1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
|
/*
* Copyright (c) 2018, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <stdbool.h>
#include "config/av1_rtcd.h"
#include "av1/encoder/block.h"
#include "av1/encoder/hash.h"
#include "av1/encoder/hash_motion.h"
#define kSrcBits 16
// kMaxAddr is the number of hash table buckets in p_hash_table->p_lookup_table.
// p_hash_table->p_lookup_table consists of 6 hash tables of 1 << kSrcBits
// buckets each. Each of the 6 supported block sizes (4, 8, 16, 32, 64, 128) has
// its own hash table, indexed by the return value of
// hash_block_size_to_index().
#define kMaxAddr (6 << kSrcBits)
#define kMaxCandidatesPerHashBucket 256
static void get_pixels_in_1D_char_array_by_block_2x2(const uint8_t *y_src,
int stride,
uint8_t *p_pixels_in1D) {
const uint8_t *p_pel = y_src;
int index = 0;
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++) {
p_pixels_in1D[index++] = p_pel[j];
}
p_pel += stride;
}
}
static void get_pixels_in_1D_short_array_by_block_2x2(const uint16_t *y_src,
int stride,
uint16_t *p_pixels_in1D) {
const uint16_t *p_pel = y_src;
int index = 0;
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++) {
p_pixels_in1D[index++] = p_pel[j];
}
p_pel += stride;
}
}
// the hash value (hash_value1) consists of two parts, the first 3 bits relate
// to the block size and the remaining 16 bits are the crc values. This
// function is used to get the first 3 bits.
static int hash_block_size_to_index(int block_size) {
switch (block_size) {
case 4: return 0;
case 8: return 1;
case 16: return 2;
case 32: return 3;
case 64: return 4;
case 128: return 5;
default: return -1;
}
}
static uint32_t get_identity_hash_value(const uint8_t a, const uint8_t b,
const uint8_t c, const uint8_t d) {
// The four input values add up to 32 bits, which is the size of the output.
// Just pack those values as is.
return ((uint32_t)a << 24) + ((uint32_t)b << 16) + ((uint32_t)c << 8) +
((uint32_t)d);
}
static uint32_t get_xor_hash_value_hbd(const uint16_t a, const uint16_t b,
const uint16_t c, const uint16_t d) {
uint32_t result;
// Pack the lower 8 bits of each input value to the 32 bit output, then xor
// with the upper 8 bits of each input value.
result = ((uint32_t)(a & 0x00ff) << 24) + ((uint32_t)(b & 0x00ff) << 16) +
((uint32_t)(c & 0x00ff) << 8) + ((uint32_t)(d & 0x00ff));
result ^= ((uint32_t)(a & 0xff00) << 16) + ((uint32_t)(b & 0xff00) << 8) +
((uint32_t)(c & 0xff00)) + ((uint32_t)(d & 0xff00) >> 8);
return result;
}
void av1_hash_table_init(IntraBCHashInfo *intrabc_hash_info) {
if (!intrabc_hash_info->crc_initialized) {
av1_crc32c_calculator_init(&intrabc_hash_info->crc_calculator);
intrabc_hash_info->crc_initialized = 1;
}
intrabc_hash_info->intrabc_hash_table.p_lookup_table = NULL;
}
static void clear_all(hash_table *p_hash_table) {
if (p_hash_table->p_lookup_table == NULL) {
return;
}
for (int i = 0; i < kMaxAddr; i++) {
if (p_hash_table->p_lookup_table[i] != NULL) {
aom_vector_destroy(p_hash_table->p_lookup_table[i]);
aom_free(p_hash_table->p_lookup_table[i]);
p_hash_table->p_lookup_table[i] = NULL;
}
}
}
void av1_hash_table_destroy(hash_table *p_hash_table) {
clear_all(p_hash_table);
aom_free(p_hash_table->p_lookup_table);
p_hash_table->p_lookup_table = NULL;
}
bool av1_hash_table_create(hash_table *p_hash_table) {
if (p_hash_table->p_lookup_table != NULL) {
clear_all(p_hash_table);
return true;
}
p_hash_table->p_lookup_table =
(Vector **)aom_calloc(kMaxAddr, sizeof(p_hash_table->p_lookup_table[0]));
if (!p_hash_table->p_lookup_table) return false;
return true;
}
static bool hash_table_add_to_table(hash_table *p_hash_table,
uint32_t hash_value,
const block_hash *curr_block_hash) {
if (p_hash_table->p_lookup_table[hash_value] == NULL) {
p_hash_table->p_lookup_table[hash_value] =
aom_malloc(sizeof(*p_hash_table->p_lookup_table[hash_value]));
if (p_hash_table->p_lookup_table[hash_value] == NULL) {
return false;
}
if (aom_vector_setup(p_hash_table->p_lookup_table[hash_value], 10,
sizeof(*curr_block_hash)) == VECTOR_ERROR)
return false;
}
// Place an upper bound each hash table bucket to up to 256 intrabc
// block candidates, and ignore subsequent ones. Considering more can
// unnecessarily slow down encoding for virtually no efficiency gain.
