1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <limits.h>
#include "config/aom_scale_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/psnr.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/av1_loopfilter.h"
#include "av1/common/quant_common.h"
#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/picklpf.h"
// AV1 loop filter applies to the whole frame according to mi_rows and mi_cols,
// which are calculated based on aligned width and aligned height,
// In addition, if super res is enabled, it copies the whole frame
// according to the aligned width and height (av1_superres_upscale()).
// So we need to copy the whole filtered region, instead of the cropped region.
// For example, input image size is: 160x90.
// Then src->y_crop_width = 160, src->y_crop_height = 90.
// The aligned frame size is: src->y_width = 160, src->y_height = 96.
// AV1 aligns frame size to a multiple of 8, if there is
// chroma subsampling, it is able to ensure the chroma is also
// an integer number of mi units. mi unit is 4x4, 8 = 4 * 2, and 2 luma mi
// units correspond to 1 chroma mi unit if there is subsampling.
// See: aom_realloc_frame_buffer() in yv12config.c.
static void yv12_copy_plane(const YV12_BUFFER_CONFIG *src_bc,
YV12_BUFFER_CONFIG *dst_bc, int plane) {
switch (plane) {
case 0: aom_yv12_copy_y(src_bc, dst_bc, 0); break;
case 1: aom_yv12_copy_u(src_bc, dst_bc, 0); break;
case 2: aom_yv12_copy_v(src_bc, dst_bc, 0); break;
default: assert(plane >= 0 && plane <= 2); break;
}
}
static int get_max_filter_level(const AV1_COMP *cpi) {
if (is_stat_consumption_stage_twopass(cpi)) {
return cpi->ppi->twopass.section_intra_rating > 8 ? MAX_LOOP_FILTER * 3 / 4
: MAX_LOOP_FILTER;
} else {
return MAX_LOOP_FILTER;
}
}
static int64_t try_filter_frame(const YV12_BUFFER_CONFIG *sd,
AV1_COMP *const cpi, int filt_level,
int partial_frame, int plane, int dir) {
MultiThreadInfo *const mt_info = &cpi->mt_info;
int num_workers = mt_info->num_mod_workers[MOD_LPF];
AV1_COMMON *const cm = &cpi->common;
int64_t filt_err;
assert(plane >= 0 && plane <= 2);
int filter_level[2] = { filt_level, filt_level };
if (plane == 0 && dir == 0) filter_level[1] = cm->lf.filter_level[1];
if (plane == 0 && dir == 1) filter_level[0] = cm->lf.filter_level[0];
// set base filters for use of get_filter_level (av1_loopfilter.c) when in
// DELTA_LF mode
switch (plane) {
case 0:
cm->lf.filter_level[0] = filter_level[0];
cm->lf.filter_level[1] = filter_level[1];
break;
case 1: cm->lf.filter_level_u = filter_level[0]; break;
case 2: cm->lf.filter_level_v = filter_level[0]; break;
}
// lpf_opt_level = 1 : Enables dual/quad loop-filtering.
int lpf_opt_level = is_inter_tx_size_search_level_one(&cpi->sf.tx_sf);
av1_loop_filter_frame_mt(&cm->cur_frame->buf, cm, &cpi->td.mb.e_mbd, plane,
plane + 1, partial_frame, mt_info->workers,
num_workers, &mt_info->lf_row_sync, lpf_opt_level);
filt_err = aom_get_sse_plane(sd, &cm->cur_frame->buf, plane,
cm->seq_params->use_highbitdepth);
// Re-instate the unfiltered frame
yv12_copy_plane(&cpi->last_frame_uf, &cm->cur_frame->buf, plane);
return filt_err;
}
static int search_filter_level(const YV12_BUFFER_CONFIG *sd, AV1_COMP *cpi,
int partial_frame,
const int *last_frame_filter_level, int plane,
int dir, int64_t *best_filter_sse) {
const AV1_COMMON *const cm = &cpi->common;
const int min_filter_level = 0;
const int max_filter_level = get_max_filter_level(cpi);
int filt_direction = 0;
int64_t best_err;
int filt_best;
// Start the search at the previous frame filter level unless it is now out of
// range.
int lvl;
switch (plane) {
case 0:
switch (dir) {
case 2:
lvl = (last_frame_filter_level[0] + last_frame_filter_level[1] + 1) >>
1;
break;
case 0:
case 1: lvl = last_frame_filter_level[dir]; break;
default: assert(dir >= 0 && dir <= 2); return 0;
}
break;
case 1: lvl = last_frame_filter_level[2]; break;
case 2: lvl = last_frame_filter_level[3]; break;
default: assert(plane >= 0 && plane <= 2); return 0;
}
int filt_mid = clamp(lvl, min_filter_level, max_filter_level);
int filter_step = filt_mid < 16 ? 4 : filt_mid / 4;
// Sum squared error at each filter level
int64_t ss_err[MAX_LOOP_FILTER + 1];
const int use_coarse_search = cpi->sf.lpf_sf.use_coarse_filter_level_search;
assert(use_coarse_search <= 1);
static const int min_filter_step_lookup[2] = { 0, 2 };
// min_filter_step_thesh determines the stopping criteria for the search.
