1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/bitops.h"
#include "aom_ports/mem.h"
#include "aom_ports/aom_once.h"
#include "av1/common/common.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/pred_common.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/seg_common.h"
#include "av1/encoder/cost.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/nonrd_opt.h"
#include "av1/encoder/ratectrl.h"
#include "av1/encoder/rd.h"
#include "config/aom_config.h"
#define RD_THRESH_POW 1.25
// The baseline rd thresholds for breaking out of the rd loop for
// certain modes are assumed to be based on 8x8 blocks.
// This table is used to correct for block size.
// The factors here are << 2 (2 = x0.5, 32 = x8 etc).
static const uint8_t rd_thresh_block_size_factor[BLOCK_SIZES_ALL] = {
2, 3, 3, 4, 6, 6, 8, 12, 12, 16, 24, 24, 32, 48, 48, 64, 4, 4, 8, 8, 16, 16
};
static const int use_intra_ext_tx_for_txsize[EXT_TX_SETS_INTRA]
[EXT_TX_SIZES] = {
{ 1, 1, 1, 1 }, // unused
{ 1, 1, 0, 0 },
{ 0, 0, 1, 0 },
};
static const int use_inter_ext_tx_for_txsize[EXT_TX_SETS_INTER]
[EXT_TX_SIZES] = {
{ 1, 1, 1, 1 }, // unused
{ 1, 1, 0, 0 },
{ 0, 0, 1, 0 },
{ 0, 1, 1, 1 },
};
static const int av1_ext_tx_set_idx_to_type[2][AOMMAX(EXT_TX_SETS_INTRA,
EXT_TX_SETS_INTER)] = {
{
// Intra
EXT_TX_SET_DCTONLY,
EXT_TX_SET_DTT4_IDTX_1DDCT,
EXT_TX_SET_DTT4_IDTX,
},
{
// Inter
EXT_TX_SET_DCTONLY,
EXT_TX_SET_ALL16,
EXT_TX_SET_DTT9_IDTX_1DDCT,
EXT_TX_SET_DCT_IDTX,
},
};
void av1_fill_mode_rates(AV1_COMMON *const cm, ModeCosts *mode_costs,
FRAME_CONTEXT *fc) {
int i, j;
for (i = 0; i < PARTITION_CONTEXTS; ++i)
av1_cost_tokens_from_cdf(mode_costs->partition_cost[i],
fc->partition_cdf[i], NULL);
if (cm->current_frame.skip_mode_info.skip_mode_flag) {
for (i = 0; i < SKIP_MODE_CONTEXTS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->skip_mode_cost[i],
fc->skip_mode_cdfs[i], NULL);
}
}
for (i = 0; i < SKIP_CONTEXTS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->skip_txfm_cost[i],
fc->skip_txfm_cdfs[i], NULL);
}
for (i = 0; i < KF_MODE_CONTEXTS; ++i)
for (j = 0; j < KF_MODE_CONTEXTS; ++j)
av1_cost_tokens_from_cdf(mode_costs->y_mode_costs[i][j],
fc->kf_y_cdf[i][j], NULL);
for (i = 0; i < BLOCK_SIZE_GROUPS; ++i)
av1_cost_tokens_from_cdf(mode_costs->mbmode_cost[i], fc->y_mode_cdf[i],
NULL);
for (i = 0; i < CFL_ALLOWED_TYPES; ++i)
for (j = 0; j < INTRA_MODES; ++j)
av1_cost_tokens_from_cdf(mode_costs->intra_uv_mode_cost[i][j],
fc->uv_mode_cdf[i][j], NULL);
av1_cost_tokens_from_cdf(mode_costs->filter_intra_mode_cost,
fc->filter_intra_mode_cdf, NULL);
for (i = 0; i < BLOCK_SIZES_ALL; ++i) {
if (av1_filter_intra_allowed_bsize(cm, i))
av1_cost_tokens_from_cdf(mode_costs->filter_intra_cost[i],
fc->filter_intra_cdfs[i], NULL);
}
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
av1_cost_tokens_from_cdf(mode_costs->switchable_interp_costs[i],
fc->switchable_interp_cdf[i], NULL);
for (i = 0; i < PALATTE_BSIZE_CTXS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->palette_y_size_cost[i],
fc->palette_y_size_cdf[i], NULL);
av1_cost_tokens_from_cdf(mode_costs->palette_uv_size_cost[i],
fc->palette_uv_size_cdf[i], NULL);
for (j = 0; j < PALETTE_Y_MODE_CONTEXTS; ++j) {
av1_cost_tokens_from_cdf(mode_costs->palette_y_mode_cost[i][j],
fc->palette_y_mode_cdf[i][j], NULL);
}
}
for (i = 0; i < PALETTE_UV_MODE_CONTEXTS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->palette_uv_mode_cost[i],
fc->palette_uv_mode_cdf[i], NULL);
}
for (i = 0; i < PALETTE_SIZES; ++i) {
for (j = 0; j < PALETTE_COLOR_INDEX_CONTEXTS; ++j) {
av1_cost_tokens_from_cdf(mode_costs->palette_y_color_cost[i][j],
fc->palette_y_color_index_cdf[i][j], NULL);
av1_cost_tokens_from_cdf(mode_costs->palette_uv_color_cost[i][j],
fc->palette_uv_color_index_cdf[i][j], NULL);
}
}
int sign_cost[CFL_JOINT_SIGNS];
av1_cost_tokens_from_cdf(sign_cost, fc->cfl_sign_cdf, NULL);
for (int joint_sign = 0; joint_sign < CFL_JOINT_SIGNS; joint_sign++) {
int *cost_u = mode_costs->cfl_cost[joint_sign][CFL_PRED_U];
int *cost_v = mode_costs->cfl_cost[joint_sign][CFL_PRED_V];
if (CFL_SIGN_U(joint_sign) == CFL_SIGN_ZERO) {
memset(cost_u, 0, CFL_ALPHABET_SIZE * sizeof(*cost_u));
} else {
const aom_cdf_prob *cdf_u = fc->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
av1_cost_tokens_from_cdf(cost_u, cdf_u, NULL);
}
if (CFL_SIGN_V(joint_sign) == CFL_SIGN_ZERO) {
memset(cost_v, 0, CFL_ALPHABET_SIZE * sizeof(*cost_v));
} else {
const aom_cdf_prob *cdf_v = fc->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
av1_cost_tokens_from_cdf(cost_v, cdf_v, NULL);
}
for (int u = 0; u < CFL_ALPHABET_SIZE; u++)
cost_u[u] += sign_cost[joint_sign];
}
for (i = 0; i < MAX_TX_CATS; ++i)
for (j = 0; j < TX_SIZE_CONTEXTS; ++j)
av1_cost_tokens_from_cdf(mode_costs->tx_size_cost[i][j],
fc->tx_size_cdf[i][j], NULL);
for (i = 0; i < TXFM_PARTITION_CONTEXTS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->txfm_partition_cost[i],
fc->txfm_partition_cdf[i], NULL);
}
for (i = TX_4X4; i < EXT_TX_SIZES; ++i) {
int s;
for (s = 1; s < EXT_TX_SETS_INTER; ++s) {
if (use_inter_ext_tx_for_txsize[s][i]) {
av1_cost_tokens_from_cdf(
mode_costs->inter_tx_type_costs[s][i], fc->inter_ext_tx_cdf[s][i],
av1_ext_tx_inv[av1_ext_tx_set_idx_to_type[1][s]]);
}
}
for (s = 1; s < EXT_TX_SETS_INTRA; ++s) {
if (use_intra_ext_tx_for_txsize[s][i]) {
for (j = 0; j < INTRA_MODES; ++j) {
av1_cost_tokens_from_cdf(
mode_costs->intra_tx_type_costs[s][i][j],
fc->intra_ext_tx_cdf[s][i][j],
av1_ext_tx_inv[av1_ext_tx_set_idx_to_type[0][s]]);
}
}
}
}
for (i = 0; i < DIRECTIONAL_MODES; ++i) {
av1_cost_tokens_from_cdf(mode_costs->angle_delta_cost[i],
fc->angle_delta_cdf[i], NULL);
}
av1_cost_tokens_from_cdf(mode_costs->intrabc_cost, fc->intrabc_cdf, NULL);
for (i = 0; i < SPATIAL_PREDICTION_PROBS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->spatial_pred_cost[i],
fc->seg.spatial_pred_seg_cdf[i], NULL);
}
for (i = 0; i < SEG_TEMPORAL_PRED_CTXS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->tmp_pred_cost[i], fc->seg.pred_cdf[i],
NULL);
}
if (!frame_is_intra_only(cm)) {
for (i = 0; i < COMP_INTER_CONTEXTS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->comp_inter_cost[i],
