1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include <stdbool.h>
#include <string.h>
#include "config/aom_dsp_rtcd.h"
#include "config/aom_scale_rtcd.h"
#include "aom/aom_integer.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/reconinter.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/ethread.h"
#include "av1/encoder/pickcdef.h"
#include "av1/encoder/mcomp.h"
// Get primary and secondary filter strength for the given strength index and
// search method
static inline void get_cdef_filter_strengths(CDEF_PICK_METHOD pick_method,
int *pri_strength,
int *sec_strength,
int strength_idx) {
const int tot_sec_filter =
(pick_method == CDEF_FAST_SEARCH_LVL5)
? REDUCED_SEC_STRENGTHS_LVL5
: ((pick_method >= CDEF_FAST_SEARCH_LVL3) ? REDUCED_SEC_STRENGTHS_LVL3
: CDEF_SEC_STRENGTHS);
const int pri_idx = strength_idx / tot_sec_filter;
const int sec_idx = strength_idx % tot_sec_filter;
*pri_strength = pri_idx;
*sec_strength = sec_idx;
if (pick_method == CDEF_FULL_SEARCH) return;
switch (pick_method) {
case CDEF_FAST_SEARCH_LVL1:
assert(pri_idx < REDUCED_PRI_STRENGTHS_LVL1);
*pri_strength = priconv_lvl1[pri_idx];
break;
case CDEF_FAST_SEARCH_LVL2:
assert(pri_idx < REDUCED_PRI_STRENGTHS_LVL2);
*pri_strength = priconv_lvl2[pri_idx];
break;
case CDEF_FAST_SEARCH_LVL3:
assert(pri_idx < REDUCED_PRI_STRENGTHS_LVL2);
assert(sec_idx < REDUCED_SEC_STRENGTHS_LVL3);
*pri_strength = priconv_lvl2[pri_idx];
*sec_strength = secconv_lvl3[sec_idx];
break;
case CDEF_FAST_SEARCH_LVL4:
assert(pri_idx < REDUCED_PRI_STRENGTHS_LVL4);
assert(sec_idx < REDUCED_SEC_STRENGTHS_LVL3);
*pri_strength = priconv_lvl4[pri_idx];
*sec_strength = secconv_lvl3[sec_idx];
break;
case CDEF_FAST_SEARCH_LVL5:
assert(pri_idx < REDUCED_PRI_STRENGTHS_LVL4);
assert(sec_idx < REDUCED_SEC_STRENGTHS_LVL5);
*pri_strength = priconv_lvl5[pri_idx];
*sec_strength = secconv_lvl5[sec_idx];
break;
default: assert(0 && "Invalid CDEF search method");
}
}
// Store CDEF filter strength calculated from strength index for given search
// method
#define STORE_CDEF_FILTER_STRENGTH(cdef_strength, pick_method, strength_idx) \
do { \
get_cdef_filter_strengths((pick_method), &pri_strength, &sec_strength, \
(strength_idx)); \
cdef_strength = pri_strength * CDEF_SEC_STRENGTHS + sec_strength; \
} while (0)
/* Search for the best strength to add as an option, knowing we
already selected nb_strengths options. */
static uint64_t search_one(int *lev, int nb_strengths,
uint64_t mse[][TOTAL_STRENGTHS], int sb_count,
CDEF_PICK_METHOD pick_method) {
uint64_t tot_mse[TOTAL_STRENGTHS];
const int total_strengths = nb_cdef_strengths[pick_method];
int i, j;
uint64_t best_tot_mse = (uint64_t)1 << 63;
int best_id = 0;
memset(tot_mse, 0, sizeof(tot_mse));
for (i = 0; i < sb_count; i++) {
int gi;
uint64_t best_mse = (uint64_t)1 << 63;
/* Find best mse among already selected options. */
for (gi = 0; gi < nb_strengths; gi++) {
if (mse[i][lev[gi]] < best_mse) {
best_mse = mse[i][lev[gi]];
}
}
/* Find best mse when adding each possible new option. */
for (j = 0; j < total_strengths; j++) {
uint64_t best = best_mse;
if (mse[i][j] < best) best = mse[i][j];
tot_mse[j] += best;
}
}
for (j = 0; j < total_strengths; j++) {
if (tot_mse[j] < best_tot_mse) {
best_tot_mse = tot_mse[j];
best_id = j;
}
}
lev[nb_strengths] = best_id;
return best_tot_mse;
}
/* Search for the best luma+chroma strength to add as an option, knowing we
already selected nb_strengths options. */
static uint64_t search_one_dual(int *lev0, int *lev1, int nb_strengths,
uint64_t (**mse)[TOTAL_STRENGTHS], int sb_count,
CDEF_PICK_METHOD pick_method) {
uint64_t tot_mse[TOTAL_STRENGTHS][TOTAL_STRENGTHS];
int i, j;
uint64_t best_tot_mse = (uint64_t)1 << 63;
int best_id0 = 0;
int best_id1 = 0;
const int total_strengths = nb_cdef_strengths[pick_method];
memset(tot_mse, 0, sizeof(tot_mse));
for (i = 0; i < sb_count; i++) {
int gi;
uint64_t best_mse = (uint64_t)1 << 63;
/* Find best mse among already selected options. */
for (gi = 0; gi < nb_strengths; gi++) {
uint64_t curr = mse[0][i][lev0[gi]];
curr += mse[1][i][lev1[gi]];
if (curr < best_mse) {
best_mse = curr;
}
}
/* Find best mse when adding each possible new option. */
for (j = 0; j < total_strengths; j++) {
int k;
for (k = 0; k < total_strengths; k++) {
uint64_t best = best_mse;
uint64_t curr = mse[0][i][j];
curr += mse[1][i][k];
if (curr < best) best = curr;
tot_mse[j][k] += best;
}
}
}
for (j = 0; j < total_strengths; j++) {
int k;
for (k = 0; k < total_strengths; k++) {
if (tot_mse[j][k] < best_tot_mse) {
best_tot_mse = tot_mse[j][k];
best_id0 = j;