if (aom_vector_byte_size(p_hash_table->p_lookup_table[hash_value]) <
kMaxCandidatesPerHashBucket * sizeof(*curr_block_hash)) {
if (aom_vector_push_back(p_hash_table->p_lookup_table[hash_value],
(void *)curr_block_hash) == VECTOR_ERROR)
return false;
}
return true;
}
int32_t av1_hash_table_count(const hash_table *p_hash_table,
uint32_t hash_value) {
if (p_hash_table->p_lookup_table[hash_value] == NULL) {
return 0;
} else {
return (int32_t)(p_hash_table->p_lookup_table[hash_value]->size);
}
}
Iterator av1_hash_get_first_iterator(hash_table *p_hash_table,
uint32_t hash_value) {
assert(av1_hash_table_count(p_hash_table, hash_value) > 0);
return aom_vector_begin(p_hash_table->p_lookup_table[hash_value]);
}
void av1_generate_block_2x2_hash_value(const YV12_BUFFER_CONFIG *picture,
uint32_t *pic_block_hash) {
const int width = 2;
const int height = 2;
const int x_end = picture->y_crop_width - width + 1;
const int y_end = picture->y_crop_height - height + 1;
if (picture->flags & YV12_FLAG_HIGHBITDEPTH) {
uint16_t p[4];
int pos = 0;
for (int y_pos = 0; y_pos < y_end; y_pos++) {
for (int x_pos = 0; x_pos < x_end; x_pos++) {
get_pixels_in_1D_short_array_by_block_2x2(
CONVERT_TO_SHORTPTR(picture->y_buffer) + y_pos * picture->y_stride +
x_pos,
picture->y_stride, p);
// For HBD, we either have 40 or 48 bits of input data that the xor hash
// reduce to 32 bits. We intentionally don't want to "discard" bits to
// avoid any kind of biasing.
pic_block_hash[pos] = get_xor_hash_value_hbd(p[0], p[1], p[2], p[3]);
pos++;
}
pos += width - 1;
}
} else {
uint8_t p[4];
int pos = 0;
for (int y_pos = 0; y_pos < y_end; y_pos++) {
for (int x_pos = 0; x_pos < x_end; x_pos++) {
get_pixels_in_1D_char_array_by_block_2x2(
picture->y_buffer + y_pos * picture->y_stride + x_pos,
picture->y_stride, p);
// This 2x2 hash isn't used directly as a "key" for the hash table, so
// we can afford to just copy the 4 8-bit pixel values as a single
// 32-bit value directly. (i.e. there are no concerns of a lack of
// uniform distribution)
pic_block_hash[pos] = get_identity_hash_value(p[0], p[1], p[2], p[3]);
pos++;
}
pos += width - 1;
}
}
}
void av1_generate_block_hash_value(IntraBCHashInfo *intrabc_hash_info,
const YV12_BUFFER_CONFIG *picture,
int block_size,
const uint32_t *src_pic_block_hash,
uint32_t *dst_pic_block_hash) {
CRC32C *calc = &intrabc_hash_info->crc_calculator;
const int pic_width = picture->y_crop_width;
const int x_end = picture->y_crop_width - block_size + 1;
const int y_end = picture->y_crop_height - block_size + 1;
const int src_size = block_size >> 1;
uint32_t p[4];
const int length = sizeof(p);
int pos = 0;
for (int y_pos = 0; y_pos < y_end; y_pos++) {
for (int x_pos = 0; x_pos < x_end; x_pos++) {
// Build up a bigger block from 4 smaller, non-overlapping source block
// hashes, and compute its hash. Note: source blocks at the right and
// bottom borders cannot be part of larger blocks, therefore they won't be
// considered into the block hash value generation process.
p[0] = src_pic_block_hash[pos];
p[1] = src_pic_block_hash[pos + src_size];
p[2] = src_pic_block_hash[pos + src_size * pic_width];
p[3] = src_pic_block_hash[pos + src_size * pic_width + src_size];
// TODO: bug aomedia:433531610 - serialize input values in a way that's
// independent of the computer architecture's endianness
dst_pic_block_hash[pos] =
av1_get_crc32c_value(calc, (uint8_t *)p, length);
pos++;
}
pos += block_size - 1;
}
}
bool av1_add_to_hash_map_by_row_with_precal_data(hash_table *p_hash_table,
const uint32_t *pic_hash,
int pic_width, int pic_height,
int block_size) {
const int x_end = pic_width - block_size + 1;
const int y_end = pic_height - block_size + 1;
int add_value = hash_block_size_to_index(block_size);
assert(add_value >= 0);
add_value <<= kSrcBits;
const int crc_mask = (1 << kSrcBits) - 1;
int step = block_size;
int x_offset = 0;
int y_offset = 0;
// Explore the entire frame hierarchically to add intrabc candidate blocks to
// the hash table, by starting with coarser steps (the block size), towards
// finer-grained steps until every candidate block has been considered.