fc->comp_inter_cdf[i], NULL);
}
for (i = 0; i < REF_CONTEXTS; ++i) {
for (j = 0; j < SINGLE_REFS - 1; ++j) {
av1_cost_tokens_from_cdf(mode_costs->single_ref_cost[i][j],
fc->single_ref_cdf[i][j], NULL);
}
}
for (i = 0; i < COMP_REF_TYPE_CONTEXTS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->comp_ref_type_cost[i],
fc->comp_ref_type_cdf[i], NULL);
}
for (i = 0; i < UNI_COMP_REF_CONTEXTS; ++i) {
for (j = 0; j < UNIDIR_COMP_REFS - 1; ++j) {
av1_cost_tokens_from_cdf(mode_costs->uni_comp_ref_cost[i][j],
fc->uni_comp_ref_cdf[i][j], NULL);
}
}
for (i = 0; i < REF_CONTEXTS; ++i) {
for (j = 0; j < FWD_REFS - 1; ++j) {
av1_cost_tokens_from_cdf(mode_costs->comp_ref_cost[i][j],
fc->comp_ref_cdf[i][j], NULL);
}
}
for (i = 0; i < REF_CONTEXTS; ++i) {
for (j = 0; j < BWD_REFS - 1; ++j) {
av1_cost_tokens_from_cdf(mode_costs->comp_bwdref_cost[i][j],
fc->comp_bwdref_cdf[i][j], NULL);
}
}
for (i = 0; i < INTRA_INTER_CONTEXTS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->intra_inter_cost[i],
fc->intra_inter_cdf[i], NULL);
}
for (i = 0; i < NEWMV_MODE_CONTEXTS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->newmv_mode_cost[i], fc->newmv_cdf[i],
NULL);
}
for (i = 0; i < GLOBALMV_MODE_CONTEXTS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->zeromv_mode_cost[i],
fc->zeromv_cdf[i], NULL);
}
for (i = 0; i < REFMV_MODE_CONTEXTS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->refmv_mode_cost[i], fc->refmv_cdf[i],
NULL);
}
for (i = 0; i < DRL_MODE_CONTEXTS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->drl_mode_cost0[i], fc->drl_cdf[i],
NULL);
}
for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
av1_cost_tokens_from_cdf(mode_costs->inter_compound_mode_cost[i],
fc->inter_compound_mode_cdf[i], NULL);
for (i = 0; i < BLOCK_SIZES_ALL; ++i)
av1_cost_tokens_from_cdf(mode_costs->compound_type_cost[i],
fc->compound_type_cdf[i], NULL);
for (i = 0; i < BLOCK_SIZES_ALL; ++i) {
if (av1_is_wedge_used(i)) {
av1_cost_tokens_from_cdf(mode_costs->wedge_idx_cost[i],
fc->wedge_idx_cdf[i], NULL);
}
}
for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->interintra_cost[i],
fc->interintra_cdf[i], NULL);
av1_cost_tokens_from_cdf(mode_costs->interintra_mode_cost[i],
fc->interintra_mode_cdf[i], NULL);
}
for (i = 0; i < BLOCK_SIZES_ALL; ++i) {
av1_cost_tokens_from_cdf(mode_costs->wedge_interintra_cost[i],
fc->wedge_interintra_cdf[i], NULL);
}
for (i = BLOCK_8X8; i < BLOCK_SIZES_ALL; i++) {
av1_cost_tokens_from_cdf(mode_costs->motion_mode_cost[i],
fc->motion_mode_cdf[i], NULL);
}
for (i = BLOCK_8X8; i < BLOCK_SIZES_ALL; i++) {
av1_cost_tokens_from_cdf(mode_costs->motion_mode_cost1[i],
fc->obmc_cdf[i], NULL);
}
for (i = 0; i < COMP_INDEX_CONTEXTS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->comp_idx_cost[i],
fc->compound_index_cdf[i], NULL);
}
for (i = 0; i < COMP_GROUP_IDX_CONTEXTS; ++i) {
av1_cost_tokens_from_cdf(mode_costs->comp_group_idx_cost[i],
fc->comp_group_idx_cdf[i], NULL);
}
}
}
#if !CONFIG_REALTIME_ONLY
void av1_fill_lr_rates(ModeCosts *mode_costs, FRAME_CONTEXT *fc) {
av1_cost_tokens_from_cdf(mode_costs->switchable_restore_cost,
fc->switchable_restore_cdf, NULL);
av1_cost_tokens_from_cdf(mode_costs->wiener_restore_cost,
fc->wiener_restore_cdf, NULL);
av1_cost_tokens_from_cdf(mode_costs->sgrproj_restore_cost,
fc->sgrproj_restore_cdf, NULL);
}
#endif // !CONFIG_REALTIME_ONLY
// Values are now correlated to quantizer.
static int sad_per_bit_lut_8[QINDEX_RANGE];
static int sad_per_bit_lut_10[QINDEX_RANGE];
static int sad_per_bit_lut_12[QINDEX_RANGE];
static void init_me_luts_bd(int *bit16lut, int range,
aom_bit_depth_t bit_depth) {
int i;
// Initialize the sad lut tables using a formulaic calculation for now.
// This is to make it easier to resolve the impact of experimental changes
// to the quantizer tables.
for (i = 0; i < range; i++) {
const double q = av1_convert_qindex_to_q(i, bit_depth);
bit16lut[i] = (int)(0.0418 * q + 2.4107);
}
}
static void init_me_luts(void) {
init_me_luts_bd(sad_per_bit_lut_8, QINDEX_RANGE, AOM_BITS_8);
init_me_luts_bd(sad_per_bit_lut_10, QINDEX_RANGE, AOM_BITS_10);
init_me_luts_bd(sad_per_bit_lut_12, QINDEX_RANGE, AOM_BITS_12);
}
void av1_init_me_luts(void) { aom_once(init_me_luts); }
static const int rd_boost_factor[16] = { 64, 32, 32, 32, 24, 16, 12, 12,
8, 8, 4, 4, 2, 2, 1, 0 };
static const int rd_layer_depth_factor[7] = {
160, 160, 160, 160, 192, 208, 224
};
// Returns the default rd multiplier for inter frames for a given qindex.
// The function here is a first pass estimate based on data from
// a previous Vizer run
static double def_inter_rd_multiplier(int qindex) {
return 3.2 + (0.0015 * (double)qindex);
}
// Returns the default rd multiplier for ARF/Golden Frames for a given qindex.
// The function here is a first pass estimate based on data from
// a previous Vizer run
static double def_arf_rd_multiplier(int qindex) {
return 3.25 + (0.0015 * (double)qindex);
}
// Returns the default rd multiplier for key frames for a given qindex.
// The function here is a first pass estimate based on data from
// a previous Vizer run
static double def_kf_rd_multiplier(int qindex) {
return 3.3 + (0.0015 * (double)qindex);
}
int av1_compute_rd_mult_based_on_qindex(aom_bit_depth_t bit_depth,
FRAME_UPDATE_TYPE update_type,
int qindex, aom_tune_metric tuning) {
const int q = av1_dc_quant_QTX(qindex, 0, bit_depth);
int64_t rdmult = q * q;
if (update_type == KF_UPDATE) {
double def_rd_q_mult = def_kf_rd_multiplier(q);
rdmult = (int64_t)((double)rdmult * def_rd_q_mult);
} else if ((update_type == GF_UPDATE) || (update_type == ARF_UPDATE)) {
double def_rd_q_mult = def_arf_rd_multiplier(q);
rdmult = (int64_t)((double)rdmult * def_rd_q_mult);
} else {
double def_rd_q_mult = def_inter_rd_multiplier(q);
rdmult = (int64_t)((double)rdmult * def_rd_q_mult);
}
if (tuning == AOM_TUNE_IQ || tuning == AOM_TUNE_SSIMULACRA2) {
// Further multiply rdmult (by up to 200/128 = 1.5625) to improve image
// quality. The most noticeable effect is a mild bias towards choosing
// larger transform sizes (e.g. one 16x16 transform instead of 4 8x8
// transforms).