best_id1 = k;
}
}
}
lev0[nb_strengths] = best_id0;
lev1[nb_strengths] = best_id1;
return best_tot_mse;
}
/* Search for the set of strengths that minimizes mse. */
static uint64_t joint_strength_search(int *best_lev, int nb_strengths,
uint64_t mse[][TOTAL_STRENGTHS],
int sb_count,
CDEF_PICK_METHOD pick_method) {
uint64_t best_tot_mse;
int fast = (pick_method >= CDEF_FAST_SEARCH_LVL1 &&
pick_method <= CDEF_FAST_SEARCH_LVL5);
int i;
best_tot_mse = (uint64_t)1 << 63;
/* Greedy search: add one strength options at a time. */
for (i = 0; i < nb_strengths; i++) {
best_tot_mse = search_one(best_lev, i, mse, sb_count, pick_method);
}
/* Trying to refine the greedy search by reconsidering each
already-selected option. */
if (!fast) {
for (i = 0; i < 4 * nb_strengths; i++) {
int j;
for (j = 0; j < nb_strengths - 1; j++) best_lev[j] = best_lev[j + 1];
best_tot_mse =
search_one(best_lev, nb_strengths - 1, mse, sb_count, pick_method);
}
}
return best_tot_mse;
}
/* Search for the set of luma+chroma strengths that minimizes mse. */
static uint64_t joint_strength_search_dual(int *best_lev0, int *best_lev1,
int nb_strengths,
uint64_t (**mse)[TOTAL_STRENGTHS],
int sb_count,
CDEF_PICK_METHOD pick_method) {
uint64_t best_tot_mse;
int i;
best_tot_mse = (uint64_t)1 << 63;
/* Greedy search: add one strength options at a time. */
for (i = 0; i < nb_strengths; i++) {
best_tot_mse =
search_one_dual(best_lev0, best_lev1, i, mse, sb_count, pick_method);
}
/* Trying to refine the greedy search by reconsidering each
already-selected option. */
for (i = 0; i < 4 * nb_strengths; i++) {
int j;
for (j = 0; j < nb_strengths - 1; j++) {
best_lev0[j] = best_lev0[j + 1];
best_lev1[j] = best_lev1[j + 1];
}
best_tot_mse = search_one_dual(best_lev0, best_lev1, nb_strengths - 1, mse,
sb_count, pick_method);
}
return best_tot_mse;
}
static inline void init_src_params(int *src_stride, int *width, int *height,
int *width_log2, int *height_log2,
BLOCK_SIZE bsize) {
*src_stride = block_size_wide[bsize];
*width = block_size_wide[bsize];
*height = block_size_high[bsize];
*width_log2 = MI_SIZE_LOG2 + mi_size_wide_log2[bsize];
*height_log2 = MI_SIZE_LOG2 + mi_size_high_log2[bsize];
}
#if CONFIG_AV1_HIGHBITDEPTH
/* Compute MSE only on the blocks we filtered. */
static uint64_t compute_cdef_dist_highbd(void *dst, int dstride, uint16_t *src,
cdef_list *dlist, int cdef_count,
BLOCK_SIZE bsize, int coeff_shift,
int row, int col) {
assert(bsize == BLOCK_4X4 || bsize == BLOCK_4X8 || bsize == BLOCK_8X4 ||
bsize == BLOCK_8X8);
uint64_t sum = 0;
int bi, bx, by;
uint16_t *dst16 = CONVERT_TO_SHORTPTR((uint8_t *)dst);
uint16_t *dst_buff = &dst16[row * dstride + col];
int src_stride, width, height, width_log2, height_log2;
init_src_params(&src_stride, &width, &height, &width_log2, &height_log2,
bsize);
for (bi = 0; bi < cdef_count; bi++) {
by = dlist[bi].by;
bx = dlist[bi].bx;
sum += aom_mse_wxh_16bit_highbd(
&dst_buff[(by << height_log2) * dstride + (bx << width_log2)], dstride,
&src[bi << (height_log2 + width_log2)], src_stride, width, height);
}
return sum >> 2 * coeff_shift;
}
#endif
// Checks dual and quad block processing is applicable for block widths 8 and 4
// respectively.
static inline int is_dual_or_quad_applicable(cdef_list *dlist, int width,
int cdef_count, int bi, int iter) {
assert(width == 8 || width == 4);
const int blk_offset = (width == 8) ? 1 : 3;
if ((iter + blk_offset) >= cdef_count) return 0;
if (dlist[bi].by == dlist[bi + blk_offset].by &&
dlist[bi].bx + blk_offset == dlist[bi + blk_offset].bx)
return 1;
return 0;
}
static uint64_t compute_cdef_dist(void *dst, int dstride, uint16_t *src,
cdef_list *dlist, int cdef_count,
BLOCK_SIZE bsize, int coeff_shift, int row,
int col) {
assert(bsize == BLOCK_4X4 || bsize == BLOCK_4X8 || bsize == BLOCK_8X4 ||
bsize == BLOCK_8X8);
uint64_t sum = 0;
int bi, bx, by;
int iter = 0;
int inc = 1;
uint8_t *dst8 = (uint8_t *)dst;
uint8_t *dst_buff = &dst8[row * dstride + col];
int src_stride, width, height, width_log2, height_log2;
init_src_params(&src_stride, &width, &height, &width_log2, &height_log2,
bsize);
const int num_blks = 16 / width;
for (bi = 0; bi < cdef_count; bi += inc) {
by = dlist[bi].by;
bx = dlist[bi].bx;
uint16_t *src_tmp = &src[bi << (height_log2 + width_log2)];
uint8_t *dst_tmp =
&dst_buff[(by << height_log2) * dstride + (bx << width_log2)];
if (is_dual_or_quad_applicable(dlist, width, cdef_count, bi, iter)) {
sum += aom_mse_16xh_16bit(dst_tmp, dstride, src_tmp, width, height);
iter += num_blks;
inc = num_blks;
} else {
sum += aom_mse_wxh_16bit(dst_tmp, dstride, src_tmp, src_stride, width,
