1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include <limits.h>
#include "config/aom_config.h"
#include "aom_dsp/mathutils.h"
#include "aom_mem/aom_mem.h"
#include "av1/common/av1_common_int.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/optical_flow.h"
#include "av1/encoder/sparse_linear_solver.h"
#include "av1/encoder/reconinter_enc.h"
#if CONFIG_OPTICAL_FLOW_API
void av1_init_opfl_params(OPFL_PARAMS *opfl_params) {
opfl_params->pyramid_levels = OPFL_PYRAMID_LEVELS;
opfl_params->warping_steps = OPFL_WARPING_STEPS;
opfl_params->lk_params = NULL;
}
void av1_init_lk_params(LK_PARAMS *lk_params) {
lk_params->window_size = OPFL_WINDOW_SIZE;
}
// Helper function to determine whether a frame is encoded with high bit-depth.
static inline int is_frame_high_bitdepth(const YV12_BUFFER_CONFIG *frame) {
return (frame->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0;
}
// Helper function to determine whether optical flow method is sparse.
static inline int is_sparse(const OPFL_PARAMS *opfl_params) {
return (opfl_params->flags & OPFL_FLAG_SPARSE) ? 1 : 0;
}
static void gradients_over_window(const YV12_BUFFER_CONFIG *frame,
const YV12_BUFFER_CONFIG *ref_frame,
const double x_coord, const double y_coord,
const int window_size, const int bit_depth,
double *ix, double *iy, double *it,
LOCALMV *mv);
// coefficients for bilinear interpolation on unit square
static int pixel_interp(const double x, const double y, const double b00,
const double b01, const double b10, const double b11) {
const int xint = (int)x;
const int yint = (int)y;
const double xdec = x - xint;
const double ydec = y - yint;
const double a = (1 - xdec) * (1 - ydec);
const double b = xdec * (1 - ydec);
const double c = (1 - xdec) * ydec;
const double d = xdec * ydec;
// if x, y are already integers, this results to b00
int interp = (int)round(a * b00 + b * b01 + c * b10 + d * b11);
return interp;
}
// Scharr filter to compute spatial gradient
static void spatial_gradient(const YV12_BUFFER_CONFIG *frame, const int x_coord,
const int y_coord, const int direction,
double *derivative) {
double *filter;
// Scharr filters
double gx[9] = { -3, 0, 3, -10, 0, 10, -3, 0, 3 };
double gy[9] = { -3, -10, -3, 0, 0, 0, 3, 10, 3 };
if (direction == 0) { // x direction
filter = gx;
} else { // y direction
filter = gy;
}
int idx = 0;
double d = 0;
for (int yy = -1; yy <= 1; yy++) {
for (int xx = -1; xx <= 1; xx++) {
d += filter[idx] *
frame->y_buffer[(y_coord + yy) * frame->y_stride + (x_coord + xx)];
idx++;
}
}
// normalization scaling factor for scharr
*derivative = d / 32.0;
}
// Determine the spatial gradient at subpixel locations
// For example, when reducing images for pyramidal LK,
// corners found in original image may be at subpixel locations.
static void gradient_interp(double *fullpel_deriv, const double x_coord,
const double y_coord, const int w, const int h,
double *derivative) {
const int xint = (int)x_coord;
const int yint = (int)y_coord;
double interp;
if (xint + 1 > w - 1 || yint + 1 > h - 1) {
interp = fullpel_deriv[yint * w + xint];
} else {
interp = pixel_interp(x_coord, y_coord, fullpel_deriv[yint * w + xint],
fullpel_deriv[yint * w + (xint + 1)],
fullpel_deriv[(yint + 1) * w + xint],
fullpel_deriv[(yint + 1) * w + (xint + 1)]);
}
*derivative = interp;
}
static void temporal_gradient(const YV12_BUFFER_CONFIG *frame,
const YV12_BUFFER_CONFIG *frame2,
const double x_coord, const double y_coord,
const int bit_depth, double *derivative,
LOCALMV *mv) {
const int w = 2;
const int h = 2;
uint8_t pred1[4];
uint8_t pred2[4];
const int y = (int)y_coord;
const int x = (int)x_coord;
const double ydec = y_coord - y;
const double xdec = x_coord - x;
const int is_intrabc = 0; // Is intra-copied?