// The nested for loop goes through the pic_hash array column by column.
// Doing a hierarchical block exploration helps maximize spatial dispersion
// of the first and foremost candidate blocks while minimizing overlap between
// them. This is helpful because we only keep up to 256 entries of the
// same candidate block (located in different places), so we want those
// entries to cover the biggest area of the image to encode to maximize coding
// efficiency.
// This is the coordinate exploration order example for an 8x8 region, with
// block_size = 4. The top-left corner (x, y) coordinates of each candidate
// block are shown below. There are 5 * 5 (25) candidate blocks.
// x 0 1 2 3 4 5 6 7
// y +------------------------
// 0 | 1 10 5 13 3
// 1 | 16 22 18 24 20
// 2 | 7 11 9 14 8
// 3 | 17 23 19 25 21
// 4 | 2 12 6 15 4--------+
// 5 | | 4 x 4 |
// 6 | | block |
// 7 | +--------+
// Please note that due to the way block exploration works, the smallest step
// used is 2 (i.e. no two adjacent blocks will be explored consecutively).
// Also, the exploration is designed to visit each block candidate only once.
while (step > 1) {
for (int x_pos = x_offset; x_pos < x_end; x_pos += step) {
for (int y_pos = y_offset; y_pos < y_end; y_pos += step) {
const int pos = y_pos * pic_width + x_pos;
block_hash curr_block_hash;
curr_block_hash.x = x_pos;
curr_block_hash.y = y_pos;
const uint32_t hash_value1 = (pic_hash[pos] & crc_mask) + add_value;
curr_block_hash.hash_value2 = pic_hash[pos];
if (!hash_table_add_to_table(p_hash_table, hash_value1,
&curr_block_hash)) {
return false;
}
}
}
// Adjust offsets and step sizes with this state machine.
// State 0 is needed because no blocks in pic_hash have been explored,
// so exploration requires a way to account for blocks with both zero
// x_offset and zero y_offset.
// State 0 is always meant to be executed first, but the relative order of
// states 1, 2 and 3 can be arbitrary, as long as no two adjacent blocks
// are explored consecutively.
if (x_offset == 0 && y_offset == 0) {
// State 0 -> State 1: special case
// This state transition will only execute when step == block_size
x_offset = step / 2;
} else if (x_offset == step / 2 && y_offset == 0) {
// State 1 -> State 2
x_offset = 0;
y_offset = step / 2;
} else if (x_offset == 0 && y_offset == step / 2) {
// State 2 -> State 3
x_offset = step / 2;
} else {
assert(x_offset == step / 2 && y_offset == step / 2);
// State 3 -> State 1: We've fully explored all the coordinates for the
// current step size, continue by halving the step size
step /= 2;
x_offset = step / 2;
y_offset = 0;
}
}
return true;
}
int av1_hash_is_horizontal_perfect(const YV12_BUFFER_CONFIG *picture,
int block_size, int x_start, int y_start) {
const int stride = picture->y_stride;
const uint8_t *p = picture->y_buffer + y_start * stride + x_start;
if (picture->flags & YV12_FLAG_HIGHBITDEPTH) {
const uint16_t *p16 = CONVERT_TO_SHORTPTR(p);
for (int i = 0; i < block_size; i++) {
for (int j = 1; j < block_size; j++) {
if (p16[j] != p16[0]) {
return 0;
}
}
p16 += stride;
}
} else {
for (int i = 0; i < block_size; i++) {
for (int j = 1; j < block_size; j++) {
if (p[j] != p[0]) {
return 0;
}
}
p += stride;
}
}
return 1;
}
int av1_hash_is_vertical_perfect(const YV12_BUFFER_CONFIG *picture,
int block_size, int x_start, int y_start) {
const int stride = picture->y_stride;
const uint8_t *p = picture->y_buffer + y_start * stride + x_start;
if (picture->flags & YV12_FLAG_HIGHBITDEPTH) {