height);
iter += 1;
inc = 1;
}
}
return sum >> 2 * coeff_shift;
}
// Fill the boundary regions of the block with CDEF_VERY_LARGE, only if the
// region is outside frame boundary
static inline void fill_borders_for_fbs_on_frame_boundary(
uint16_t *inbuf, int hfilt_size, int vfilt_size,
bool is_fb_on_frm_left_boundary, bool is_fb_on_frm_right_boundary,
bool is_fb_on_frm_top_boundary, bool is_fb_on_frm_bottom_boundary) {
if (!is_fb_on_frm_left_boundary && !is_fb_on_frm_right_boundary &&
!is_fb_on_frm_top_boundary && !is_fb_on_frm_bottom_boundary)
return;
if (is_fb_on_frm_bottom_boundary) {
// Fill bottom region of the block
const int buf_offset =
(vfilt_size + CDEF_VBORDER) * CDEF_BSTRIDE + CDEF_HBORDER;
fill_rect(&inbuf[buf_offset], CDEF_BSTRIDE, CDEF_VBORDER, hfilt_size,
CDEF_VERY_LARGE);
}
if (is_fb_on_frm_bottom_boundary || is_fb_on_frm_left_boundary) {
const int buf_offset = (vfilt_size + CDEF_VBORDER) * CDEF_BSTRIDE;
// Fill bottom-left region of the block
fill_rect(&inbuf[buf_offset], CDEF_BSTRIDE, CDEF_VBORDER, CDEF_HBORDER,
CDEF_VERY_LARGE);
}
if (is_fb_on_frm_bottom_boundary || is_fb_on_frm_right_boundary) {
const int buf_offset =
(vfilt_size + CDEF_VBORDER) * CDEF_BSTRIDE + hfilt_size + CDEF_HBORDER;
// Fill bottom-right region of the block
fill_rect(&inbuf[buf_offset], CDEF_BSTRIDE, CDEF_VBORDER, CDEF_HBORDER,
CDEF_VERY_LARGE);
}
if (is_fb_on_frm_top_boundary) {
// Fill top region of the block
fill_rect(&inbuf[CDEF_HBORDER], CDEF_BSTRIDE, CDEF_VBORDER, hfilt_size,
CDEF_VERY_LARGE);
}
if (is_fb_on_frm_top_boundary || is_fb_on_frm_left_boundary) {
// Fill top-left region of the block
fill_rect(inbuf, CDEF_BSTRIDE, CDEF_VBORDER, CDEF_HBORDER, CDEF_VERY_LARGE);
}
if (is_fb_on_frm_top_boundary || is_fb_on_frm_right_boundary) {
const int buf_offset = hfilt_size + CDEF_HBORDER;
// Fill top-right region of the block
fill_rect(&inbuf[buf_offset], CDEF_BSTRIDE, CDEF_VBORDER, CDEF_HBORDER,
CDEF_VERY_LARGE);
}
if (is_fb_on_frm_left_boundary) {
const int buf_offset = CDEF_VBORDER * CDEF_BSTRIDE;
// Fill left region of the block
fill_rect(&inbuf[buf_offset], CDEF_BSTRIDE, vfilt_size, CDEF_HBORDER,
CDEF_VERY_LARGE);
}
if (is_fb_on_frm_right_boundary) {
const int buf_offset = CDEF_VBORDER * CDEF_BSTRIDE;
// Fill right region of the block
fill_rect(&inbuf[buf_offset + hfilt_size + CDEF_HBORDER], CDEF_BSTRIDE,
vfilt_size, CDEF_HBORDER, CDEF_VERY_LARGE);
}
}
// Calculate the number of 8x8/4x4 filter units for which SSE can be calculated
// after CDEF filtering in single function call
static AOM_FORCE_INLINE int get_error_calc_width_in_filt_units(
cdef_list *dlist, int cdef_count, int bi, int subsampling_x,
int subsampling_y) {
// TODO(Ranjit): Extend the optimization for 422
if (subsampling_x != subsampling_y) return 1;
// Combining more blocks seems to increase encode time due to increase in
// control code
if (bi + 3 < cdef_count && dlist[bi].by == dlist[bi + 3].by &&
dlist[bi].bx + 3 == dlist[bi + 3].bx) {
/* Calculate error for four 8x8/4x4 blocks using 32x8/16x4 block specific
* logic if y co-ordinates match and x co-ordinates are
* separated by 3 for first and fourth 8x8/4x4 blocks in dlist[]. */
return 4;
}
if (bi + 1 < cdef_count && dlist[bi].by == dlist[bi + 1].by &&
dlist[bi].bx + 1 == dlist[bi + 1].bx) {
/* Calculate error for two 8x8/4x4 blocks using 16x8/8x4 block specific
* logic if their y co-ordinates match and x co-ordinates are
* separated by 1 for first and second 8x8/4x4 blocks in dlist[]. */
return 2;
}
return 1;
}
// Returns the block error after CDEF filtering for a given strength
static inline uint64_t get_filt_error(
const CdefSearchCtx *cdef_search_ctx, const struct macroblockd_plane *pd,
cdef_list *dlist, int dir[CDEF_NBLOCKS][CDEF_NBLOCKS], int *dirinit,
int var[CDEF_NBLOCKS][CDEF_NBLOCKS], uint16_t *in, uint8_t *ref_buffer,
int ref_stride, int row, int col, int pri_strength, int sec_strength,
int cdef_count, int pli, int coeff_shift, BLOCK_SIZE bs) {
uint64_t curr_sse = 0;
const BLOCK_SIZE plane_bsize =
get_plane_block_size(bs, pd->subsampling_x, pd->subsampling_y);
const int bw_log2 = 3 - pd->subsampling_x;
const int bh_log2 = 3 - pd->subsampling_y;
// TODO(Ranjit): Extend this optimization for HBD
if (!cdef_search_ctx->use_highbitdepth) {
// If all 8x8/4x4 blocks in CDEF block need to be filtered, calculate the
// error at CDEF block level
const int tot_blk_count =
(block_size_wide[plane_bsize] * block_size_high[plane_bsize]) >>
(bw_log2 + bh_log2);
if (cdef_count == tot_blk_count) {
// Calculate the offset in the buffer based on block position