// For very high qindexes, start progressively reducing the weight towards
// unity (128/128), as transforms are large enough and making them even
// larger actually harms subjective quality and SSIMULACRA 2 scores.
// This weight part of the equation was determined by iteratively increasing
// weight on CID22 and Daala's subset1, and observing its effects on visual
// quality and SSIMULACRA 2 scores along the usable (0-100) range.
// The ramp-down part of the equation was determined by choosing a fixed
// initial qindex point [qindex 159 = (255 - 159) * 3 / 4] where SSIMULACRA
// 2 scores for encodes with qindexes greater than 159 scored at or above
// their equivalents with no rdmult adjustment.
const int weight = clamp(((255 - qindex) * 3) / 4, 0, 72) + 128;
rdmult = (int64_t)((double)rdmult * weight / 128.0);
}
switch (bit_depth) {
case AOM_BITS_8: break;
case AOM_BITS_10: rdmult = ROUND_POWER_OF_TWO(rdmult, 4); break;
case AOM_BITS_12: rdmult = ROUND_POWER_OF_TWO(rdmult, 8); break;
default:
assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12");
return -1;
}
return rdmult > 0 ? (int)AOMMIN(rdmult, INT_MAX) : 1;
}
int av1_compute_rd_mult(const int qindex, const aom_bit_depth_t bit_depth,
const FRAME_UPDATE_TYPE update_type,
const int layer_depth, const int boost_index,
const FRAME_TYPE frame_type,
const int use_fixed_qp_offsets,
const int is_stat_consumption_stage,
const aom_tune_metric tuning) {
int64_t rdmult = av1_compute_rd_mult_based_on_qindex(bit_depth, update_type,
qindex, tuning);
if (is_stat_consumption_stage && !use_fixed_qp_offsets &&
(frame_type != KEY_FRAME)) {
// Layer depth adjustment
rdmult = (rdmult * rd_layer_depth_factor[layer_depth]) >> 7;
// ARF boost adjustment
rdmult += ((rdmult * rd_boost_factor[boost_index]) >> 7);
}
return rdmult > 0 ? (int)AOMMIN(rdmult, INT_MAX) : 1;
}
int av1_get_deltaq_offset(aom_bit_depth_t bit_depth, int qindex, double beta) {
assert(beta > 0.0);
int q = av1_dc_quant_QTX(qindex, 0, bit_depth);
int newq = (int)rint(q / sqrt(beta));
int orig_qindex = qindex;
if (newq == q) {
return 0;
}
if (newq < q) {
while (qindex > 0) {
qindex--;
q = av1_dc_quant_QTX(qindex, 0, bit_depth);
if (newq >= q) {
break;
}
}
} else {
while (qindex < MAXQ) {
qindex++;
q = av1_dc_quant_QTX(qindex, 0, bit_depth);
if (newq <= q) {
break;
}
}
}
return qindex - orig_qindex;
}
int av1_adjust_q_from_delta_q_res(int delta_q_res, int prev_qindex,
int curr_qindex) {
curr_qindex = clamp(curr_qindex, delta_q_res, 256 - delta_q_res);
const int sign_deltaq_index = curr_qindex - prev_qindex >= 0 ? 1 : -1;
const int deltaq_deadzone = delta_q_res / 4;
const int qmask = ~(delta_q_res - 1);
int abs_deltaq_index = abs(curr_qindex - prev_qindex);
abs_deltaq_index = (abs_deltaq_index + deltaq_deadzone) & qmask;
int adjust_qindex = prev_qindex + sign_deltaq_index * abs_deltaq_index;
adjust_qindex = AOMMAX(adjust_qindex, MINQ + 1);
return adjust_qindex;
}
#if !CONFIG_REALTIME_ONLY
int av1_get_adaptive_rdmult(const AV1_COMP *cpi, double beta) {
assert(beta > 0.0);
const AV1_COMMON *cm = &cpi->common;
const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100));
const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6);
const FRAME_TYPE frame_type = cm->current_frame.frame_type;
const int qindex_rdmult = cm->quant_params.base_qindex;
return (int)(av1_compute_rd_mult(
qindex_rdmult, cm->seq_params->bit_depth,
cpi->ppi->gf_group.update_type[cpi->gf_frame_index],
layer_depth, boost_index, frame_type,
cpi->oxcf.q_cfg.use_fixed_qp_offsets,
is_stat_consumption_stage(cpi), cpi->oxcf.tune_cfg.tuning) /
beta);
}
#endif // !CONFIG_REALTIME_ONLY
static int compute_rd_thresh_factor(int qindex, aom_bit_depth_t bit_depth) {
double q;
switch (bit_depth) {
case AOM_BITS_8: q = av1_dc_quant_QTX(qindex, 0, AOM_BITS_8) / 4.0; break;
case AOM_BITS_10:
q = av1_dc_quant_QTX(qindex, 0, AOM_BITS_10) / 16.0;
break;
case AOM_BITS_12:
q = av1_dc_quant_QTX(qindex, 0, AOM_BITS_12) / 64.0;
break;
default:
assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12");
return -1;
}
// TODO(debargha): Adjust the function below.
return AOMMAX((int)(pow(q, RD_THRESH_POW) * 5.12), 8);
}
void av1_set_sad_per_bit(const AV1_COMP *cpi, int *sadperbit, int qindex) {
switch (cpi->common.seq_params->bit_depth) {
case AOM_BITS_8: *sadperbit = sad_per_bit_lut_8[qindex]; break;
case AOM_BITS_10: *sadperbit = sad_per_bit_lut_10[qindex]; break;
case AOM_BITS_12: *sadperbit = sad_per_bit_lut_12[qindex]; break;
default:
assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12");
}
}
static void set_block_thresholds(const AV1_COMMON *cm, RD_OPT *rd,
int use_nonrd_pick_mode) {
int i, bsize, segment_id;
THR_MODES mode_indices[RTC_REFS * RTC_MODES] = { 0 };
int num_modes_count = use_nonrd_pick_mode ? 0 : MAX_MODES;
if (use_nonrd_pick_mode) {
for (int r_idx = 0; r_idx < RTC_REFS; r_idx++) {
const MV_REFERENCE_FRAME ref = real_time_ref_combos[r_idx][0];
if (ref != INTRA_FRAME) {
for (i = 0; i < RTC_INTER_MODES; i++)
mode_indices[num_modes_count++] =
mode_idx[ref][mode_offset(inter_mode_list[i])];
} else {
for (i = 0; i < RTC_INTRA_MODES; i++)
mode_indices[num_modes_count++] =
mode_idx[ref][mode_offset(intra_mode_list[i])];
}
}
}
for (segment_id = 0; segment_id < MAX_SEGMENTS; ++segment_id) {
const int qindex = clamp(
av1_get_qindex(&cm->seg, segment_id, cm->quant_params.base_qindex) +
cm->quant_params.y_dc_delta_q,
0, MAXQ);
const int q = compute_rd_thresh_factor(qindex, cm->seq_params->bit_depth);
for (bsize = 0; bsize < BLOCK_SIZES_ALL; ++bsize) {
// Threshold here seems unnecessarily harsh but fine given actual
// range of values used for cpi->sf.thresh_mult[].