// The search is terminated when filter_step equals min_filter_step_thesh.
const int min_filter_step_thesh = min_filter_step_lookup[use_coarse_search];
// Set each entry to -1
memset(ss_err, 0xFF, sizeof(ss_err));
yv12_copy_plane(&cm->cur_frame->buf, &cpi->last_frame_uf, plane);
best_err = try_filter_frame(sd, cpi, filt_mid, partial_frame, plane, dir);
filt_best = filt_mid;
ss_err[filt_mid] = best_err;
while (filter_step > min_filter_step_thesh) {
const int filt_high = AOMMIN(filt_mid + filter_step, max_filter_level);
const int filt_low = AOMMAX(filt_mid - filter_step, min_filter_level);
// Bias against raising loop filter in favor of lowering it.
int64_t bias = (best_err >> (15 - (filt_mid / 8))) * filter_step;
if ((is_stat_consumption_stage_twopass(cpi)) &&
(cpi->ppi->twopass.section_intra_rating < 20))
bias = (bias * cpi->ppi->twopass.section_intra_rating) / 20;
// yx, bias less for large block size
if (cm->features.tx_mode != ONLY_4X4) bias >>= 1;
if (filt_direction <= 0 && filt_low != filt_mid) {
// Get Low filter error score
if (ss_err[filt_low] < 0) {
ss_err[filt_low] =
try_filter_frame(sd, cpi, filt_low, partial_frame, plane, dir);
}
// If value is close to the best so far then bias towards a lower loop
// filter value.
if (ss_err[filt_low] < (best_err + bias)) {
// Was it actually better than the previous best?
if (ss_err[filt_low] < best_err) {
best_err = ss_err[filt_low];
}
filt_best = filt_low;
}
}
// Now look at filt_high
if (filt_direction >= 0 && filt_high != filt_mid) {
if (ss_err[filt_high] < 0) {
ss_err[filt_high] =
try_filter_frame(sd, cpi, filt_high, partial_frame, plane, dir);
}
// If value is significantly better than previous best, bias added against
// raising filter value
if (ss_err[filt_high] < (best_err - bias)) {
best_err = ss_err[filt_high];
filt_best = filt_high;
}
}
// Half the step distance if the best filter value was the same as last time
if (filt_best == filt_mid) {
filter_step /= 2;
filt_direction = 0;
} else {
filt_direction = (filt_best < filt_mid) ? -1 : 1;
filt_mid = filt_best;
}
}
*best_filter_sse = ss_err[filt_best];
return filt_best;
}
void av1_pick_filter_level(const YV12_BUFFER_CONFIG *sd, AV1_COMP *cpi,
LPF_PICK_METHOD method) {
AV1_COMMON *const cm = &cpi->common;
const SequenceHeader *const seq_params = cm->seq_params;
const int num_planes = av1_num_planes(cm);
struct loopfilter *const lf = &cm->lf;
int disable_filter_rt_screen = 0;
(void)sd;
// Enable loop filter sharpness only for allintra encoding mode,
// as frames do not have to serve as references to others
lf->sharpness_level =
cpi->oxcf.mode == ALLINTRA ? cpi->oxcf.algo_cfg.sharpness : 0;
if (cpi->oxcf.algo_cfg.enable_adaptive_sharpness) {
// Loop filter sharpness levels are highly nonlinear. Visually, lf sharpness
// 1 is closer to 7 than it is to 0, so in practice adaptive sharpness is
// written to pick levels 0, 1 and 7 to keep it simple.