const FULLPEL_MV this_mv = { row, col };
const int buf_offset = get_offset_from_fullmv(&this_mv, ref_stride);
if (pri_strength == 0 && sec_strength == 0) {
// When CDEF strength is zero, filtering is not applied. Hence
// error is calculated between source and unfiltered pixels
curr_sse =
aom_sse(&ref_buffer[buf_offset], ref_stride,
get_buf_from_fullmv(&pd->dst, &this_mv), pd->dst.stride,
block_size_wide[plane_bsize], block_size_high[plane_bsize]);
} else {
DECLARE_ALIGNED(32, uint8_t, tmp_dst8[1 << (MAX_SB_SIZE_LOG2 * 2)]);
av1_cdef_filter_fb(tmp_dst8, NULL, (1 << MAX_SB_SIZE_LOG2), in,
cdef_search_ctx->xdec[pli],
cdef_search_ctx->ydec[pli], dir, dirinit, var, pli,
dlist, cdef_count, pri_strength,
sec_strength + (sec_strength == 3),
cdef_search_ctx->damping, coeff_shift);
curr_sse =
aom_sse(&ref_buffer[buf_offset], ref_stride, tmp_dst8,
(1 << MAX_SB_SIZE_LOG2), block_size_wide[plane_bsize],
block_size_high[plane_bsize]);
}
} else {
// If few 8x8/4x4 blocks in CDEF block need to be filtered, filtering
// functions produce 8-bit output and the error is calculated in 8-bit
// domain
if (pri_strength == 0 && sec_strength == 0) {
int num_error_calc_filt_units = 1;
for (int bi = 0; bi < cdef_count; bi = bi + num_error_calc_filt_units) {
const uint8_t by = dlist[bi].by;
const uint8_t bx = dlist[bi].bx;
const int16_t by_pos = (by << bh_log2);
const int16_t bx_pos = (bx << bw_log2);
// Calculate the offset in the buffer based on block position
const FULLPEL_MV this_mv = { row + by_pos, col + bx_pos };
const int buf_offset = get_offset_from_fullmv(&this_mv, ref_stride);
num_error_calc_filt_units = get_error_calc_width_in_filt_units(
dlist, cdef_count, bi, pd->subsampling_x, pd->subsampling_y);
curr_sse += aom_sse(
&ref_buffer[buf_offset], ref_stride,
get_buf_from_fullmv(&pd->dst, &this_mv), pd->dst.stride,
num_error_calc_filt_units * (1 << bw_log2), (1 << bh_log2));
}
} else {
DECLARE_ALIGNED(32, uint8_t, tmp_dst8[1 << (MAX_SB_SIZE_LOG2 * 2)]);
av1_cdef_filter_fb(tmp_dst8, NULL, (1 << MAX_SB_SIZE_LOG2), in,
cdef_search_ctx->xdec[pli],
cdef_search_ctx->ydec[pli], dir, dirinit, var, pli,
dlist, cdef_count, pri_strength,
sec_strength + (sec_strength == 3),
cdef_search_ctx->damping, coeff_shift);
int num_error_calc_filt_units = 1;
for (int bi = 0; bi < cdef_count; bi = bi + num_error_calc_filt_units) {
const uint8_t by = dlist[bi].by;
const uint8_t bx = dlist[bi].bx;
const int16_t by_pos = (by << bh_log2);
const int16_t bx_pos = (bx << bw_log2);
// Calculate the offset in the buffer based on block position
const FULLPEL_MV this_mv = { row + by_pos, col + bx_pos };
const FULLPEL_MV tmp_buf_pos = { by_pos, bx_pos };
const int buf_offset = get_offset_from_fullmv(&this_mv, ref_stride);
const int tmp_buf_offset =
get_offset_from_fullmv(&tmp_buf_pos, (1 << MAX_SB_SIZE_LOG2));
num_error_calc_filt_units = get_error_calc_width_in_filt_units(
dlist, cdef_count, bi, pd->subsampling_x, pd->subsampling_y);
curr_sse += aom_sse(
&ref_buffer[buf_offset], ref_stride, &tmp_dst8[tmp_buf_offset],
(1 << MAX_SB_SIZE_LOG2),
num_error_calc_filt_units * (1 << bw_log2), (1 << bh_log2));
}
}
}
} else {
DECLARE_ALIGNED(32, uint16_t, tmp_dst[1 << (MAX_SB_SIZE_LOG2 * 2)]);
av1_cdef_filter_fb(NULL, tmp_dst, CDEF_BSTRIDE, in,
cdef_search_ctx->xdec[pli], cdef_search_ctx->ydec[pli],
dir, dirinit, var, pli, dlist, cdef_count, pri_strength,
sec_strength + (sec_strength == 3),
cdef_search_ctx->damping, coeff_shift);
curr_sse = cdef_search_ctx->compute_cdef_dist_fn(
ref_buffer, ref_stride, tmp_dst, dlist, cdef_count,
cdef_search_ctx->bsize[pli], coeff_shift, row, col);
}
return curr_sse;
}
// Calculates MSE at block level.
// Inputs:
// cdef_search_ctx: Pointer to the structure containing parameters related to
// CDEF search context.
// fbr: Row index in units of 64x64 block
// fbc: Column index in units of 64x64 block
// Returns:
// Nothing will be returned. Contents of cdef_search_ctx will be modified.
void av1_cdef_mse_calc_block(CdefSearchCtx *cdef_search_ctx,
struct aom_internal_error_info *error_info,
int fbr, int fbc, int sb_count) {
// TODO(aomedia:3276): Pass error_info to the low-level functions as required
// in future to handle error propagation.
(void)error_info;
const CommonModeInfoParams *const mi_params = cdef_search_ctx->mi_params;
const YV12_BUFFER_CONFIG *ref = cdef_search_ctx->ref;
const int coeff_shift = cdef_search_ctx->coeff_shift;
const int *mi_wide_l2 = cdef_search_ctx->mi_wide_l2;
const int *mi_high_l2 = cdef_search_ctx->mi_high_l2;
// Declare and initialize the temporary buffers.