const int t = q * rd_thresh_block_size_factor[bsize];
const int thresh_max = INT_MAX / t;
for (i = 0; i < num_modes_count; ++i) {
const int mode_index = use_nonrd_pick_mode ? mode_indices[i] : i;
rd->threshes[segment_id][bsize][mode_index] =
rd->thresh_mult[mode_index] < thresh_max
? rd->thresh_mult[mode_index] * t / 4
: INT_MAX;
}
}
}
}
void av1_fill_coeff_costs(CoeffCosts *coeff_costs, FRAME_CONTEXT *fc,
const int num_planes) {
const int nplanes = AOMMIN(num_planes, PLANE_TYPES);
for (int eob_multi_size = 0; eob_multi_size < 7; ++eob_multi_size) {
for (int plane = 0; plane < nplanes; ++plane) {
LV_MAP_EOB_COST *pcost = &coeff_costs->eob_costs[eob_multi_size][plane];
for (int ctx = 0; ctx < 2; ++ctx) {
aom_cdf_prob *pcdf;
switch (eob_multi_size) {
case 0: pcdf = fc->eob_flag_cdf16[plane][ctx]; break;
case 1: pcdf = fc->eob_flag_cdf32[plane][ctx]; break;
case 2: pcdf = fc->eob_flag_cdf64[plane][ctx]; break;
case 3: pcdf = fc->eob_flag_cdf128[plane][ctx]; break;
case 4: pcdf = fc->eob_flag_cdf256[plane][ctx]; break;
case 5: pcdf = fc->eob_flag_cdf512[plane][ctx]; break;
case 6:
default: pcdf = fc->eob_flag_cdf1024[plane][ctx]; break;
}
av1_cost_tokens_from_cdf(pcost->eob_cost[ctx], pcdf, NULL);
}
}
}
for (int tx_size = 0; tx_size < TX_SIZES; ++tx_size) {
for (int plane = 0; plane < nplanes; ++plane) {
LV_MAP_COEFF_COST *pcost = &coeff_costs->coeff_costs[tx_size][plane];
for (int ctx = 0; ctx < TXB_SKIP_CONTEXTS; ++ctx)
av1_cost_tokens_from_cdf(pcost->txb_skip_cost[ctx],
fc->txb_skip_cdf[tx_size][ctx], NULL);
for (int ctx = 0; ctx < SIG_COEF_CONTEXTS_EOB; ++ctx)
av1_cost_tokens_from_cdf(pcost->base_eob_cost[ctx],
fc->coeff_base_eob_cdf[tx_size][plane][ctx],
NULL);
for (int ctx = 0; ctx < SIG_COEF_CONTEXTS; ++ctx)
av1_cost_tokens_from_cdf(pcost->base_cost[ctx],
fc->coeff_base_cdf[tx_size][plane][ctx], NULL);
for (int ctx = 0; ctx < SIG_COEF_CONTEXTS; ++ctx) {
pcost->base_cost[ctx][4] = 0;
pcost->base_cost[ctx][5] = pcost->base_cost[ctx][1] +
av1_cost_literal(1) -
pcost->base_cost[ctx][0];
pcost->base_cost[ctx][6] =
pcost->base_cost[ctx][2] - pcost->base_cost[ctx][1];
pcost->base_cost[ctx][7] =
pcost->base_cost[ctx][3] - pcost->base_cost[ctx][2];
}
for (int ctx = 0; ctx < EOB_COEF_CONTEXTS; ++ctx)
av1_cost_tokens_from_cdf(pcost->eob_extra_cost[ctx],
fc->eob_extra_cdf[tx_size][plane][ctx], NULL);
for (int ctx = 0; ctx < DC_SIGN_CONTEXTS; ++ctx)
av1_cost_tokens_from_cdf(pcost->dc_sign_cost[ctx],
fc->dc_sign_cdf[plane][ctx], NULL);
for (int ctx = 0; ctx < LEVEL_CONTEXTS; ++ctx) {
int br_rate[BR_CDF_SIZE];
int prev_cost = 0;
int i, j;
av1_cost_tokens_from_cdf(
br_rate, fc->coeff_br_cdf[AOMMIN(tx_size, TX_32X32)][plane][ctx],
NULL);
for (i = 0; i < COEFF_BASE_RANGE; i += BR_CDF_SIZE - 1) {
for (j = 0; j < BR_CDF_SIZE - 1; j++) {
pcost->lps_cost[ctx][i + j] = prev_cost + br_rate[j];
}
prev_cost += br_rate[j];
}
pcost->lps_cost[ctx][i] = prev_cost;
}
for (int ctx = 0; ctx < LEVEL_CONTEXTS; ++ctx) {
pcost->lps_cost[ctx][0 + COEFF_BASE_RANGE + 1] =
pcost->lps_cost[ctx][0];
for (int i = 1; i <= COEFF_BASE_RANGE; ++i) {
pcost->lps_cost[ctx][i + COEFF_BASE_RANGE + 1] =
pcost->lps_cost[ctx][i] - pcost->lps_cost[ctx][i - 1];
}
}
}
}
}
void av1_fill_mv_costs(const nmv_context *nmvc, int integer_mv, int usehp,
MvCosts *mv_costs) {
// Avoid accessing 'mv_costs' when it is not allocated.
if (mv_costs == NULL) return;
mv_costs->nmv_cost[0] = &mv_costs->nmv_cost_alloc[0][MV_MAX];
mv_costs->nmv_cost[1] = &mv_costs->nmv_cost_alloc[1][MV_MAX];
mv_costs->nmv_cost_hp[0] = &mv_costs->nmv_cost_hp_alloc[0][MV_MAX];
mv_costs->nmv_cost_hp[1] = &mv_costs->nmv_cost_hp_alloc[1][MV_MAX];
if (integer_mv) {
mv_costs->mv_cost_stack = (int **)&mv_costs->nmv_cost;
av1_build_nmv_cost_table(mv_costs->nmv_joint_cost, mv_costs->mv_cost_stack,
nmvc, MV_SUBPEL_NONE);
} else {
mv_costs->mv_cost_stack =
usehp ? mv_costs->nmv_cost_hp : mv_costs->nmv_cost;
av1_build_nmv_cost_table(mv_costs->nmv_joint_cost, mv_costs->mv_cost_stack,
nmvc, usehp);
}
}
void av1_fill_dv_costs(const nmv_context *ndvc, IntraBCMVCosts *dv_costs) {
dv_costs->dv_costs[0] = &dv_costs->dv_costs_alloc[0][MV_MAX];
dv_costs->dv_costs[1] = &dv_costs->dv_costs_alloc[1][MV_MAX];
av1_build_nmv_cost_table(dv_costs->joint_mv, dv_costs->dv_costs, ndvc,
MV_SUBPEL_NONE);
}
// Populates speed features based on codec control settings (of type
// COST_UPDATE_TYPE) and expected speed feature settings (of type
// INTERNAL_COST_UPDATE_TYPE) by considering the least frequent cost update.
// The populated/updated speed features are used for cost updates in the
// encoder.
// WARNING: Population of unified cost update frequency needs to be taken care
// accordingly, in case of any modifications/additions to the enum
// COST_UPDATE_TYPE/INTERNAL_COST_UPDATE_TYPE.
static inline void populate_unified_cost_update_freq(
const CostUpdateFreq cost_upd_freq, SPEED_FEATURES *const sf) {
INTER_MODE_SPEED_FEATURES *const inter_sf = &sf->inter_sf;
// Mapping of entropy cost update frequency from the encoder's codec control
// settings of type COST_UPDATE_TYPE to speed features of type
// INTERNAL_COST_UPDATE_TYPE.
static const INTERNAL_COST_UPDATE_TYPE
map_cost_upd_to_internal_cost_upd[NUM_COST_UPDATE_TYPES] = {
INTERNAL_COST_UPD_SB, INTERNAL_COST_UPD_SBROW, INTERNAL_COST_UPD_TILE,
INTERNAL_COST_UPD_OFF
};
inter_sf->mv_cost_upd_level =
AOMMIN(inter_sf->mv_cost_upd_level,
map_cost_upd_to_internal_cost_upd[cost_upd_freq.mv]);
inter_sf->coeff_cost_upd_level =
AOMMIN(inter_sf->coeff_cost_upd_level,
map_cost_upd_to_internal_cost_upd[cost_upd_freq.coeff]);
inter_sf->mode_cost_upd_level =
AOMMIN(inter_sf->mode_cost_upd_level,
map_cost_upd_to_internal_cost_upd[cost_upd_freq.mode]);
sf->intra_sf.dv_cost_upd_level =
AOMMIN(sf->intra_sf.dv_cost_upd_level,
map_cost_upd_to_internal_cost_upd[cost_upd_freq.dv]);
}
// Checks if entropy costs should be initialized/updated at frame level or not.
static inline int is_frame_level_cost_upd_freq_set(
const AV1_COMMON *const cm, const INTERNAL_COST_UPDATE_TYPE cost_upd_level,
const int use_nonrd_pick_mode, const int frames_since_key) {
const int fill_costs =
frame_is_intra_only(cm) ||
(use_nonrd_pick_mode ? frames_since_key < 2
: (cm->current_frame.frame_number & 0x07) == 1);
return ((!use_nonrd_pick_mode && cost_upd_level != INTERNAL_COST_UPD_OFF) ||
cost_upd_level == INTERNAL_COST_UPD_TILE || fill_costs);
}
// Decide whether we want to update the mode entropy cost for the current frame.