int max_lf_sharpness;
if (cm->quant_params.base_qindex <= 120) {
max_lf_sharpness = 7;
} else if (cm->quant_params.base_qindex <= 160) {
max_lf_sharpness = 1;
} else {
max_lf_sharpness = 0;
}
lf->sharpness_level = AOMMIN(lf->sharpness_level, max_lf_sharpness);
}
if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN &&
cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ &&
cpi->sf.rt_sf.skip_lf_screen)
disable_filter_rt_screen = av1_cyclic_refresh_disable_lf_cdef(cpi);
if (disable_filter_rt_screen ||
cpi->oxcf.algo_cfg.loopfilter_control == LOOPFILTER_NONE ||
(cpi->oxcf.algo_cfg.loopfilter_control == LOOPFILTER_REFERENCE &&
cpi->ppi->rtc_ref.non_reference_frame)) {
lf->filter_level[0] = 0;
lf->filter_level[1] = 0;
return;
}
if (method == LPF_PICK_MINIMAL_LPF) {
lf->filter_level[0] = 0;
lf->filter_level[1] = 0;
} else if (method >= LPF_PICK_FROM_Q) {
const int min_filter_level = 0;
const int max_filter_level = get_max_filter_level(cpi);
const int q = av1_ac_quant_QTX(cm->quant_params.base_qindex, 0,
seq_params->bit_depth);
// based on tests result for rtc test set
// 0.04590 boosted or 0.02295 non-booseted in 18-bit fixed point
const int strength_boost_q_treshold = 0;
int inter_frame_multiplier =
(q > strength_boost_q_treshold ||
(cpi->sf.rt_sf.use_nonrd_pick_mode &&
cpi->common.width * cpi->common.height > 352 * 288))
? 12034
: 6017;
// Increase strength on base TL0 for temporal layers, for low-resoln,
// based on frame source_sad.
if (cpi->svc.number_temporal_layers > 1 &&
cpi->svc.temporal_layer_id == 0 &&
cpi->common.width * cpi->common.height <= 352 * 288 &&
cpi->sf.rt_sf.use_nonrd_pick_mode) {
if (cpi->rc.frame_source_sad > 100000)
inter_frame_multiplier = inter_frame_multiplier << 1;
else if (cpi->rc.frame_source_sad > 50000)
inter_frame_multiplier = 3 * (inter_frame_multiplier >> 1);
} else if (cpi->sf.rt_sf.use_fast_fixed_part) {
inter_frame_multiplier = inter_frame_multiplier << 1;
}
// These values were determined by linear fitting the result of the
// searched level for 8 bit depth:
// Keyframes: filt_guess = q * 0.06699 - 1.60817
// Other frames: filt_guess = q * inter_frame_multiplier + 2.48225
//
// And high bit depth separately:
// filt_guess = q * 0.316206 + 3.87252
int filt_guess;
switch (seq_params->bit_depth) {
case AOM_BITS_8:
filt_guess =
(cm->current_frame.frame_type == KEY_FRAME)
? ROUND_POWER_OF_TWO(q * 17563 - 421574, 18)
: ROUND_POWER_OF_TWO(q * inter_frame_multiplier + 650707, 18);
break;
case AOM_BITS_10:
filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 4060632, 20);
break;
case AOM_BITS_12:
filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 16242526, 22);
break;
default:
assert(0 &&
"bit_depth should be AOM_BITS_8, AOM_BITS_10 "
"or AOM_BITS_12");
return;
}
if (seq_params->bit_depth != AOM_BITS_8 &&
cm->current_frame.frame_type == KEY_FRAME)
filt_guess -= 4;
// TODO(chengchen): retrain the model for Y, U, V filter levels
lf->filter_level[0] = clamp(filt_guess, min_filter_level, max_filter_level);
lf->filter_level[1] = clamp(filt_guess, min_filter_level, max_filter_level);
lf->filter_level_u = clamp(filt_guess, min_filter_level, max_filter_level);
lf->filter_level_v = clamp(filt_guess, min_filter_level, max_filter_level);
if (cpi->oxcf.algo_cfg.loopfilter_control == LOOPFILTER_SELECTIVELY &&
!frame_is_intra_only(cm) && !cpi->rc.high_source_sad) {
if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN) {
lf->filter_level[0] = 0;
lf->filter_level[1] = 0;
} else {
const int num4x4 = (cm->width >> 2) * (cm->height >> 2);
const int newmv_thresh = 7;
const int distance_since_key_thresh = 5;
if ((cpi->td.rd_counts.newmv_or_intra_blocks * 100 / num4x4) <
newmv_thresh &&
cpi->rc.frames_since_key > distance_since_key_thresh) {
lf->filter_level[0] = 0;
lf->filter_level[1] = 0;
}
}
}
} else {
int last_frame_filter_level[4] = { 0 };
if (!frame_is_intra_only(cm)) {
last_frame_filter_level[0] = cpi->ppi->filter_level[0];
last_frame_filter_level[1] = cpi->ppi->filter_level[1];
last_frame_filter_level[2] = cpi->ppi->filter_level_u;
last_frame_filter_level[3] = cpi->ppi->filter_level_v;
}
// The frame buffer last_frame_uf is used to store the non-loop filtered
// reconstructed frame in search_filter_level().