DECLARE_ALIGNED(32, uint16_t, inbuf[CDEF_INBUF_SIZE]);
cdef_list dlist[MI_SIZE_128X128 * MI_SIZE_128X128];
int dir[CDEF_NBLOCKS][CDEF_NBLOCKS] = { { 0 } };
int var[CDEF_NBLOCKS][CDEF_NBLOCKS] = { { 0 } };
uint16_t *const in = inbuf + CDEF_VBORDER * CDEF_BSTRIDE + CDEF_HBORDER;
int nhb = AOMMIN(MI_SIZE_64X64, mi_params->mi_cols - MI_SIZE_64X64 * fbc);
int nvb = AOMMIN(MI_SIZE_64X64, mi_params->mi_rows - MI_SIZE_64X64 * fbr);
int hb_step = 1, vb_step = 1;
BLOCK_SIZE bs;
const MB_MODE_INFO *const mbmi =
mi_params->mi_grid_base[MI_SIZE_64X64 * fbr * mi_params->mi_stride +
MI_SIZE_64X64 * fbc];
uint8_t *ref_buffer[MAX_MB_PLANE] = { ref->y_buffer, ref->u_buffer,
ref->v_buffer };
int ref_stride[MAX_MB_PLANE] = { ref->y_stride, ref->uv_stride,
ref->uv_stride };
if (mbmi->bsize == BLOCK_128X128 || mbmi->bsize == BLOCK_128X64 ||
mbmi->bsize == BLOCK_64X128) {
bs = mbmi->bsize;
if (bs == BLOCK_128X128 || bs == BLOCK_128X64) {
nhb = AOMMIN(MI_SIZE_128X128, mi_params->mi_cols - MI_SIZE_64X64 * fbc);
hb_step = 2;
}
if (bs == BLOCK_128X128 || bs == BLOCK_64X128) {
nvb = AOMMIN(MI_SIZE_128X128, mi_params->mi_rows - MI_SIZE_64X64 * fbr);
vb_step = 2;
}
} else {
bs = BLOCK_64X64;
}
// Get number of 8x8 blocks which are not skip. Cdef processing happens for
// 8x8 blocks which are not skip.
const int cdef_count = av1_cdef_compute_sb_list(
mi_params, fbr * MI_SIZE_64X64, fbc * MI_SIZE_64X64, dlist, bs);
const bool is_fb_on_frm_left_boundary = (fbc == 0);
const bool is_fb_on_frm_right_boundary =
(fbc + hb_step == cdef_search_ctx->nhfb);
const bool is_fb_on_frm_top_boundary = (fbr == 0);
const bool is_fb_on_frm_bottom_boundary =
(fbr + vb_step == cdef_search_ctx->nvfb);
const int yoff = CDEF_VBORDER * (!is_fb_on_frm_top_boundary);
const int xoff = CDEF_HBORDER * (!is_fb_on_frm_left_boundary);
int dirinit = 0;
for (int pli = 0; pli < cdef_search_ctx->num_planes; pli++) {
/* We avoid filtering the pixels for which some of the pixels to
average are outside the frame. We could change the filter instead,
but it would add special cases for any future vectorization. */
const int hfilt_size = (nhb << mi_wide_l2[pli]);
const int vfilt_size = (nvb << mi_high_l2[pli]);
const int ysize =
vfilt_size + CDEF_VBORDER * (!is_fb_on_frm_bottom_boundary) + yoff;
const int xsize =
hfilt_size + CDEF_HBORDER * (!is_fb_on_frm_right_boundary) + xoff;
const int row = fbr * MI_SIZE_64X64 << mi_high_l2[pli];
const int col = fbc * MI_SIZE_64X64 << mi_wide_l2[pli];
struct macroblockd_plane pd = cdef_search_ctx->plane[pli];
cdef_search_ctx->copy_fn(&in[(-yoff * CDEF_BSTRIDE - xoff)], CDEF_BSTRIDE,
pd.dst.buf, row - yoff, col - xoff, pd.dst.stride,
ysize, xsize);
fill_borders_for_fbs_on_frame_boundary(
inbuf, hfilt_size, vfilt_size, is_fb_on_frm_left_boundary,
is_fb_on_frm_right_boundary, is_fb_on_frm_top_boundary,
is_fb_on_frm_bottom_boundary);
for (int gi = 0; gi < cdef_search_ctx->total_strengths; gi++) {
int pri_strength, sec_strength;
get_cdef_filter_strengths(cdef_search_ctx->pick_method, &pri_strength,
&sec_strength, gi);
const uint64_t curr_mse = get_filt_error(
cdef_search_ctx, &pd, dlist, dir, &dirinit, var, in, ref_buffer[pli],
ref_stride[pli], row, col, pri_strength, sec_strength, cdef_count,
pli, coeff_shift, bs);
if (pli < 2)
cdef_search_ctx->mse[pli][sb_count][gi] = curr_mse;
else
cdef_search_ctx->mse[1][sb_count][gi] += curr_mse;
}
}
cdef_search_ctx->sb_index[sb_count] =
MI_SIZE_64X64 * fbr * mi_params->mi_stride + MI_SIZE_64X64 * fbc;
}
// MSE calculation at frame level.
// Inputs:
// cdef_search_ctx: Pointer to the structure containing parameters related to
// CDEF search context.
// Returns:
// Nothing will be returned. Contents of cdef_search_ctx will be modified.
static void cdef_mse_calc_frame(CdefSearchCtx *cdef_search_ctx,
struct aom_internal_error_info *error_info) {
// Loop over each sb.
for (int fbr = 0; fbr < cdef_search_ctx->nvfb; ++fbr) {
for (int fbc = 0; fbc < cdef_search_ctx->nhfb; ++fbc) {
// Checks if cdef processing can be skipped for particular sb.
if (cdef_sb_skip(cdef_search_ctx->mi_params, fbr, fbc)) continue;
// Calculate mse for each sb and store the relevant sb index.
av1_cdef_mse_calc_block(cdef_search_ctx, error_info, fbr, fbc,
cdef_search_ctx->sb_count);
cdef_search_ctx->sb_count++;
}
}
}
// Allocates memory for members of CdefSearchCtx.