// The logit is currently inherited from selective_disable_cdf_rtc.
static inline int should_force_mode_cost_update(const AV1_COMP *cpi) {
const REAL_TIME_SPEED_FEATURES *const rt_sf = &cpi->sf.rt_sf;
if (!rt_sf->frame_level_mode_cost_update) {
return false;
}
if (cpi->oxcf.algo_cfg.cdf_update_mode == 2) {
return cpi->frames_since_last_update == 1;
} else if (cpi->oxcf.algo_cfg.cdf_update_mode == 1) {
if (cpi->svc.number_spatial_layers == 1 &&
cpi->svc.number_temporal_layers == 1) {
const AV1_COMMON *const cm = &cpi->common;
const RATE_CONTROL *const rc = &cpi->rc;
return frame_is_intra_only(cm) || is_frame_resize_pending(cpi) ||
rc->high_source_sad || rc->frames_since_key < 10 ||
cpi->cyclic_refresh->counter_encode_maxq_scene_change < 10 ||
cm->current_frame.frame_number % 8 == 0;
} else if (cpi->svc.number_temporal_layers > 1) {
return cpi->svc.temporal_layer_id != cpi->svc.number_temporal_layers - 1;
}
}
return false;
}
void av1_initialize_rd_consts(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->td.mb;
SPEED_FEATURES *const sf = &cpi->sf;
RD_OPT *const rd = &cpi->rd;
int use_nonrd_pick_mode = cpi->sf.rt_sf.use_nonrd_pick_mode;
int frames_since_key = cpi->rc.frames_since_key;
const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100));
const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6);
const FRAME_TYPE frame_type = cm->current_frame.frame_type;
const int qindex_rdmult =
cm->quant_params.base_qindex + cm->quant_params.y_dc_delta_q;
rd->RDMULT = av1_compute_rd_mult(
qindex_rdmult, cm->seq_params->bit_depth,
cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth,
boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets,
is_stat_consumption_stage(cpi), cpi->oxcf.tune_cfg.tuning);
#if CONFIG_RD_COMMAND
if (cpi->oxcf.pass == 2) {
const RD_COMMAND *rd_command = &cpi->rd_command;
if (rd_command->option_ls[rd_command->frame_index] ==
RD_OPTION_SET_Q_RDMULT) {
rd->RDMULT = rd_command->rdmult_ls[rd_command->frame_index];
}
}
#endif // CONFIG_RD_COMMAND
av1_set_error_per_bit(&x->errorperbit, rd->RDMULT);
set_block_thresholds(cm, rd, cpi->sf.rt_sf.use_nonrd_pick_mode);
populate_unified_cost_update_freq(cpi->oxcf.cost_upd_freq, sf);
const INTER_MODE_SPEED_FEATURES *const inter_sf = &cpi->sf.inter_sf;
// Frame level mv cost update
if (is_frame_level_cost_upd_freq_set(cm, inter_sf->mv_cost_upd_level,
use_nonrd_pick_mode, frames_since_key))
av1_fill_mv_costs(&cm->fc->nmvc, cm->features.cur_frame_force_integer_mv,
cm->features.allow_high_precision_mv, x->mv_costs);
// Frame level coefficient cost update
if (is_frame_level_cost_upd_freq_set(cm, inter_sf->coeff_cost_upd_level,
use_nonrd_pick_mode, frames_since_key))
av1_fill_coeff_costs(&x->coeff_costs, cm->fc, av1_num_planes(cm));
// Frame level mode cost update
if (should_force_mode_cost_update(cpi) ||
is_frame_level_cost_upd_freq_set(cm, inter_sf->mode_cost_upd_level,
use_nonrd_pick_mode, frames_since_key))
av1_fill_mode_rates(cm, &x->mode_costs, cm->fc);
// Frame level dv cost update
if (av1_need_dv_costs(cpi)) {
if (cpi->td.dv_costs_alloc == NULL) {
CHECK_MEM_ERROR(
cm, cpi->td.dv_costs_alloc,
(IntraBCMVCosts *)aom_malloc(sizeof(*cpi->td.dv_costs_alloc)));
cpi->td.mb.dv_costs = cpi->td.dv_costs_alloc;
}
av1_fill_dv_costs(&cm->fc->ndvc, x->dv_costs);
}
}
static void model_rd_norm(int xsq_q10, int *r_q10, int *d_q10) {
// NOTE: The tables below must be of the same size.
// The functions described below are sampled at the four most significant
// bits of x^2 + 8 / 256.
// Normalized rate:
// This table models the rate for a Laplacian source with given variance
// when quantized with a uniform quantizer with given stepsize. The
// closed form expression is:
// Rn(x) = H(sqrt(r)) + sqrt(r)*[1 + H(r)/(1 - r)],
// where r = exp(-sqrt(2) * x) and x = qpstep / sqrt(variance),
// and H(x) is the binary entropy function.
static const int rate_tab_q10[] = {
65536, 6086, 5574, 5275, 5063, 4899, 4764, 4651, 4553, 4389, 4255, 4142,
4044, 3958, 3881, 3811, 3748, 3635, 3538, 3453, 3376, 3307, 3244, 3186,
3133, 3037, 2952, 2877, 2809, 2747, 2690, 2638, 2589, 2501, 2423, 2353,
2290, 2232, 2179, 2130, 2084, 2001, 1928, 1862, 1802, 1748, 1698, 1651,
1608, 1530, 1460, 1398, 1342, 1290, 1243, 1199, 1159, 1086, 1021, 963,
911, 864, 821, 781, 745, 680, 623, 574, 530, 490, 455, 424,
395, 345, 304, 269, 239, 213, 190, 171, 154, 126, 104, 87,
73, 61, 52, 44, 38, 28, 21, 16, 12, 10, 8, 6,
5, 3, 2, 1, 1, 1, 0, 0,
};
// Normalized distortion:
// This table models the normalized distortion for a Laplacian source
// with given variance when quantized with a uniform quantizer
// with given stepsize. The closed form expression is:
// Dn(x) = 1 - 1/sqrt(2) * x / sinh(x/sqrt(2))
// where x = qpstep / sqrt(variance).
// Note the actual distortion is Dn * variance.