if (aom_realloc_frame_buffer(
&cpi->last_frame_uf, cm->width, cm->height,
seq_params->subsampling_x, seq_params->subsampling_y,
seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels,
cm->features.byte_alignment, NULL, NULL, NULL, false, 0))
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate last frame buffer");
int64_t zero_filter_sse[MAX_MB_PLANE] = { 0 };
int64_t best_filter_sse[MAX_MB_PLANE] = { 0 };
if (cpi->sf.lpf_sf.skip_loop_filter_using_filt_error >= 1) {
for (int plane = 0; plane < num_planes; plane++) {
zero_filter_sse[plane] = aom_get_sse_plane(
sd, &cm->cur_frame->buf, plane, cm->seq_params->use_highbitdepth);
}
}
lf->filter_level[0] = lf->filter_level[1] =
search_filter_level(sd, cpi, method == LPF_PICK_FROM_SUBIMAGE,
last_frame_filter_level, 0, 2, &best_filter_sse[0]);
if (method != LPF_PICK_FROM_FULL_IMAGE_NON_DUAL) {
lf->filter_level[0] = search_filter_level(
sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, last_frame_filter_level, 0,
0, &best_filter_sse[0]);
lf->filter_level[1] = search_filter_level(
sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, last_frame_filter_level, 0,
1, &best_filter_sse[0]);
}
if (num_planes > 1) {
lf->filter_level_u = search_filter_level(
sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, last_frame_filter_level, 1,
0, &best_filter_sse[1]);
lf->filter_level_v = search_filter_level(
sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, last_frame_filter_level, 2,
0, &best_filter_sse[2]);
}
lf->backup_filter_level[0] = lf->filter_level[0];
lf->backup_filter_level[1] = lf->filter_level[1];
lf->backup_filter_level_u = lf->filter_level_u;
lf->backup_filter_level_v = lf->filter_level_v;
if (cpi->sf.lpf_sf.adaptive_luma_loop_filter_skip >= 1) {
int32_t min_ref_filter_level[2] = { MAX_LOOP_FILTER, MAX_LOOP_FILTER };
// Find the minimum luma filter levels across all reference frames.
for (int ref = LAST_FRAME; ref <= ALTREF_FRAME; ++ref) {
const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref);
if (buf == NULL) continue;
if (buf->filter_level[0] != -1)
min_ref_filter_level[0] =
AOMMIN(min_ref_filter_level[0], buf->filter_level[0]);
if (buf->filter_level[1] != -1)
min_ref_filter_level[1] =
AOMMIN(min_ref_filter_level[1], buf->filter_level[1]);
}
// Reset luma filter levels to zero based on minimum filter levels of
// reference frames and current frame's pyramid level.
unsigned int pyramid_level = cm->current_frame.pyramid_level;
if (pyramid_level > 1) {
int filter_threshold;
if (pyramid_level >= 5)
filter_threshold = 32;
else if (pyramid_level >= 4)
filter_threshold = 16;
else
filter_threshold = 8;
const bool reset_filter_level_y =
lf->filter_level[0] < filter_threshold &&
lf->filter_level[1] < filter_threshold &&
lf->filter_level_u < filter_threshold &&
lf->filter_level_v < filter_threshold &&
min_ref_filter_level[0] == 0 && min_ref_filter_level[1] == 0;
if (reset_filter_level_y) {
lf->filter_level[0] = 0;
lf->filter_level[1] = 0;
}
}
}
if (lf->filter_level[0] != 0 && lf->filter_level[1] != 0 &&
cpi->sf.lpf_sf.skip_loop_filter_using_filt_error >= 1) {
const double pct_improvement_thresh = 2.0;
bool reset_filter_level_y = true;
// Calculate the percentage improvement in SSE for each plane. This
// measures the relative reduction in error when applying the filter
// compared to no filtering.
for (int plane = 0; plane < num_planes; plane++) {
const double pct_improvement_sse =
((zero_filter_sse[plane] - best_filter_sse[plane]) * 100.0) /
zero_filter_sse[plane];
reset_filter_level_y &= pct_improvement_sse < pct_improvement_thresh;
}
if (reset_filter_level_y) {
lf->filter_level[0] = 0;
lf->filter_level[1] = 0;
}
}
// Store the current frame's filter levels to be referenced
// while determining the minimum filter level from reference frames.
cm->cur_frame->filter_level[0] = lf->filter_level[0];
cm->cur_frame->filter_level[1] = lf->filter_level[1];
}
}
|