// Inputs:
// cdef_search_ctx: Pointer to the structure containing parameters
// related to CDEF search context.
// Returns:
// Nothing will be returned. Contents of cdef_search_ctx will be modified.
static void cdef_alloc_data(AV1_COMMON *cm, CdefSearchCtx *cdef_search_ctx) {
const int nvfb = cdef_search_ctx->nvfb;
const int nhfb = cdef_search_ctx->nhfb;
CHECK_MEM_ERROR(
cm, cdef_search_ctx->sb_index,
aom_malloc(nvfb * nhfb * sizeof(cdef_search_ctx->sb_index[0])));
cdef_search_ctx->sb_count = 0;
CHECK_MEM_ERROR(cm, cdef_search_ctx->mse[0],
aom_malloc(sizeof(**cdef_search_ctx->mse) * nvfb * nhfb));
CHECK_MEM_ERROR(cm, cdef_search_ctx->mse[1],
aom_malloc(sizeof(**cdef_search_ctx->mse) * nvfb * nhfb));
}
// Deallocates the memory allocated for members of CdefSearchCtx.
// Inputs:
// cdef_search_ctx: Pointer to the structure containing parameters
// related to CDEF search context.
// Returns:
// Nothing will be returned.
void av1_cdef_dealloc_data(CdefSearchCtx *cdef_search_ctx) {
if (cdef_search_ctx) {
aom_free(cdef_search_ctx->mse[0]);
cdef_search_ctx->mse[0] = NULL;
aom_free(cdef_search_ctx->mse[1]);
cdef_search_ctx->mse[1] = NULL;
aom_free(cdef_search_ctx->sb_index);
cdef_search_ctx->sb_index = NULL;
}
}
// Initialize the parameters related to CDEF search context.
// Inputs:
// frame: Pointer to compressed frame buffer
// ref: Pointer to the frame buffer holding the source frame
// cm: Pointer to top level common structure
// xd: Pointer to common current coding block structure
// cdef_search_ctx: Pointer to the structure containing parameters related to
// CDEF search context.
// pick_method: Search method used to select CDEF parameters
// Returns:
// Nothing will be returned. Contents of cdef_search_ctx will be modified.
static inline void cdef_params_init(const YV12_BUFFER_CONFIG *frame,
const YV12_BUFFER_CONFIG *ref,
AV1_COMMON *cm, MACROBLOCKD *xd,
CdefSearchCtx *cdef_search_ctx,
CDEF_PICK_METHOD pick_method) {
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const int num_planes = av1_num_planes(cm);
cdef_search_ctx->mi_params = &cm->mi_params;
cdef_search_ctx->ref = ref;
cdef_search_ctx->nvfb =
(mi_params->mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
cdef_search_ctx->nhfb =
(mi_params->mi_cols + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
cdef_search_ctx->coeff_shift = AOMMAX(cm->seq_params->bit_depth - 8, 0);
cdef_search_ctx->damping = 3 + (cm->quant_params.base_qindex >> 6);
cdef_search_ctx->total_strengths = nb_cdef_strengths[pick_method];
cdef_search_ctx->num_planes = num_planes;
cdef_search_ctx->pick_method = pick_method;
cdef_search_ctx->sb_count = 0;
cdef_search_ctx->use_highbitdepth = cm->seq_params->use_highbitdepth;
av1_setup_dst_planes(xd->plane, cm->seq_params->sb_size, frame, 0, 0, 0,
num_planes);
// Initialize plane wise information.
for (int pli = 0; pli < num_planes; pli++) {
cdef_search_ctx->xdec[pli] = xd->plane[pli].subsampling_x;
cdef_search_ctx->ydec[pli] = xd->plane[pli].subsampling_y;
cdef_search_ctx->bsize[pli] =
cdef_search_ctx->ydec[pli]
? (cdef_search_ctx->xdec[pli] ? BLOCK_4X4 : BLOCK_8X4)
: (cdef_search_ctx->xdec[pli] ? BLOCK_4X8 : BLOCK_8X8);
cdef_search_ctx->mi_wide_l2[pli] =
MI_SIZE_LOG2 - xd->plane[pli].subsampling_x;
cdef_search_ctx->mi_high_l2[pli] =
MI_SIZE_LOG2 - xd->plane[pli].subsampling_y;
cdef_search_ctx->plane[pli] = xd->plane[pli];
}
// Function pointer initialization.
#if CONFIG_AV1_HIGHBITDEPTH
if (cm->seq_params->use_highbitdepth) {
cdef_search_ctx->copy_fn = av1_cdef_copy_sb8_16_highbd;
cdef_search_ctx->compute_cdef_dist_fn = compute_cdef_dist_highbd;
} else {
cdef_search_ctx->copy_fn = av1_cdef_copy_sb8_16_lowbd;
cdef_search_ctx->compute_cdef_dist_fn = compute_cdef_dist;
}
#else
cdef_search_ctx->copy_fn = av1_cdef_copy_sb8_16_lowbd;
cdef_search_ctx->compute_cdef_dist_fn = compute_cdef_dist;
#endif
}
void av1_pick_cdef_from_qp(AV1_COMMON *const cm, int skip_cdef,
int is_screen_content) {
const int bd = cm->seq_params->bit_depth;
const int q =
av1_ac_quant_QTX(cm->quant_params.base_qindex, 0, bd) >> (bd - 8);
CdefInfo *const cdef_info = &cm->cdef_info;
// Check the speed feature to avoid extra signaling.