const int is_high_bitdepth = is_frame_high_bitdepth(frame2);
const int subsampling_x = 0, subsampling_y = 0; // for y-buffer
const int_interpfilters interp_filters =
av1_broadcast_interp_filter(MULTITAP_SHARP);
const int plane = 0; // y-plane
const struct buf_2d ref_buf2 = { NULL, frame2->y_buffer, frame2->y_crop_width,
frame2->y_crop_height, frame2->y_stride };
struct scale_factors scale;
av1_setup_scale_factors_for_frame(&scale, frame->y_crop_width,
frame->y_crop_height, frame->y_crop_width,
frame->y_crop_height);
InterPredParams inter_pred_params;
av1_init_inter_params(&inter_pred_params, w, h, y, x, subsampling_x,
subsampling_y, bit_depth, is_high_bitdepth, is_intrabc,
&scale, &ref_buf2, interp_filters);
inter_pred_params.interp_filter_params[0] =
&av1_interp_filter_params_list[interp_filters.as_filters.x_filter];
inter_pred_params.interp_filter_params[1] =
&av1_interp_filter_params_list[interp_filters.as_filters.y_filter];
inter_pred_params.conv_params = get_conv_params(0, plane, bit_depth);
MV newmv = { .row = (int16_t)round((mv->row + xdec) * 8),
.col = (int16_t)round((mv->col + ydec) * 8) };
av1_enc_build_one_inter_predictor(pred2, w, &newmv, &inter_pred_params);
const struct buf_2d ref_buf1 = { NULL, frame->y_buffer, frame->y_crop_width,
frame->y_crop_height, frame->y_stride };
av1_init_inter_params(&inter_pred_params, w, h, y, x, subsampling_x,
subsampling_y, bit_depth, is_high_bitdepth, is_intrabc,
&scale, &ref_buf1, interp_filters);
inter_pred_params.interp_filter_params[0] =
&av1_interp_filter_params_list[interp_filters.as_filters.x_filter];
inter_pred_params.interp_filter_params[1] =
&av1_interp_filter_params_list[interp_filters.as_filters.y_filter];
inter_pred_params.conv_params = get_conv_params(0, plane, bit_depth);
MV zeroMV = { .row = (int16_t)round(xdec * 8),
.col = (int16_t)round(ydec * 8) };
av1_enc_build_one_inter_predictor(pred1, w, &zeroMV, &inter_pred_params);
*derivative = pred2[0] - pred1[0];
}
// Numerical differentiate over window_size x window_size surrounding (x,y)
// location. Alters ix, iy, it to contain numerical partial derivatives
static void gradients_over_window(const YV12_BUFFER_CONFIG *frame,
const YV12_BUFFER_CONFIG *ref_frame,
const double x_coord, const double y_coord,
const int window_size, const int bit_depth,
double *ix, double *iy, double *it,
LOCALMV *mv) {
const double left = x_coord - window_size / 2.0;
const double top = y_coord - window_size / 2.0;
// gradient operators need pixel before and after (start at 1)
const double x_start = AOMMAX(1, left);
const double y_start = AOMMAX(1, top);
const int frame_height = frame->y_crop_height;
const int frame_width = frame->y_crop_width;
double deriv_x;
double deriv_y;
double deriv_t;
const double x_end = AOMMIN(x_coord + window_size / 2.0, frame_width - 2);
const double y_end = AOMMIN(y_coord + window_size / 2.0, frame_height - 2);
const int xs = (int)AOMMAX(1, x_start - 1);
const int ys = (int)AOMMAX(1, y_start - 1);
const int xe = (int)AOMMIN(x_end + 2, frame_width - 2);
const int ye = (int)AOMMIN(y_end + 2, frame_height - 2);
// with normalization, gradients may be double values
double *fullpel_dx = aom_malloc((ye - ys) * (xe - xs) * sizeof(deriv_x));
double *fullpel_dy = aom_malloc((ye - ys) * (xe - xs) * sizeof(deriv_y));
if (!fullpel_dx || !fullpel_dy) {
aom_free(fullpel_dx);
aom_free(fullpel_dy);
return;
}
// TODO(any): This could be more efficient in the case that x_coord
// and y_coord are integers.. but it may look more messy.
// calculate spatial gradients at full pixel locations
for (int j = ys; j < ye; j++) {
for (int i = xs; i < xe; i++) {
spatial_gradient(frame, i, j, 0, &deriv_x);
spatial_gradient(frame, i, j, 1, &deriv_y);
int idx = (j - ys) * (xe - xs) + (i - xs);
fullpel_dx[idx] = deriv_x;
fullpel_dy[idx] = deriv_y;
}
}
// compute numerical differentiation for every pixel in window
// (this potentially includes subpixels)
for (double j = y_start; j < y_end; j++) {
for (double i = x_start; i < x_end; i++) {
temporal_gradient(frame, ref_frame, i, j, bit_depth, &deriv_t, mv);
gradient_interp(fullpel_dx, i - xs, j - ys, xe - xs, ye - ys, &deriv_x);
gradient_interp(fullpel_dy, i - xs, j - ys, xe - xs, ye - ys, &deriv_y);
int idx = (int)(j - top) * window_size + (int)(i - left);
ix[idx] = deriv_x;
iy[idx] = deriv_y;
it[idx] = deriv_t;
}
}
// TODO(any): to avoid setting deriv arrays to zero for every iteration,
// could instead pass these two values back through function call
// int first_idx = (int)(y_start - top) * window_size + (int)(x_start - left);
// int width = window_size - ((int)(x_start - left) + (int)(left + window_size
// - x_end));
aom_free(fullpel_dx);
aom_free(fullpel_dy);
}
// To compute eigenvalues of 2x2 matrix: Solve for lambda where
// Determinant(matrix - lambda*identity) == 0
static void eigenvalues_2x2(const double *matrix, double *eig) {
const double a = 1;
const double b = -1 * matrix[0] - matrix[3];
const double c = -1 * matrix[1] * matrix[2] + matrix[0] * matrix[3];
// quadratic formula
const double discriminant = b * b - 4 * a * c;
eig[0] = (-b - sqrt(discriminant)) / (2.0 * a);
eig[1] = (-b + sqrt(discriminant)) / (2.0 * a);
// double check that eigenvalues are ordered by magnitude
if (fabs(eig[0]) > fabs(eig[1])) {
double tmp = eig[0];
eig[0] = eig[1];
eig[1] = tmp;
}
}
// Shi-Tomasi corner detection criteria
static double corner_score(const YV12_BUFFER_CONFIG *frame_to_filter,
const YV12_BUFFER_CONFIG *ref_frame, const int x,
const int y, double *i_x, double *i_y, double *i_t,
const int n, const int bit_depth) {
double eig[2];
LOCALMV mv = { .row = 0, .col = 0 };
// TODO(any): technically, ref_frame and i_t are not used by corner score
// so these could be replaced by dummy variables,
// or change this to spatial gradient function over window only
gradients_over_window(frame_to_filter, ref_frame, x, y, n, bit_depth, i_x,
i_y, i_t, &mv);
double Mres1[1] = { 0 }, Mres2[1] = { 0 }, Mres3[1] = { 0 };
multiply_mat(i_x, i_x, Mres1, 1, n * n, 1);
multiply_mat(i_x, i_y, Mres2, 1, n * n, 1);
multiply_mat(i_y, i_y, Mres3, 1, n * n, 1);