static const int dist_tab_q10[] = {
0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5,
5, 6, 7, 7, 8, 9, 11, 12, 13, 15, 16, 17,
18, 21, 24, 26, 29, 31, 34, 36, 39, 44, 49, 54,
59, 64, 69, 73, 78, 88, 97, 106, 115, 124, 133, 142,
151, 167, 184, 200, 215, 231, 245, 260, 274, 301, 327, 351,
375, 397, 418, 439, 458, 495, 528, 559, 587, 613, 637, 659,
680, 717, 749, 777, 801, 823, 842, 859, 874, 899, 919, 936,
949, 960, 969, 977, 983, 994, 1001, 1006, 1010, 1013, 1015, 1017,
1018, 1020, 1022, 1022, 1023, 1023, 1023, 1024,
};
static const int xsq_iq_q10[] = {
0, 4, 8, 12, 16, 20, 24, 28, 32,
40, 48, 56, 64, 72, 80, 88, 96, 112,
128, 144, 160, 176, 192, 208, 224, 256, 288,
320, 352, 384, 416, 448, 480, 544, 608, 672,
736, 800, 864, 928, 992, 1120, 1248, 1376, 1504,
1632, 1760, 1888, 2016, 2272, 2528, 2784, 3040, 3296,
3552, 3808, 4064, 4576, 5088, 5600, 6112, 6624, 7136,
7648, 8160, 9184, 10208, 11232, 12256, 13280, 14304, 15328,
16352, 18400, 20448, 22496, 24544, 26592, 28640, 30688, 32736,
36832, 40928, 45024, 49120, 53216, 57312, 61408, 65504, 73696,
81888, 90080, 98272, 106464, 114656, 122848, 131040, 147424, 163808,
180192, 196576, 212960, 229344, 245728,
};
const int tmp = (xsq_q10 >> 2) + 8;
const int k = get_msb(tmp) - 3;
const int xq = (k << 3) + ((tmp >> k) & 0x7);
const int one_q10 = 1 << 10;
const int a_q10 = ((xsq_q10 - xsq_iq_q10[xq]) << 10) >> (2 + k);
const int b_q10 = one_q10 - a_q10;
*r_q10 = (rate_tab_q10[xq] * b_q10 + rate_tab_q10[xq + 1] * a_q10) >> 10;
*d_q10 = (dist_tab_q10[xq] * b_q10 + dist_tab_q10[xq + 1] * a_q10) >> 10;
}
void av1_model_rd_from_var_lapndz(int64_t var, unsigned int n_log2,
unsigned int qstep, int *rate,
int64_t *dist) {
// This function models the rate and distortion for a Laplacian
// source with given variance when quantized with a uniform quantizer
// with given stepsize. The closed form expressions are in:
// Hang and Chen, "Source Model for transform video coder and its
// application - Part I: Fundamental Theory", IEEE Trans. Circ.
// Sys. for Video Tech., April 1997.
if (var == 0) {
*rate = 0;
*dist = 0;
} else {
int d_q10, r_q10;
static const uint32_t MAX_XSQ_Q10 = 245727;
const uint64_t xsq_q10_64 =
(((uint64_t)qstep * qstep << (n_log2 + 10)) + (var >> 1)) / var;
const int xsq_q10 = (int)AOMMIN(xsq_q10_64, MAX_XSQ_Q10);
model_rd_norm(xsq_q10, &r_q10, &d_q10);
*rate = ROUND_POWER_OF_TWO(r_q10 << n_log2, 10 - AV1_PROB_COST_SHIFT);
*dist = (var * (int64_t)d_q10 + 512) >> 10;
}
}
static double interp_cubic(const double *p, double x) {
return p[1] + 0.5 * x *
(p[2] - p[0] +
x * (2.0 * p[0] - 5.0 * p[1] + 4.0 * p[2] - p[3] +
x * (3.0 * (p[1] - p[2]) + p[3] - p[0])));
}
/*
static double interp_bicubic(const double *p, int p_stride, double x,
double y) {
double q[4];
q[0] = interp_cubic(p, x);
q[1] = interp_cubic(p + p_stride, x);
q[2] = interp_cubic(p + 2 * p_stride, x);
q[3] = interp_cubic(p + 3 * p_stride, x);
return interp_cubic(q, y);
}
*/
static const uint8_t bsize_curvfit_model_cat_lookup[BLOCK_SIZES_ALL] = {
0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 1, 1, 2, 2, 3, 3
};
static int sse_norm_curvfit_model_cat_lookup(double sse_norm) {
return (sse_norm > 16.0);
}
static const double interp_rgrid_curv[4][65] = {
{
0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 118.257702, 120.210658, 121.434853, 122.100487,
122.377758, 122.436865, 72.290102, 96.974289, 101.652727,
126.830141, 140.417377, 157.644879, 184.315291, 215.823873,
262.300169, 335.919859, 420.624173, 519.185032, 619.854243,
726.053595, 827.663369, 933.127475, 1037.988755, 1138.839609,
1233.342933, 1333.508064, 1428.760126, 1533.396364, 1616.952052,
1744.539319, 1803.413586, 1951.466618, 1994.227838, 2086.031680,
2148.635443, 2239.068450, 2222.590637, 2338.859809, 2402.929011,
2418.727875, 2435.342670, 2471.159469, 2523.187446, 2591.183827,
2674.905840, 2774.110714, 2888.555675, 3017.997952, 3162.194773,
3320.903365, 3493.880956, 3680.884773, 3881.672045, 4096.000000,
},
{
0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 13.087244, 15.919735, 25.930313, 24.412411,
28.567417, 29.924194, 30.857010, 32.742979, 36.382570,
39.210386, 42.265690, 47.378572, 57.014850, 82.740067,
137.346562, 219.968084, 316.781856, 415.643773, 516.706538,
614.914364, 714.303763, 815.512135, 911.210485, 1008.501528,
1109.787854, 1213.772279, 1322.922561, 1414.752579, 1510.505641,
1615.741888, 1697.989032, 1780.123933, 1847.453790, 1913.742309,
1960.828122, 2047.500168, 2085.454095, 2129.230668, 2158.171824,
2182.231724, 2217.684864, 2269.589211, 2337.264824, 2420.618694,
2519.557814, 2633.989178, 2763.819779, 2908.956609, 3069.306660,
3244.776927, 3435.274401, 3640.706076, 3860.978945, 4096.000000,
},
{
0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 4.656893, 5.123633, 5.594132, 6.162376,
6.918433, 7.768444, 8.739415, 10.105862, 11.477328,
13.236604, 15.421030, 19.093623, 25.801871, 46.724612,
98.841054, 181.113466, 272.586364, 359.499769, 445.546343,
525.944439, 605.188743, 681.793483, 756.668359, 838.486885,
926.950356, 1015.482542, 1113.353926, 1204.897193, 1288.871992,
1373.464145, 1455.746628, 1527.796460, 1588.475066, 1658.144771,
1710.302500, 1807.563351, 1863.197608, 1927.281616, 1964.450872,
2022.719898, 2100.041145, 2185.205712, 2280.993936, 2387.616216,
2505.282950, 2634.204540, 2774.591385, 2926.653884, 3090.602436,
3266.647443, 3454.999303, 3655.868416, 3869.465182, 4096.000000,
},
{
0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
0.000000, 0.337370, 0.391916, 0.468839, 0.566334,
0.762564, 1.069225, 1.384361, 1.787581, 2.293948,
3.251909, 4.412991, 8.050068, 11.606073, 27.668092,
65.227758, 128.463938, 202.097653, 262.715851, 312.464873,
355.601398, 400.609054, 447.201352, 495.761568, 552.871938,
619.067625, 691.984883, 773.753288, 860.628503, 946.262808,
1019.805896, 1106.061360, 1178.422145, 1244.852258, 1302.173987,
1399.650266, 1548.092912, 1545.928652, 1670.817500, 1694.523823,
1779.195362, 1882.155494, 1990.662097, 2108.325181, 2235.456119,
2372.366287, 2519.367059, 2676.769812, 2844.885918, 3024.026754,
3214.503695, 3416.628115, 3630.711389, 3857.064892, 4096.000000,
},
};
static const double interp_dgrid_curv[3][65] = {
{
16.000000, 15.962891, 15.925174, 15.886888, 15.848074, 15.808770,
15.769015, 15.728850, 15.688313, 15.647445, 15.606284, 15.564870,