if (skip_cdef) {
cdef_info->cdef_bits = 1;
cdef_info->nb_cdef_strengths = 2;
} else {
cdef_info->cdef_bits = 0;
cdef_info->nb_cdef_strengths = 1;
}
cdef_info->cdef_damping = 3 + (cm->quant_params.base_qindex >> 6);
int predicted_y_f1 = 0;
int predicted_y_f2 = 0;
int predicted_uv_f1 = 0;
int predicted_uv_f2 = 0;
if (is_screen_content) {
predicted_y_f1 =
(int)(5.88217781e-06 * q * q + 6.10391455e-03 * q + 9.95043102e-02);
predicted_y_f2 =
(int)(-7.79934857e-06 * q * q + 6.58957830e-03 * q + 8.81045025e-01);
predicted_uv_f1 =
(int)(-6.79500136e-06 * q * q + 1.02695586e-02 * q + 1.36126802e-01);
predicted_uv_f2 =
(int)(-9.99613695e-08 * q * q - 1.79361339e-05 * q + 1.17022324e+0);
predicted_y_f1 = clamp(predicted_y_f1, 0, 15);
predicted_y_f2 = clamp(predicted_y_f2, 0, 3);
predicted_uv_f1 = clamp(predicted_uv_f1, 0, 15);
predicted_uv_f2 = clamp(predicted_uv_f2, 0, 3);
} else {
if (!frame_is_intra_only(cm)) {
predicted_y_f1 = clamp((int)roundf(q * q * -0.0000023593946f +
q * 0.0068615186f + 0.02709886f),
0, 15);
predicted_y_f2 = clamp((int)roundf(q * q * -0.00000057629734f +
q * 0.0013993345f + 0.03831067f),
0, 3);
predicted_uv_f1 = clamp((int)roundf(q * q * -0.0000007095069f +
q * 0.0034628846f + 0.00887099f),
0, 15);
predicted_uv_f2 = clamp((int)roundf(q * q * 0.00000023874085f +
q * 0.00028223585f + 0.05576307f),
0, 3);
} else {
predicted_y_f1 = clamp(
(int)roundf(q * q * 0.0000033731974f + q * 0.008070594f + 0.0187634f),
0, 15);
predicted_y_f2 = clamp((int)roundf(q * q * 0.0000029167343f +
q * 0.0027798624f + 0.0079405f),
0, 3);
predicted_uv_f1 = clamp((int)roundf(q * q * -0.0000130790995f +
q * 0.012892405f - 0.00748388f),
0, 15);
predicted_uv_f2 = clamp((int)roundf(q * q * 0.0000032651783f +
q * 0.00035520183f + 0.00228092f),
0, 3);
}
}
cdef_info->cdef_strengths[0] =
predicted_y_f1 * CDEF_SEC_STRENGTHS + predicted_y_f2;
cdef_info->cdef_uv_strengths[0] =
predicted_uv_f1 * CDEF_SEC_STRENGTHS + predicted_uv_f2;
// mbmi->cdef_strength is already set in the encoding stage. We don't need to
// set it again here.
if (skip_cdef) {
cdef_info->cdef_strengths[1] = 0;
cdef_info->cdef_uv_strengths[1] = 0;
return;
}
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const int nvfb = (mi_params->mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
const int nhfb = (mi_params->mi_cols + MI_SIZE_64X64 - 1) / MI_SIZE_64X64;
MB_MODE_INFO **mbmi = mi_params->mi_grid_base;
// mbmi is NULL when real-time rate control library is used.
if (!mbmi) return;
for (int r = 0; r < nvfb; ++r) {
for (int c = 0; c < nhfb; ++c) {
MB_MODE_INFO *current_mbmi = mbmi[MI_SIZE_64X64 * c];
current_mbmi->cdef_strength = 0;
}
mbmi += MI_SIZE_64X64 * mi_params->mi_stride;
}
}
void av1_cdef_search(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
CDEF_CONTROL cdef_control = cpi->oxcf.tool_cfg.cdef_control;
assert(cdef_control != CDEF_NONE);
// For CDEF_ADAPTIVE, turning off CDEF around qindex 32 was best for still
// pictures
if ((cdef_control == CDEF_REFERENCE &&
cpi->ppi->rtc_ref.non_reference_frame) ||
(cdef_control == CDEF_ADAPTIVE && cpi->oxcf.mode == ALLINTRA &&
(cpi->oxcf.rc_cfg.mode == AOM_Q || cpi->oxcf.rc_cfg.mode == AOM_CQ) &&
cpi->oxcf.rc_cfg.cq_level <= 32)) {
CdefInfo *const cdef_info = &cm->cdef_info;
cdef_info->nb_cdef_strengths = 1;
cdef_info->cdef_bits = 0;
cdef_info->cdef_strengths[0] = 0;
cdef_info->cdef_uv_strengths[0] = 0;
return;
}
// Indicate if external RC is used for testing
const int rtc_ext_rc = cpi->rc.rtc_external_ratectrl;
if (rtc_ext_rc) {
av1_pick_cdef_from_qp(cm, 0, 0);
return;
}
CDEF_PICK_METHOD pick_method = cpi->sf.lpf_sf.cdef_pick_method;
if (pick_method == CDEF_PICK_FROM_Q) {
const int use_screen_content_model =
cm->quant_params.base_qindex >
AOMMAX(cpi->sf.rt_sf.screen_content_cdef_filter_qindex_thresh,
cpi->rc.best_quality + 5) &&
cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN;
av1_pick_cdef_from_qp(cm, cpi->sf.rt_sf.skip_cdef_sb,
use_screen_content_model);
return;
}
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const int damping = 3 + (cm->quant_params.base_qindex >> 6);
const int fast = (pick_method >= CDEF_FAST_SEARCH_LVL1 &&
pick_method <= CDEF_FAST_SEARCH_LVL5);
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
if (!cpi->cdef_search_ctx)
CHECK_MEM_ERROR(cm, cpi->cdef_search_ctx,
aom_malloc(sizeof(*cpi->cdef_search_ctx)));
CdefSearchCtx *cdef_search_ctx = cpi->cdef_search_ctx;
// Initialize parameters related to CDEF search context.
cdef_params_init(&cm->cur_frame->buf, cpi->source, cm, xd, cdef_search_ctx,
pick_method);
// Allocate CDEF search context buffers.