double M[4] = { Mres1[0], Mres2[0], Mres2[0], Mres3[0] };
eigenvalues_2x2(M, eig);
return fabs(eig[0]);
}
// Finds corners in frame_to_filter
// For less strict requirements (i.e. more corners), decrease threshold
static int detect_corners(const YV12_BUFFER_CONFIG *frame_to_filter,
const YV12_BUFFER_CONFIG *ref_frame,
const int maxcorners, int *ref_corners,
const int bit_depth) {
const int frame_height = frame_to_filter->y_crop_height;
const int frame_width = frame_to_filter->y_crop_width;
// TODO(any): currently if maxcorners is decreased, then it only means
// corners will be omited from bottom-right of image. if maxcorners
// is actually used, then this algorithm would need to re-iterate
// and choose threshold based on that
assert(maxcorners == frame_height * frame_width);
int countcorners = 0;
const double threshold = 0.1;
double score;
const int n = 3;
double i_x[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
double i_y[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
double i_t[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
const int fromedge = n;
double max_score = corner_score(frame_to_filter, ref_frame, fromedge,
fromedge, i_x, i_y, i_t, n, bit_depth);
// rough estimate of max corner score in image
for (int x = fromedge; x < frame_width - fromedge; x += 1) {
for (int y = fromedge; y < frame_height - fromedge; y += frame_height / 5) {
for (int i = 0; i < n * n; i++) {
i_x[i] = 0;
i_y[i] = 0;
i_t[i] = 0;
}
score = corner_score(frame_to_filter, ref_frame, x, y, i_x, i_y, i_t, n,
bit_depth);
if (score > max_score) {
max_score = score;
}
}
}
// score all the points and choose corners over threshold
for (int x = fromedge; x < frame_width - fromedge; x += 1) {
for (int y = fromedge;
(y < frame_height - fromedge) && countcorners < maxcorners; y += 1) {
for (int i = 0; i < n * n; i++) {
i_x[i] = 0;
i_y[i] = 0;
i_t[i] = 0;
}
score = corner_score(frame_to_filter, ref_frame, x, y, i_x, i_y, i_t, n,
bit_depth);
if (score > threshold * max_score) {
ref_corners[countcorners * 2] = x;
ref_corners[countcorners * 2 + 1] = y;
countcorners++;
}
}
}
return countcorners;
}
// weights is an nxn matrix. weights is filled with a gaussian function,
// with independent variable: distance from the center point.
static void gaussian(const double sigma, const int n, const int normalize,
double *weights) {
double total_weight = 0;
for (int j = 0; j < n; j++) {
for (int i = 0; i < n; i++) {
double distance = sqrt(pow(n / 2 - i, 2) + pow(n / 2 - j, 2));
double weight = exp(-0.5 * pow(distance / sigma, 2));
weights[j * n + i] = weight;
total_weight += weight;
}
}
if (normalize == 1) {
for (int j = 0; j < n; j++) {
weights[j] = weights[j] / total_weight;
}
}
}
static double convolve(const double *filter, const int *img, const int size) {
double result = 0;
for (int i = 0; i < size; i++) {
result += filter[i] * img[i];
}
return result;
}
// Applies a Gaussian low-pass smoothing filter to produce
// a corresponding lower resolution image with halved dimensions
static void reduce(uint8_t *img, int height, int width, int stride,
uint8_t *reduced_img) {
const int new_width = width / 2;
const int window_size = 5;
const double gaussian_filter[25] = {
1. / 256, 1.0 / 64, 3. / 128, 1. / 64, 1. / 256, 1. / 64, 1. / 16,
3. / 32, 1. / 16, 1. / 64, 3. / 128, 3. / 32, 9. / 64, 3. / 32,
3. / 128, 1. / 64, 1. / 16, 3. / 32, 1. / 16, 1. / 64, 1. / 256,
1. / 64, 3. / 128, 1. / 64, 1. / 256
};
// filter is 5x5 so need prev and forward 2 pixels
int img_section[25];
for (int y = 0; y < height - 1; y += 2) {
for (int x = 0; x < width - 1; x += 2) {
int i = 0;
for (int yy = y - window_size / 2; yy <= y + window_size / 2; yy++) {
for (int xx = x - window_size / 2; xx <= x + window_size / 2; xx++) {
int yvalue = yy;
int xvalue = xx;
// copied pixels outside the boundary
if (yvalue < 0) yvalue = 0;
if (xvalue < 0) xvalue = 0;
if (yvalue >= height) yvalue = height - 1;
if (xvalue >= width) xvalue = width - 1;
img_section[i++] = img[yvalue * stride + xvalue];
}
}
reduced_img[(y / 2) * new_width + (x / 2)] = (uint8_t)convolve(
gaussian_filter, img_section, window_size * window_size);
}
}
}
static int cmpfunc(const void *a, const void *b) {
return (*(int *)a - *(int *)b);
}
static void filter_mvs(const MV_FILTER_TYPE mv_filter, const int frame_height,
const int frame_width, LOCALMV *localmvs, MV *mvs) {
const int n = 5; // window size
// for smoothing filter
const double gaussian_filter[25] = {
1. / 256, 1. / 64, 3. / 128, 1. / 64, 1. / 256, 1. / 64, 1. / 16,
3. / 32, 1. / 16, 1. / 64, 3. / 128, 3. / 32, 9. / 64, 3. / 32,
3. / 128, 1. / 64, 1. / 16, 3. / 32, 1. / 16, 1. / 64, 1. / 256,
1. / 64, 3. / 128, 1. / 64, 1. / 256
};
// for median filter
int mvrows[25];
int mvcols[25];
if (mv_filter != MV_FILTER_NONE) {
for (int y = 0; y < frame_height; y++) {
for (int x = 0; x < frame_width; x++) {
int center_idx = y * frame_width + x;
int i = 0;
double filtered_row = 0;
double filtered_col = 0;
for (int yy = y - n / 2; yy <= y + n / 2; yy++) {
for (int xx = x - n / 2; xx <= x + n / 2; xx++) {
int yvalue = yy;
int xvalue = xx;
// copied pixels outside the boundary
if (yvalue < 0) yvalue = 0;
if (xvalue < 0) xvalue = 0;
if (yvalue >= frame_height) yvalue = frame_height - 1;
if (xvalue >= frame_width) xvalue = frame_width - 1;
int index = yvalue * frame_width + xvalue;
if (mv_filter == MV_FILTER_SMOOTH) {
filtered_row += mvs[index].row * gaussian_filter[i];
filtered_col += mvs[index].col * gaussian_filter[i];
} else if (mv_filter == MV_FILTER_MEDIAN) {
mvrows[i] = mvs[index].row;
mvcols[i] = mvs[index].col;
}
i++;
}
}
MV mv = mvs[center_idx];
if (mv_filter == MV_FILTER_SMOOTH) {
mv.row = (int16_t)filtered_row;
mv.col = (int16_t)filtered_col;
} else if (mv_filter == MV_FILTER_MEDIAN) {
qsort(mvrows, 25, sizeof(mv.row), cmpfunc);
qsort(mvcols, 25, sizeof(mv.col), cmpfunc);
mv.row = mvrows[25 / 2];
mv.col = mvcols[25 / 2];
}
LOCALMV localmv = { .row = ((double)mv.row) / 8,
.col = ((double)mv.row) / 8 };
localmvs[y * frame_width + x] = localmv;
// if mvs array is immediately updated here, then the result may
// propagate to other pixels.