15.525918, 15.483820, 15.373330, 15.126844, 14.637442, 14.184387,
13.560070, 12.880717, 12.165995, 11.378144, 10.438769, 9.130790,
7.487633, 5.688649, 4.267515, 3.196300, 2.434201, 1.834064,
1.369920, 1.035921, 0.775279, 0.574895, 0.427232, 0.314123,
0.233236, 0.171440, 0.128188, 0.092762, 0.067569, 0.049324,
0.036330, 0.027008, 0.019853, 0.015539, 0.011093, 0.008733,
0.007624, 0.008105, 0.005427, 0.004065, 0.003427, 0.002848,
0.002328, 0.001865, 0.001457, 0.001103, 0.000801, 0.000550,
0.000348, 0.000193, 0.000085, 0.000021, 0.000000,
},
{
16.000000, 15.996116, 15.984769, 15.966413, 15.941505, 15.910501,
15.873856, 15.832026, 15.785466, 15.734633, 15.679981, 15.621967,
15.560961, 15.460157, 15.288367, 15.052462, 14.466922, 13.921212,
13.073692, 12.222005, 11.237799, 9.985848, 8.898823, 7.423519,
5.995325, 4.773152, 3.744032, 2.938217, 2.294526, 1.762412,
1.327145, 1.020728, 0.765535, 0.570548, 0.425833, 0.313825,
0.232959, 0.171324, 0.128174, 0.092750, 0.067558, 0.049319,
0.036330, 0.027008, 0.019853, 0.015539, 0.011093, 0.008733,
0.007624, 0.008105, 0.005427, 0.004065, 0.003427, 0.002848,
0.002328, 0.001865, 0.001457, 0.001103, 0.000801, 0.000550,
0.000348, 0.000193, 0.000085, 0.000021, -0.000000,
},
};
void av1_model_rd_curvfit(BLOCK_SIZE bsize, double sse_norm, double xqr,
double *rate_f, double *distbysse_f) {
const double x_start = -15.5;
const double x_end = 16.5;
const double x_step = 0.5;
const double epsilon = 1e-6;
const int rcat = bsize_curvfit_model_cat_lookup[bsize];
const int dcat = sse_norm_curvfit_model_cat_lookup(sse_norm);
(void)x_end;
xqr = AOMMAX(xqr, x_start + x_step + epsilon);
xqr = AOMMIN(xqr, x_end - x_step - epsilon);
const double x = (xqr - x_start) / x_step;
const int xi = (int)floor(x);
const double xo = x - xi;
assert(xi > 0);
const double *prate = &interp_rgrid_curv[rcat][(xi - 1)];
*rate_f = interp_cubic(prate, xo);
const double *pdist = &interp_dgrid_curv[dcat][(xi - 1)];
*distbysse_f = interp_cubic(pdist, xo);
}
static void get_entropy_contexts_plane(BLOCK_SIZE plane_bsize,
const struct macroblockd_plane *pd,
ENTROPY_CONTEXT t_above[MAX_MIB_SIZE],
ENTROPY_CONTEXT t_left[MAX_MIB_SIZE]) {
const int num_4x4_w = mi_size_wide[plane_bsize];
const int num_4x4_h = mi_size_high[plane_bsize];
const ENTROPY_CONTEXT *const above = pd->above_entropy_context;
const ENTROPY_CONTEXT *const left = pd->left_entropy_context;
memcpy(t_above, above, sizeof(ENTROPY_CONTEXT) * num_4x4_w);
memcpy(t_left, left, sizeof(ENTROPY_CONTEXT) * num_4x4_h);
}
void av1_get_entropy_contexts(BLOCK_SIZE plane_bsize,
const struct macroblockd_plane *pd,
ENTROPY_CONTEXT t_above[MAX_MIB_SIZE],
ENTROPY_CONTEXT t_left[MAX_MIB_SIZE]) {
assert(plane_bsize < BLOCK_SIZES_ALL);
get_entropy_contexts_plane(plane_bsize, pd, t_above, t_left);
}
// Special clamping used in the encoder when calculating a prediction
//
// Logically, all pixel fetches used for prediction are clamped against the
// edges of the frame. But doing this directly is slow, so instead we allocate
// a finite border around the frame and fill it with copies of the outermost
// pixels.
//
// Since this border is finite, we need to clamp the motion vector before
// prediction in order to avoid out-of-bounds reads. At the same time, this
// clamp must not change the prediction result.
//
// We can balance both of these concerns by calculating how far we would have
// to go in each direction before the extended prediction region (the current
// block + AOM_INTERP_EXTEND many pixels around the block) would be mapped
// so that it touches the frame only at one row or column. This is a special
// point because any more extreme MV will always lead to the same prediction.
// So it is safe to clamp at that point.
//
// In the worst case, this requires a border of
// max_block_width + 2*AOM_INTERP_EXTEND = 128 + 2*4 = 136 pixels
// around the frame edges.
static inline void enc_clamp_mv(const AV1_COMMON *cm, const MACROBLOCKD *xd,
MV *mv) {
int bw = xd->width << MI_SIZE_LOG2;
int bh = xd->height << MI_SIZE_LOG2;
int px_to_left_edge = xd->mi_col << MI_SIZE_LOG2;
int px_to_right_edge = (cm->mi_params.mi_cols - xd->mi_col) << MI_SIZE_LOG2;
int px_to_top_edge = xd->mi_row << MI_SIZE_LOG2;
int px_to_bottom_edge = (cm->mi_params.mi_rows - xd->mi_row) << MI_SIZE_LOG2;
const SubpelMvLimits mv_limits = {
.col_min = -GET_MV_SUBPEL(px_to_left_edge + bw + AOM_INTERP_EXTEND),
.col_max = GET_MV_SUBPEL(px_to_right_edge + AOM_INTERP_EXTEND),
.row_min = -GET_MV_SUBPEL(px_to_top_edge + bh + AOM_INTERP_EXTEND),
.row_max = GET_MV_SUBPEL(px_to_bottom_edge + AOM_INTERP_EXTEND)
};
clamp_mv(mv, &mv_limits);
}
void av1_mv_pred(const AV1_COMP *cpi, MACROBLOCK *x, uint8_t *ref_y_buffer,
int ref_y_stride, int ref_frame, BLOCK_SIZE block_size) {
const MV_REFERENCE_FRAME ref_frames[2] = { ref_frame, NONE_FRAME };
const int_mv ref_mv =
av1_get_ref_mv_from_stack(0, ref_frames, 0, &x->mbmi_ext);
const int_mv ref_mv1 =
av1_get_ref_mv_from_stack(0, ref_frames, 1, &x->mbmi_ext);
MV pred_mv[MAX_MV_REF_CANDIDATES + 1];
int num_mv_refs = 0;
pred_mv[num_mv_refs++] = ref_mv.as_mv;
if (ref_mv.as_int != ref_mv1.as_int) {
pred_mv[num_mv_refs++] = ref_mv1.as_mv;
}
assert(num_mv_refs <= (int)(sizeof(pred_mv) / sizeof(pred_mv[0])));
const uint8_t *const src_y_ptr = x->plane[0].src.buf;
int zero_seen = 0;
int best_sad = INT_MAX;
int max_mv = 0;
// Get the sad for each candidate reference mv.
for (int i = 0; i < num_mv_refs; ++i) {
MV *this_mv = &pred_mv[i];
enc_clamp_mv(&cpi->common, &x->e_mbd, this_mv);
const int fp_row = (this_mv->row + 3 + (this_mv->row >= 0)) >> 3;
const int fp_col = (this_mv->col + 3 + (this_mv->col >= 0)) >> 3;
max_mv = AOMMAX(max_mv, AOMMAX(abs(this_mv->row), abs(this_mv->col)) >> 3);
if (fp_row == 0 && fp_col == 0 && zero_seen) continue;
zero_seen |= (fp_row == 0 && fp_col == 0);
const uint8_t *const ref_y_ptr =
&ref_y_buffer[ref_y_stride * fp_row + fp_col];
// Find sad for current vector.
const int this_sad = cpi->ppi->fn_ptr[block_size].sdf(
src_y_ptr, x->plane[0].src.stride, ref_y_ptr, ref_y_stride);
// Note if it is the best so far.
if (this_sad < best_sad) {
best_sad = this_sad;
}
if (i == 0)
x->pred_mv0_sad[ref_frame] = this_sad;
else if (i == 1)
x->pred_mv1_sad[ref_frame] = this_sad;
}
// Note the index of the mv that worked best in the reference list.