const uint16_t *p16 = CONVERT_TO_SHORTPTR(p);
for (int i = 0; i < block_size; i++) {
for (int j = 1; j < block_size; j++) {
if (p16[j * stride + i] != p16[i]) {
return 0;
}
}
}
} else {
for (int i = 0; i < block_size; i++) {
for (int j = 1; j < block_size; j++) {
if (p[j * stride + i] != p[i]) {
return 0;
}
}
}
}
return 1;
}
void av1_get_block_hash_value(IntraBCHashInfo *intra_bc_hash_info,
const uint8_t *y_src, int stride, int block_size,
uint32_t *hash_value1, uint32_t *hash_value2,
int use_highbitdepth) {
int add_value = hash_block_size_to_index(block_size);
assert(add_value >= 0);
add_value <<= kSrcBits;
const int crc_mask = (1 << kSrcBits) - 1;
CRC32C *calc = &intra_bc_hash_info->crc_calculator;
uint32_t **buf = intra_bc_hash_info->hash_value_buffer;
// 2x2 subblock hash values in current CU
int sub_block_in_width = (block_size >> 1);
if (use_highbitdepth) {
uint16_t pixel_to_hash[4];
uint16_t *y16_src = CONVERT_TO_SHORTPTR(y_src);
for (int y_pos = 0; y_pos < block_size; y_pos += 2) {
for (int x_pos = 0; x_pos < block_size; x_pos += 2) {
int pos = (y_pos >> 1) * sub_block_in_width + (x_pos >> 1);
get_pixels_in_1D_short_array_by_block_2x2(
y16_src + y_pos * stride + x_pos, stride, pixel_to_hash);
assert(pos < AOM_BUFFER_SIZE_FOR_BLOCK_HASH);
// For HBD, we either have 40 or 48 bits of input data that the xor hash
// reduce to 32 bits. We intentionally don't want to "discard" bits to
// avoid any kind of biasing.
buf[0][pos] =
get_xor_hash_value_hbd(pixel_to_hash[0], pixel_to_hash[1],
pixel_to_hash[2], pixel_to_hash[3]);
}
}
} else {
uint8_t pixel_to_hash[4];
for (int y_pos = 0; y_pos < block_size; y_pos += 2) {
for (int x_pos = 0; x_pos < block_size; x_pos += 2) {
int pos = (y_pos >> 1) * sub_block_in_width + (x_pos >> 1);
get_pixels_in_1D_char_array_by_block_2x2(y_src + y_pos * stride + x_pos,
stride, pixel_to_hash);
assert(pos < AOM_BUFFER_SIZE_FOR_BLOCK_HASH);
// This 2x2 hash isn't used directly as a "key" for the hash table, so
// we can afford to just copy the 4 8-bit pixel values as a single
// 32-bit value directly. (i.e. there are no concerns of a lack of
// uniform distribution)
buf[0][pos] =
get_identity_hash_value(pixel_to_hash[0], pixel_to_hash[1],
pixel_to_hash[2], pixel_to_hash[3]);
}
}
}
int src_sub_block_in_width = sub_block_in_width;
sub_block_in_width >>= 1;
int src_idx = 0;
int dst_idx = !src_idx;
// 4x4 subblock hash values to current block hash values
uint32_t to_hash[4];
for (int sub_width = 4; sub_width <= block_size;
sub_width *= 2, src_idx = !src_idx) {
dst_idx = !src_idx;
int dst_pos = 0;
for (int y_pos = 0; y_pos < sub_block_in_width; y_pos++) {
for (int x_pos = 0; x_pos < sub_block_in_width; x_pos++) {
int srcPos = (y_pos << 1) * src_sub_block_in_width + (x_pos << 1);
assert(srcPos + 1 < AOM_BUFFER_SIZE_FOR_BLOCK_HASH);
assert(srcPos + src_sub_block_in_width + 1 <
AOM_BUFFER_SIZE_FOR_BLOCK_HASH);
assert(dst_pos < AOM_BUFFER_SIZE_FOR_BLOCK_HASH);
to_hash[0] = buf[src_idx][srcPos];
to_hash[1] = buf[src_idx][srcPos + 1];
to_hash[2] = buf[src_idx][srcPos + src_sub_block_in_width];
to_hash[3] = buf[src_idx][srcPos + src_sub_block_in_width + 1];
// TODO: bug aomedia:433531610 - serialize input values in a way that's
// independent of the computer architecture's endianness
buf[dst_idx][dst_pos] =
av1_get_crc32c_value(calc, (uint8_t *)to_hash, sizeof(to_hash));
dst_pos++;
}
}
src_sub_block_in_width = sub_block_in_width;
sub_block_in_width >>= 1;
}
*hash_value1 = (buf[dst_idx][0] & crc_mask) + add_value;
*hash_value2 = buf[dst_idx][0];
}
|