}
}
for (int i = 0; i < frame_height * frame_width; i++) {
MV mv = { .row = (int16_t)round(8 * localmvs[i].row),
.col = (int16_t)round(8 * localmvs[i].col) };
mvs[i] = mv;
}
}
}
// Computes optical flow at a single pyramid level,
// using Lucas-Kanade algorithm.
// Modifies mvs array.
static void lucas_kanade(const YV12_BUFFER_CONFIG *from_frame,
const YV12_BUFFER_CONFIG *to_frame, const int level,
const LK_PARAMS *lk_params, const int num_ref_corners,
int *ref_corners, const int mv_stride,
const int bit_depth, LOCALMV *mvs) {
assert(lk_params->window_size > 0 && lk_params->window_size % 2 == 0);
const int n = lk_params->window_size;
// algorithm is sensitive to window size
double *i_x = (double *)aom_malloc(n * n * sizeof(*i_x));
double *i_y = (double *)aom_malloc(n * n * sizeof(*i_y));
double *i_t = (double *)aom_malloc(n * n * sizeof(*i_t));
double *weights = (double *)aom_malloc(n * n * sizeof(*weights));
if (!i_x || !i_y || !i_t || !weights) goto free_lk_buf;
const int expand_multiplier = (int)pow(2, level);
double sigma = 0.2 * n;
// normalizing doesn't really affect anything since it's applied
// to every component of M and b
gaussian(sigma, n, 0, weights);
for (int i = 0; i < num_ref_corners; i++) {
const double x_coord = 1.0 * ref_corners[i * 2] / expand_multiplier;
const double y_coord = 1.0 * ref_corners[i * 2 + 1] / expand_multiplier;
int highres_x = ref_corners[i * 2];
int highres_y = ref_corners[i * 2 + 1];
int mv_idx = highres_y * (mv_stride) + highres_x;
LOCALMV mv_old = mvs[mv_idx];
mv_old.row = mv_old.row / expand_multiplier;
mv_old.col = mv_old.col / expand_multiplier;
// using this instead of memset, since it's not completely
// clear if zero memset works on double arrays
for (int j = 0; j < n * n; j++) {
i_x[j] = 0;
i_y[j] = 0;
i_t[j] = 0;
}
gradients_over_window(from_frame, to_frame, x_coord, y_coord, n, bit_depth,
i_x, i_y, i_t, &mv_old);
double Mres1[1] = { 0 }, Mres2[1] = { 0 }, Mres3[1] = { 0 };
double bres1[1] = { 0 }, bres2[1] = { 0 };
for (int j = 0; j < n * n; j++) {
Mres1[0] += weights[j] * i_x[j] * i_x[j];
Mres2[0] += weights[j] * i_x[j] * i_y[j];
Mres3[0] += weights[j] * i_y[j] * i_y[j];
bres1[0] += weights[j] * i_x[j] * i_t[j];
bres2[0] += weights[j] * i_y[j] * i_t[j];
}
double M[4] = { Mres1[0], Mres2[0], Mres2[0], Mres3[0] };
double b[2] = { -1 * bres1[0], -1 * bres2[0] };
double eig[2] = { 1, 1 };
eigenvalues_2x2(M, eig);
double threshold = 0.1;
if (fabs(eig[0]) > threshold) {
// if M is not invertible, then displacement
// will default to zeros
double u[2] = { 0, 0 };
linsolve(2, M, 2, b, u);
int mult = 1;
if (level != 0)
mult = expand_multiplier; // mv doubles when resolution doubles
LOCALMV mv = { .row = (mult * (u[0] + mv_old.row)),
.col = (mult * (u[1] + mv_old.col)) };
mvs[mv_idx] = mv;
mvs[mv_idx] = mv;
}
}
free_lk_buf:
aom_free(weights);
aom_free(i_t);
aom_free(i_x);
aom_free(i_y);
}
// Warp the src_frame to warper_frame according to mvs.