cdef_alloc_data(cm, cdef_search_ctx);
// Frame level mse calculation.
if (cpi->mt_info.num_workers > 1) {
av1_cdef_mse_calc_frame_mt(cpi);
} else {
cdef_mse_calc_frame(cdef_search_ctx, cm->error);
}
/* Search for different number of signaling bits. */
int nb_strength_bits = 0;
uint64_t best_rd = UINT64_MAX;
CdefInfo *const cdef_info = &cm->cdef_info;
int sb_count = cdef_search_ctx->sb_count;
uint64_t(*mse[2])[TOTAL_STRENGTHS];
mse[0] = cdef_search_ctx->mse[0];
mse[1] = cdef_search_ctx->mse[1];
/* Calculate the maximum number of bits required to signal CDEF strengths at
* block level */
const int total_strengths = nb_cdef_strengths[pick_method];
const int joint_strengths =
num_planes > 1 ? total_strengths * total_strengths : total_strengths;
const int max_signaling_bits =
joint_strengths == 1 ? 0 : get_msb(joint_strengths - 1) + 1;
int rdmult = cpi->td.mb.rdmult;
for (int i = 0; i <= 3; i++) {
if (i > max_signaling_bits) break;
int best_lev0[CDEF_MAX_STRENGTHS] = { 0 };
int best_lev1[CDEF_MAX_STRENGTHS] = { 0 };
const int nb_strengths = 1 << i;
uint64_t tot_mse;
if (num_planes > 1) {
tot_mse = joint_strength_search_dual(best_lev0, best_lev1, nb_strengths,
mse, sb_count, pick_method);
} else {
tot_mse = joint_strength_search(best_lev0, nb_strengths, mse[0], sb_count,
pick_method);
}
const int total_bits = sb_count * i + nb_strengths * CDEF_STRENGTH_BITS *
(num_planes > 1 ? 2 : 1);
const int rate_cost = av1_cost_literal(total_bits);
const uint64_t dist = tot_mse * 16;
const uint64_t rd = RDCOST(rdmult, rate_cost, dist);
if (rd < best_rd) {
best_rd = rd;
nb_strength_bits = i;
memcpy(cdef_info->cdef_strengths, best_lev0,
nb_strengths * sizeof(best_lev0[0]));
if (num_planes > 1) {
memcpy(cdef_info->cdef_uv_strengths, best_lev1,
nb_strengths * sizeof(best_lev1[0]));
}
}
}
cdef_info->cdef_bits = nb_strength_bits;
cdef_info->nb_cdef_strengths = 1 << nb_strength_bits;
for (int i = 0; i < sb_count; i++) {
uint64_t best_mse = UINT64_MAX;
int best_gi = 0;
for (int gi = 0; gi < cdef_info->nb_cdef_strengths; gi++) {
uint64_t curr = mse[0][i][cdef_info->cdef_strengths[gi]];
if (num_planes > 1) curr += mse[1][i][cdef_info->cdef_uv_strengths[gi]];
if (curr < best_mse) {
best_gi = gi;
best_mse = curr;
}
}
mi_params->mi_grid_base[cdef_search_ctx->sb_index[i]]->cdef_strength =
best_gi;
}
if (fast) {
for (int j = 0; j < cdef_info->nb_cdef_strengths; j++) {
const int luma_strength = cdef_info->cdef_strengths[j];
const int chroma_strength = cdef_info->cdef_uv_strengths[j];
int pri_strength, sec_strength;
STORE_CDEF_FILTER_STRENGTH(cdef_info->cdef_strengths[j], pick_method,
luma_strength);
STORE_CDEF_FILTER_STRENGTH(cdef_info->cdef_uv_strengths[j], pick_method,
chroma_strength);
}
}
// For CDEF_ADAPTIVE, set primary and secondary CDEF at reduced strength for
// qindexes 33 through 220.
// Note 1: for odd strengths, the 0.5 discarded by ">> 1" is a significant
// part of the strength when the strength is small, and because there are
// few strength levels, odd strengths are reduced significantly more than a
// half. This is intended behavior for reduced strength.
// For example: a pri strength of 3 becomes 1, and a sec strength of 1
// becomes 0.
// Note 2: a (signaled) sec strength value of 3 is special as it results in an
// actual sec strength of 4. We tried adding +1 to the sec strength 3 so it
// maps to a reduced sec strength of 2. However, on Daala's subset1, the
// resulting SSIMULACRA 2 scores were either exactly the same (at cpu-used 6),
// or within noise level (at cpu-used 3). Given that there were no discernible
// improvements, this special mapping was left out for reduced strength.
if (cdef_control == CDEF_ADAPTIVE && cpi->oxcf.mode == ALLINTRA &&
(cpi->oxcf.rc_cfg.mode == AOM_Q || cpi->oxcf.rc_cfg.mode == AOM_CQ) &&
cpi->oxcf.rc_cfg.cq_level <= 220) {
for (int j = 0; j < cdef_info->nb_cdef_strengths; j++) {
const int luma_strength = cdef_info->cdef_strengths[j];
const int chroma_strength = cdef_info->cdef_uv_strengths[j];
const int new_pri_luma_strength =
(luma_strength / CDEF_SEC_STRENGTHS) >> 1;
const int new_sec_luma_strength =
(luma_strength % CDEF_SEC_STRENGTHS) >> 1;
const int new_pri_chroma_strength =
(chroma_strength / CDEF_SEC_STRENGTHS) >> 1;
const int new_sec_chroma_strength =
(chroma_strength % CDEF_SEC_STRENGTHS) >> 1;
cdef_info->cdef_strengths[j] =
new_pri_luma_strength * CDEF_SEC_STRENGTHS + new_sec_luma_strength;
cdef_info->cdef_uv_strengths[j] =
new_pri_chroma_strength * CDEF_SEC_STRENGTHS +
new_sec_chroma_strength;
}
}
cdef_info->cdef_damping = damping;
// Deallocate CDEF search context buffers.
av1_cdef_dealloc_data(cdef_search_ctx);
}
|