG) && !CONFIG_REALTIME_ONLY
for (int i = 0; i < 3; ++i) {
assert(pc_tree->horizontala[i] == NULL);
assert(pc_tree->horizontalb[i] == NULL);
assert(pc_tree->verticala[i] == NULL);
assert(pc_tree->verticalb[i] == NULL);
}
for (int i = 0; i < 4; ++i) {
assert(pc_tree->horizontal4[i] == NULL);
assert(pc_tree->vertical4[i] == NULL);
}
#endif
for (int i = 0; i < 4; ++i) {
if (pc_tree->split[i] != NULL) {
av1_free_pc_tree_recursive(pc_tree->split[i], num_planes, 0, 0,
partition_search_type);
pc_tree->split[i] = NULL;
}
}
aom_free(pc_tree);
return;
}
const PARTITION_TYPE partition = pc_tree->partitioning;
if (!keep_none && (!keep_best || (partition != PARTITION_NONE)))
FREE_PMC_NODE(pc_tree->none);
for (int i = 0; i < 2; ++i) {
if (!keep_best || (partition != PARTITION_HORZ))
FREE_PMC_NODE(pc_tree->horizontal[i]);
if (!keep_best || (partition != PARTITION_VERT))
FREE_PMC_NODE(pc_tree->vertical[i]);
}
#if !CONFIG_REALTIME_ONLY
for (int i = 0; i < 3; ++i) {
if (!keep_best || (partition != PARTITION_HORZ_A))
FREE_PMC_NODE(pc_tree->horizontala[i]);
if (!keep_best || (partition != PARTITION_HORZ_B))
FREE_PMC_NODE(pc_tree->horizontalb[i]);
if (!keep_best || (partition != PARTITION_VERT_A))
FREE_PMC_NODE(pc_tree->verticala[i]);
if (!keep_best || (partition != PARTITION_VERT_B))
FREE_PMC_NODE(pc_tree->verticalb[i]);
}
for (int i = 0; i < 4; ++i) {
if (!keep_best || (partition != PARTITION_HORZ_4))
FREE_PMC_NODE(pc_tree->horizontal4[i]);
if (!keep_best || (partition != PARTITION_VERT_4))
FREE_PMC_NODE(pc_tree->vertical4[i]);
}
#endif
if (!keep_best || (partition != PARTITION_SPLIT)) {
for (int i = 0; i < 4; ++i) {
if (pc_tree->split[i] != NULL) {
av1_free_pc_tree_recursive(pc_tree->split[i], num_planes, 0, 0,
partition_search_type);
pc_tree->split[i] = NULL;
}
}
}
if (!keep_best && !keep_none) aom_free(pc_tree);
}
int av1_setup_sms_tree(AV1_COMP *const cpi, ThreadData *td) {
// The structure 'sms_tree' is used to store the simple motion search data for
// partition pruning in inter frames. Hence, the memory allocations and
// initializations related to it are avoided for allintra encoding mode.
if (cpi->oxcf.kf_cfg.key_freq_max == 0) return 0;
AV1_COMMON *const cm = &cpi->common;
const int stat_generation_stage = is_stat_generation_stage(cpi);
const int is_sb_size_128 = cm->seq_params->sb_size == BLOCK_128X128;
const int tree_nodes =
av1_get_pc_tree_nodes(is_sb_size_128, stat_generation_stage);
int sms_tree_index = 0;
SIMPLE_MOTION_DATA_TREE *this_sms;
int square_index = 1;
int nodes;
aom_free(td->sms_tree);
td->sms_tree =
(SIMPLE_MOTION_DATA_TREE *)aom_calloc(tree_nodes, sizeof(*td->sms_tree));
if (!td->sms_tree) return -1;
this_sms = &td->sms_tree[0];
if (!stat_generation_stage) {
const int leaf_factor = is_sb_size_128 ? 4 : 1;
const int leaf_nodes = 256 * leaf_factor;
// Sets up all the leaf nodes in the tree.
for (sms_tree_index = 0; sms_tree_index < leaf_nodes; ++sms_tree_index) {
SIMPLE_MOTION_DATA_TREE *const tree = &td->sms_tree[sms_tree_index];
tree->block_size = square[0];
}
// Each node has 4 leaf nodes, fill each block_size level of the tree
// from leafs to the root.
for (nodes = leaf_nodes >> 2; nodes > 0; nodes >>= 2) {
for (int i = 0; i < nodes; ++i) {
SIMPLE_MOTION_DATA_TREE *const tree = &td->sms_tree[sms_tree_index];
tree->block_size = square[square_index];
for (int j = 0; j < 4; j++) tree->split[j] = this_sms++;
++sms_tree_index;
}
++square_index;
}
} else {
// Allocation for firstpass/LAP stage
// TODO(Mufaddal): refactor square_index to use a common block_size macro
// from firstpass.c
SIMPLE_MOTION_DATA_TREE *const tree = &td->sms_tree[sms_tree_index];
square_index = 2;
tree->block_size = square[square_index];
}
// Set up the root node for the largest superblock size
td->sms_root = &td->sms_tree[tree_nodes - 1];
return 0;
}
void av1_free_sms_tree(ThreadData *td) {
aom_free(td->sms_tree);
td->sms_tree = NULL;
}
|