// mvs point to src_frame
static void warp_back_frame(YV12_BUFFER_CONFIG *warped_frame,
const YV12_BUFFER_CONFIG *src_frame,
const LOCALMV *mvs, int mv_stride) {
int w, h;
const int fw = src_frame->y_crop_width;
const int fh = src_frame->y_crop_height;
const int src_fs = src_frame->y_stride, warped_fs = warped_frame->y_stride;
const uint8_t *src_buf = src_frame->y_buffer;
uint8_t *warped_buf = warped_frame->y_buffer;
double temp;
for (h = 0; h < fh; h++) {
for (w = 0; w < fw; w++) {
double cord_x = (double)w + mvs[h * mv_stride + w].col;
double cord_y = (double)h + mvs[h * mv_stride + w].row;
cord_x = fclamp(cord_x, 0, (double)(fw - 1));
cord_y = fclamp(cord_y, 0, (double)(fh - 1));
const int floorx = (int)floor(cord_x);
const int floory = (int)floor(cord_y);
const double fracx = cord_x - (double)floorx;
const double fracy = cord_y - (double)floory;
temp = 0;
for (int hh = 0; hh < 2; hh++) {
const double weighth = hh ? (fracy) : (1 - fracy);
for (int ww = 0; ww < 2; ww++) {
const double weightw = ww ? (fracx) : (1 - fracx);
int y = floory + hh;
int x = floorx + ww;
y = clamp(y, 0, fh - 1);
x = clamp(x, 0, fw - 1);
temp += (double)src_buf[y * src_fs + x] * weightw * weighth;
}
}
warped_buf[h * warped_fs + w] = (uint8_t)round(temp);
}
}
}
// Same as warp_back_frame, but using a better interpolation filter.
static void warp_back_frame_intp(YV12_BUFFER_CONFIG *warped_frame,
const YV12_BUFFER_CONFIG *src_frame,
const LOCALMV *mvs, int mv_stride) {
int w, h;
const int fw = src_frame->y_crop_width;
const int fh = src_frame->y_crop_height;
const int warped_fs = warped_frame->y_stride;
uint8_t *warped_buf = warped_frame->y_buffer;
const int blk = 2;
uint8_t temp_blk[4];
const int is_intrabc = 0; // Is intra-copied?
const int is_high_bitdepth = is_frame_high_bitdepth(src_frame);
const int subsampling_x = 0, subsampling_y = 0; // for y-buffer
const int_interpfilters interp_filters =
av1_broadcast_interp_filter(MULTITAP_SHARP2);
const int plane = 0; // y-plane
const struct buf_2d ref_buf2 = { NULL, src_frame->y_buffer,
src_frame->y_crop_width,
src_frame->y_crop_height,
src_frame->y_stride };
const int bit_depth = src_frame->bit_depth;
struct scale_factors scale;
av1_setup_scale_factors_for_frame(
&scale, src_frame->y_crop_width, src_frame->y_crop_height,
src_frame->y_crop_width, src_frame->y_crop_height);
for (h = 0; h < fh; h++) {
for (w = 0; w < fw; w++) {
InterPredParams inter_pred_params;
av1_init_inter_params(&inter_pred_params, blk, blk, h, w, subsampling_x,
subsampling_y, bit_depth, is_high_bitdepth,
is_intrabc, &scale, &ref_buf2, interp_filters);
inter_pred_params.interp_filter_params[0] =
&av1_interp_filter_params_list[interp_filters.as_filters.x_filter];
inter_pred_params.interp_filter_params[1] =
&av1_interp_filter_params_list[interp_filters.as_filters.y_filter];
inter_pred_params.conv_params = get_conv_params(0, plane, bit_depth);
MV newmv = { .row = (int16_t)round((mvs[h * mv_stride + w].row) * 8),
.col = (int16_t)round((mvs[h * mv_stride + w].col) * 8) };
av1_enc_build_one_inter_predictor(temp_blk, blk, &newmv,
&inter_pred_params);
warped_buf[h * warped_fs + w] = temp_blk[0];
}
}
}
#define DERIVATIVE_FILTER_LENGTH 7
double filter[DERIVATIVE_FILTER_LENGTH] = { -1.0 / 60, 9.0 / 60, -45.0 / 60, 0,
45.0 / 60, -9.0 / 60, 1.0 / 60 };
// Get gradient of the whole frame
static void get_frame_gradients(const YV12_BUFFER_CONFIG *from_frame,
const YV12_BUFFER_CONFIG *to_frame, double *ix,
double *iy, double *it, int grad_stride) {
int w, h, k, idx;
const int fw = from_frame->y_crop_width;
const int fh = from_frame->y_crop_height;
const int from_fs = from_frame->y_stride, to_fs = to_frame->y_stride;
const uint8_t *from_buf = from_frame->y_buffer;
const uint8_t *to_buf = to_frame->y_buffer;
const int lh = DERIVATIVE_FILTER_LENGTH;
const int hleft = (lh - 1) / 2;
for (h = 0; h < fh; h++) {
for (w = 0; w < fw; w++) {
// x
ix[h * grad_stride + w] = 0;
for (k = 0; k < lh; k++) {
// if we want to make this block dependent, need to extend the
// boundaries using other initializations.
idx = w + k - hleft;
idx = clamp(idx, 0, fw - 1);
ix[h * grad_stride + w] += filter[k] * 0.5 *
((double)from_buf[h * from_fs + idx] +
(double)to_buf[h * to_fs + idx]);
}
// y
iy[h * grad_stride + w] = 0;
for (k = 0; k < lh; k++) {
// if we want to make this block dependent, need to extend the
// boundaries using other initializations.
idx = h + k - hleft;
idx = clamp(idx, 0, fh - 1);
iy[h * grad_stride + w] += filter[k] * 0.5 *
((double)from_buf[idx * from_fs + w] +
(double)to_buf[idx * to_fs + w]);
}
// t
it[h * grad_stride + w] =
(double)to_buf[h * to_fs + w] - (double)from_buf[h * from_fs + w];
}
}
}
// Solve for linear equations given by the H-S method
static void solve_horn_schunck(const double *ix, const double *iy,
const double *it, int grad_stride, int width,
int height, const LOCALMV *init_mvs,
int init_mv_stride, LOCALMV *mvs,
int mv_stride) {
// TODO(bohanli): May just need to allocate the buffers once per optical flow
// calculation
int *row_pos = aom_calloc(width * height * 28, sizeof(*row_pos));
int *col_pos = aom_calloc(width * height * 28, sizeof(*col_pos));
double *values = aom_calloc(width * height * 28, sizeof(*values));
double *mv_vec = aom_calloc(width * height * 2, sizeof(*mv_vec));
double *mv_init_vec = aom_calloc(width * height * 2, sizeof(*mv_init_vec));
double *temp_b = aom_calloc(width * height * 2, sizeof(*temp_b));
double *b = aom_calloc(width * height * 2, sizeof(*b));
if (!row_pos || !col_pos || !values || !mv_vec || !mv_init_vec || !temp_b ||
!b) {
goto free_hs_solver_buf;
}
// the location idx for neighboring pixels, k < 4 are the 4 direct neighbors
const int check_locs_y[12] = { 0, 0, -1, 1, -1, -1, 1, 1, 0, 0, -2, 2 };
const int check_locs_x[12] = { -1, 1, 0, 0, -1, 1, -1, 1, -2, 2, 0, 0 };
int h, w, checkh, checkw, k, ret;
const int offset = height * width;
SPARSE_MTX A;
int c = 0;
const double lambda = 100;
for (w = 0; w < width; w++) {
for (h = 0; h < height; h++) {
mv_init_vec[w * height + h] = init_mvs[h * init_mv_stride + w].col;
mv_init_vec[w * height + h + offset] =
init_mvs[h * init_mv_stride + w].row;
}
}
// get matrix A
for (w = 0; w < width; w++) {
for (h = 0; h < height; h++) {
int center_num_direct = 4;
const int center_idx = w * height + h;
if (w == 0 || w == width - 1) center_num_direct--;
if (h == 0 || h == height - 1) center_num_direct--;
// diagonal entry for this row from the center pixel
double cor_w = center_num_direct * center_num_direct + center_num_direct;
row_pos[c] = center_idx;
col_pos[c] = center_idx;
values[c] = lambda * cor_w;
c++;
row_pos[c] = center_idx + offset;
col_pos[c] = center_idx + offset;
values[c] = lambda * cor_w;
c++;
// other entries from direct neighbors
for (k = 0; k < 4; k++) {
checkh = h + check_locs_y[k];
checkw = w + check_locs_x[k];
if (checkh < 0 || checkh >= height || checkw < 0 || checkw >= width) {
continue;
}
int this_idx = checkw * height + checkh;
int this_num_direct = 4;
if (checkw == 0 || checkw == width - 1) this_num_direct--;
if (checkh == 0 || checkh == height - 1) this_num_direct--;
cor_w = -center_num_direct - this_num_direct;
row_pos[c] = center_idx;
col_pos[c] = this_idx;
values[c] = lambda * cor_w;
c++;
row_pos[c] = center_idx + offset;
col_pos[c] = this_idx + offset;
values[c] = lambda * cor_w;
c++;
}
// entries from neighbors on the diagonal corners
for (k = 4; k < 8; k++) {
checkh = h + check_locs_y[k];
checkw = w + check_locs_x[k];
if (checkh < 0 || checkh >= height || checkw < 0 || checkw >= width) {
continue;
}
int this_idx = checkw * height + checkh;
cor_w = 2;
row_pos[c] = center_idx;
col_pos[c] = this_idx;
values[c] = lambda * cor_w;
c++;
row_pos[c] = center_idx + offset;
col_pos[c] = this_idx + offset;
values[c] = lambda * cor_w;
c++;
}
// entries from neighbors with dist of 2
for (k = 8; k < 12; k++) {
checkh = h + check_locs_y[k];
checkw = w + check_locs_x[k];
if (checkh < 0 || checkh >= height || checkw < 0 || checkw >= width) {
continue;
}
int this_idx = checkw * height + checkh;
cor_w = 1;
row_pos[c] = center_idx;
col_pos[c] = this_idx;
values[c] = lambda * cor_w;
c++;
row_pos[c] = center_idx + offset;
col_pos[c] = this_idx + offset;
values[c] = lambda * cor_w;
c++;
}
}
}
ret = av1_init_sparse_mtx(row_pos, col_pos, values, c, 2 * width * height,
2 * width * height, &A);
if (ret < 0) goto free_hs_solver_buf;
// subtract init mv part from b
av1_mtx_vect_multi_left(&A, mv_init_vec, temp_b, 2 * width * height);
for (int i = 0; i < 2 * width * height; i++) {
b[i] = -temp_b[i];
}
av1_free_sparse_mtx_elems(&A);
// add cross terms to A and modify b with ExEt / EyEt
for (w = 0; w < width; w++) {
for (h = 0; h < height; h++) {
int curidx = w * height + h;
// modify b
b[curidx] += -ix[h * grad_stride + w] * it[h * grad_stride + w];
b[curidx + offset] += -iy[h * grad_stride + w] * it[h * grad_stride + w];
// add cross terms to A
row_pos[c] = curidx;
col_pos[c] = curidx + offset;
values[c] = ix[h * grad_stride + w] * iy[h * grad_stride + w];
c++;
row_pos[c] = curidx + offset;
col_pos[c] = curidx;
values[c] = ix[h * grad_stride + w] * iy[h * grad_stride + w];
c++;
}
}
// Add diagonal terms to A
for (int i = 0; i < c; i++) {
if (row_pos[i] == col_pos[i]) {
if (row_pos[i] < offset) {
w = row_pos[i] / height;
h = row_pos[i] % height;
values[i] += pow(ix[h * grad_stride + w], 2);
} else {
w = (row_pos[i] - offset) / height;
h = (row_pos[i] - offset) % height;
values[i] += pow(iy[h * grad_stride + w], 2);
}
}
}
ret = av1_init_sparse_mtx(row_pos, col_pos, values, c, 2 * width * height,
2 * width * height, &A);
if (ret < 0) goto free_hs_solver_buf;
// solve for the mvs
ret = av1_conjugate_gradient_sparse(&A, b, 2 * width * height, mv_vec);
if (ret < 0) goto free_hs_solver_buf;
// copy mvs
for (w = 0; w < width; w++) {
for (h = 0; h < height; h++) {
mvs[h * mv_stride + w].col = mv_vec[w * height + h];
mvs[h * mv_stride + w].row = mv_vec[w * height + h + offset];
}
}
free_hs_solver_buf:
aom_free(row_pos);
aom_free(col_pos);
aom_free(values);
aom_free(mv_vec);
aom_free(mv_init_vec);
aom_free(b);
aom_free(temp_b);
av1_free_sparse_mtx_elems(&A);
}
// Calculate optical flow from from_frame to to_frame using the H-S method.
static void horn_schunck(const YV12_BUFFER_CONFIG *from_frame,
const YV12_BUFFER_CONFIG *to_frame, const int level,
const int mv_stride, const int mv_height,
const int mv_width, const OPFL_PARAMS *opfl_params,
LOCALMV *mvs) {
// mvs are always on level 0, here we define two new mv arrays that is of size
// of this level.
const int fw = from_frame->y_crop_width;
const int fh = from_frame->y_crop_height;
const int factor = (int)pow(2, level);
int w, h, k, init_mv_stride;
LOCALMV *init_mvs = NULL, *refine_mvs = NULL;
double *ix = NULL, *iy = NULL, *it = NULL;
YV12_BUFFER_CONFIG temp_frame;
temp_frame.y_buffer = NULL;
if (level == 0) {
init_mvs = mvs;
init_mv_stride = mv_stride;
} else {
init_mvs = aom_calloc(fw * fh, sizeof(*mvs));
if (!init_mvs) goto free_hs_buf;
init_mv_stride = fw;
for (h = 0; h < fh; h++) {
for (w = 0; w < fw; w++) {
init_mvs[h * init_mv_stride + w].row =
mvs[h * factor * mv_stride + w * factor].row / (double)factor;
init_mvs[h * init_mv_stride + w].col =
mvs[h * factor * mv_stride + w * factor].col / (double)factor;
}
}
}
refine_mvs = aom_calloc(fw * fh, sizeof(*mvs));
if (!refine_mvs) goto free_hs_buf;
// temp frame for warping
temp_frame.y_buffer =
(uint8_t *)aom_calloc(fh * fw, sizeof(*temp_frame.y_buffer));
if (!temp_frame.y_buffer) goto free_hs_buf;
temp_frame.y_crop_height = fh;
temp_frame.y_crop_width = fw;
temp_frame.y_stride = fw;
// gradient buffers
ix = aom_calloc(fw * fh, sizeof(*ix));
iy = aom_calloc(fw * fh, sizeof(*iy));
it = aom_calloc(fw * fh, sizeof(*it));
if (!ix || !iy || !it) goto free_hs_buf;
// For each warping step
for (k = 0; k < opfl_params->warping_steps; k++) {
// warp from_frame with init_mv
if (level == 0) {
warp_back_frame_intp(&temp_frame, to_frame, init_mvs, init_mv_stride);
} else {
warp_back_frame(&temp_frame, to_frame, init_mvs, init_mv_stride);
}
// calculate frame gradients
get_frame_gradients(from_frame, &temp_frame, ix, iy, it, fw);
// form linear equations and solve mvs
solve_horn_schunck(ix, iy, it, fw, fw, fh, init_mvs, init_mv_stride,
refine_mvs, fw);
// update init_mvs
for (h = 0; h < fh; h++) {
for (w = 0; w < fw; w++) {
init_mvs[h * init_mv_stride + w].col += refine_mvs[h * fw + w].col;
init_mvs[h * init_mv_stride + w].row += refine_mvs[h * fw + w].row;
}
}
}
// copy back the mvs if needed
if (level != 0) {
for (h = 0; h < mv_height; h++) {
for (w = 0; w < mv_width; w++) {
mvs[h * mv_stride + w].row =
init_mvs[h / factor * init_mv_stride + w / factor].row *
(double)factor;
mvs[h * mv_stride + w].col =
init_mvs[h / factor * init_mv_stride + w / factor].col *
(double)factor;
}
}
}
free_hs_buf:
if (level != 0) aom_free(init_mvs);
aom_free(refine_mvs);
aom_free(temp_frame.y_buffer);
aom_free(ix);
aom_free(iy);
aom_free(it);
}
// Apply optical flow iteratively at each pyramid level
static void pyramid_optical_flow(const YV12_BUFFER_CONFIG *from_frame,
const YV12_BUFFER_CONFIG *to_frame,
const int bit_depth,
const OPFL_PARAMS *opfl_params,
const OPTFLOW_METHOD method, LOCALMV *mvs) {
assert(opfl_params->pyramid_levels > 0 &&
opfl_params->pyramid_levels <= MAX_PYRAMID_LEVELS);
int levels = opfl_params->pyramid_levels;
const int frame_height = from_frame->y_crop_height;
const int frame_width = from_frame->y_crop_width;
if ((frame_height / pow(2.0, levels - 1) < 50 ||
frame_height / pow(2.0, levels - 1) < 50) &&
levels > 1)
levels = levels - 1;
uint8_t *images1[MAX_PYRAMID_LEVELS] = { NULL };
uint8_t *images2[MAX_PYRAMID_LEVELS] = { NULL };
int *ref_corners = NULL;
images1[0] = from_frame->y_buffer;
images2[0] = to_frame->y_buffer;
YV12_BUFFER_CONFIG *buffers1 = aom_malloc(levels * sizeof(*buffers1));
YV12_BUFFER_CONFIG *buffers2 = aom_malloc(levels * sizeof(*buffers2));
if (!buffers1 || !buffers2) goto free_pyramid_buf;
buffers1[0] = *from_frame;
buffers2[0] = *to_frame;
int fw = frame_width;
int fh = frame_height;
for (int i = 1; i < levels; i++) {
// TODO(bohanli): may need to extend buffers for better interpolation SIMD
images1[i] = (uint8_t *)aom_calloc(fh / 2 * fw / 2, sizeof(*images1[i]));
images2[i] = (uint8_t *)aom_calloc(fh / 2 * fw / 2, sizeof(*images2[i]));
if (!images1[i] || !images2[i]) goto free_pyramid_buf;
int stride;
if (i == 1)
stride = from_frame->y_stride;
else
stride = fw;
reduce(images1[i - 1], fh, fw, stride, images1[i]);
reduce(images2[i - 1], fh, fw, stride, images2[i]);
fh /= 2;
fw /= 2;
YV12_BUFFER_CONFIG a = { .y_buffer = images1[i],
.y_crop_width = fw,
.y_crop_height = fh,
.y_stride = fw };
YV12_BUFFER_CONFIG b = { .y_buffer = images2[i],
.y_crop_width = fw,
.y_crop_height = fh,
.y_stride = fw };
buffers1[i] = a;
buffers2[i] = b;
}
// Compute corners for specific frame
int num_ref_corners = 0;
if (is_sparse(opfl_params)) {
int maxcorners = from_frame->y_crop_width * from_frame->y_crop_height;
ref_corners = aom_malloc(maxcorners * 2 * sizeof(*ref_corners));
if (!ref_corners) goto free_pyramid_buf;
num_ref_corners = detect_corners(from_frame, to_frame, maxcorners,
ref_corners, bit_depth);
}
const int stop_level = 0;
for (int i = levels - 1; i >= stop_level; i--) {
if (method == LUCAS_KANADE) {
assert(is_sparse(opfl_params));
lucas_kanade(&buffers1[i], &buffers2[i], i, opfl_params->lk_params,
num_ref_corners, ref_corners, buffers1[0].y_crop_width,
bit_depth, mvs);
} else if (method == HORN_SCHUNCK) {
assert(!is_sparse(opfl_params));
horn_schunck(&buffers1[i], &buffers2[i], i, buffers1[0].y_crop_width,
buffers1[0].y_crop_height, buffers1[0].y_crop_width,
opfl_params, mvs);
}
}
free_pyramid_buf:
for (int i = 1; i < levels; i++) {
aom_free(images1[i]);
aom_free(images2[i]);
}
aom_free(ref_corners);
aom_free(buffers1);
aom_free(buffers2);
}
// Computes optical flow by applying algorithm at
// multiple pyramid levels of images (lower-resolution, smoothed images)
// This accounts for larger motions.
// Inputs:
// from_frame Frame buffer.
// to_frame: Frame buffer. MVs point from_frame -> to_frame.
// from_frame_idx: Index of from_frame.
// to_frame_idx: Index of to_frame. Return all zero MVs when idx are equal.
// bit_depth:
// opfl_params: contains algorithm-specific parameters.
// mv_filter: MV_FILTER_NONE, MV_FILTER_SMOOTH, or MV_FILTER_MEDIAN.
// method: LUCAS_KANADE, HORN_SCHUNCK
// mvs: pointer to MVs. Contains initialization, and modified
// based on optical flow. Must have
// dimensions = from_frame->y_crop_width * from_frame->y_crop_height
void av1_optical_flow(const YV12_BUFFER_CONFIG *from_frame,
const YV12_BUFFER_CONFIG *to_frame,
const int from_frame_idx, const int to_frame_idx,
const int bit_depth, const OPFL_PARAMS *opfl_params,
const MV_FILTER_TYPE mv_filter,
const OPTFLOW_METHOD method, MV *mvs) {
const int frame_height = from_frame->y_crop_height;
const int frame_width = from_frame->y_crop_width;
// TODO(any): deal with the case where frames are not of the same dimensions
assert(frame_height == to_frame->y_crop_height &&
frame_width == to_frame->y_crop_width);
if (from_frame_idx == to_frame_idx) {
// immediately return all zero mvs when frame indices are equal
for (int yy = 0; yy < frame_height; yy++) {
for (int xx = 0; xx < frame_width; xx++) {
MV mv = { .row = 0, .col = 0 };
mvs[yy * frame_width + xx] = mv;
}
}
return;
}
// Initialize double mvs based on input parameter mvs array
LOCALMV *localmvs =
aom_malloc(frame_height * frame_width * sizeof(*localmvs));
if (!localmvs) return;
filter_mvs(MV_FILTER_SMOOTH, frame_height, frame_width, localmvs, mvs);
for (int i = 0; i < frame_width * frame_height; i++) {
MV mv = mvs[i];
LOCALMV localmv = { .row = ((double)mv.row) / 8,
.col = ((double)mv.col) / 8 };
localmvs[i] = localmv;
}
// Apply optical flow algorithm
pyramid_optical_flow(from_frame, to_frame, bit_depth, opfl_params, method,
localmvs);
// Update original mvs array
for (int j = 0; j < frame_height; j++) {
for (int i = 0; i < frame_width; i++) {
int idx = j * frame_width + i;
if (j + localmvs[idx].row < 0 || j + localmvs[idx].row >= frame_height ||
i + localmvs[idx].col < 0 || i + localmvs[idx].col >= frame_width) {
continue;
}
MV mv = { .row = (int16_t)round(8 * localmvs[idx].row),
.col = (int16_t)round(8 * localmvs[idx].col) };
mvs[idx] = mv;
}
}
filter_mvs(mv_filter, frame_height, frame_width, localmvs, mvs);
aom_free(localmvs);
}
#endif
|