x->max_mv_context[ref_frame] = max_mv;
x->pred_mv_sad[ref_frame] = best_sad;
}
void av1_setup_pred_block(const MACROBLOCKD *xd,
struct buf_2d dst[MAX_MB_PLANE],
const YV12_BUFFER_CONFIG *src,
const struct scale_factors *scale,
const struct scale_factors *scale_uv,
const int num_planes) {
dst[0].buf = src->y_buffer;
dst[0].stride = src->y_stride;
dst[1].buf = src->u_buffer;
dst[2].buf = src->v_buffer;
dst[1].stride = dst[2].stride = src->uv_stride;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
for (int i = 0; i < num_planes; ++i) {
setup_pred_plane(dst + i, xd->mi[0]->bsize, dst[i].buf,
i ? src->uv_crop_width : src->y_crop_width,
i ? src->uv_crop_height : src->y_crop_height,
dst[i].stride, mi_row, mi_col, i ? scale_uv : scale,
xd->plane[i].subsampling_x, xd->plane[i].subsampling_y);
}
}
YV12_BUFFER_CONFIG *av1_get_scaled_ref_frame(const AV1_COMP *cpi,
int ref_frame) {
assert(ref_frame >= LAST_FRAME && ref_frame <= ALTREF_FRAME);
RefCntBuffer *const scaled_buf = cpi->scaled_ref_buf[ref_frame - 1];
const RefCntBuffer *const ref_buf =
get_ref_frame_buf(&cpi->common, ref_frame);
return (scaled_buf != ref_buf && scaled_buf != NULL) ? &scaled_buf->buf
: NULL;
}
int av1_get_switchable_rate(const MACROBLOCK *x, const MACROBLOCKD *xd,
InterpFilter interp_filter, int dual_filter) {
if (interp_filter == SWITCHABLE) {
const MB_MODE_INFO *const mbmi = xd->mi[0];
int inter_filter_cost = 0;
for (int dir = 0; dir < 2; ++dir) {
if (dir && !dual_filter) break;
const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
const InterpFilter filter =
av1_extract_interp_filter(mbmi->interp_filters, dir);
inter_filter_cost += x->mode_costs.switchable_interp_costs[ctx][filter];
}
return SWITCHABLE_INTERP_RATE_FACTOR * inter_filter_cost;
} else {
return 0;
}
}
void av1_set_rd_speed_thresholds(AV1_COMP *cpi) {
RD_OPT *const rd = &cpi->rd;
// Set baseline threshold values.
av1_zero(rd->thresh_mult);
rd->thresh_mult[THR_NEARESTMV] = 300;
rd->thresh_mult[THR_NEARESTL2] = 300;
rd->thresh_mult[THR_NEARESTL3] = 300;
rd->thresh_mult[THR_NEARESTB] = 300;
rd->thresh_mult[THR_NEARESTA2] = 300;
rd->thresh_mult[THR_NEARESTA] = 300;
rd->thresh_mult[THR_NEARESTG] = 300;
rd->thresh_mult[THR_NEWMV] = 1000;
rd->thresh_mult[THR_NEWL2] = 1000;
rd->thresh_mult[THR_NEWL3] = 1000;
rd->thresh_mult[THR_NEWB] = 1000;
rd->thresh_mult[THR_NEWA2] = 1100;
rd->thresh_mult[THR_NEWA] = 1000;
rd->thresh_mult[THR_NEWG] = 1000;
rd->thresh_mult[THR_NEARMV] = 1000;
rd->thresh_mult[THR_NEARL2] = 1000;
rd->thresh_mult[THR_NEARL3] = 1000;
rd->thresh_mult[THR_NEARB] = 1000;
rd->thresh_mult[THR_NEARA2] = 1000;
rd->thresh_mult[THR_NEARA] = 1000;
rd->thresh_mult[THR_NEARG] = 1000;
rd->thresh_mult[THR_GLOBALMV] = 2200;
rd->thresh_mult[THR_GLOBALL2] = 2000;
rd->thresh_mult[THR_GLOBALL3] = 2000;
rd->thresh_mult[THR_GLOBALB] = 2400;
rd->thresh_mult[THR_GLOBALA2] = 2000;
rd->thresh_mult[THR_GLOBALG] = 2000;
rd->thresh_mult[THR_GLOBALA] = 2400;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTLA] = 1100;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTL2A] = 1000;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTL3A] = 800;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTGA] = 900;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTLB] = 1000;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTL2B] = 1000;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTL3B] = 1000;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTGB] = 1000;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTLA2] = 1000;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTL2A2] = 1000;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTL3A2] = 1000;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTGA2] = 1000;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTLL2] = 2000;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTLL3] = 2000;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTLG] = 2000;
rd->thresh_mult[THR_COMP_NEAREST_NEARESTBA] = 2000;
rd->thresh_mult[THR_COMP_NEAR_NEARLA] = 1200;
rd->thresh_mult[THR_COMP_NEAREST_NEWLA] = 1500;
rd->thresh_mult[THR_COMP_NEW_NEARESTLA] = 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWLA] = 1530;
rd->thresh_mult[THR_COMP_NEW_NEARLA] = 1870;
rd->thresh_mult[THR_COMP_NEW_NEWLA] = 2400;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLA] = 2750;
rd->thresh_mult[THR_COMP_NEAR_NEARL2A] = 1200;
rd->thresh_mult[THR_COMP_NEAREST_NEWL2A] = 1500;
rd->thresh_mult[THR_COMP_NEW_NEARESTL2A] = 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWL2A] = 1870;
rd->thresh_mult[THR_COMP_NEW_NEARL2A] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEWL2A] = 1800;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL2A] = 2500;
rd->thresh_mult[THR_COMP_NEAR_NEARL3A] = 1200;
rd->thresh_mult[THR_COMP_NEAREST_NEWL3A] = 1500;
rd->thresh_mult[THR_COMP_NEW_NEARESTL3A] = 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWL3A] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEARL3A] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEWL3A] = 2000;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL3A] = 3000;
rd->thresh_mult[THR_COMP_NEAR_NEARGA] = 1320;
rd->thresh_mult[THR_COMP_NEAREST_NEWGA] = 1500;
rd->thresh_mult[THR_COMP_NEW_NEARESTGA] = 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWGA] = 2040;
rd->thresh_mult[THR_COMP_NEW_NEARGA] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEWGA] = 2000;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALGA] = 2250;
rd->thresh_mult[THR_COMP_NEAR_NEARLB] = 1200;
rd->thresh_mult[THR_COMP_NEAREST_NEWLB] = 1500;
rd->thresh_mult[THR_COMP_NEW_NEARESTLB] = 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWLB] = 1360;
rd->thresh_mult[THR_COMP_NEW_NEARLB] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEWLB] = 2400;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLB] = 2250;
rd->thresh_mult[THR_COMP_NEAR_NEARL2B] = 1200;
rd->thresh_mult[THR_COMP_NEAREST_NEWL2B] = 1500;
rd->thresh_mult[THR_COMP_NEW_NEARESTL2B] = 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWL2B] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEARL2B] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEWL2B] = 2000;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL2B] = 2500;
rd->thresh_mult[THR_COMP_NEAR_NEARL3B] = 1200;
rd->thresh_mult[THR_COMP_NEAREST_NEWL3B] = 1500;
rd->thresh_mult[THR_COMP_NEW_NEARESTL3B] = 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWL3B] = 1870;
rd->thresh_mult[THR_COMP_NEW_NEARL3B] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEWL3B] = 2000;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL3B] = 2500;
rd->thresh_mult[THR_COMP_NEAR_NEARGB] = 1200;
rd->thresh_mult[THR_COMP_NEAREST_NEWGB] = 1500;
rd->thresh_mult[THR_COMP_NEW_NEARESTGB] = 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWGB] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEARGB] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEWGB] = 2000;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALGB] = 2500;
rd->thresh_mult[THR_COMP_NEAR_NEARLA2] = 1200;
rd->thresh_mult[THR_COMP_NEAREST_NEWLA2] = 1800;
rd->thresh_mult[THR_COMP_NEW_NEARESTLA2] = 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWLA2] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEARLA2] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEWLA2] = 2000;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLA2] = 2500;
rd->thresh_mult[THR_COMP_NEAR_NEARL2A2] = 1200;
rd->thresh_mult[THR_COMP_NEAREST_NEWL2A2] = 1500;
rd->thresh_mult[THR_COMP_NEW_NEARESTL2A2] = 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWL2A2] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEARL2A2] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEWL2A2] = 2000;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL2A2] = 2500;
rd->thresh_mult[THR_COMP_NEAR_NEARL3A2] = 1440;
rd->thresh_mult[THR_COMP_NEAREST_NEWL3A2] = 1500;
rd->thresh_mult[THR_COMP_NEW_NEARESTL3A2] = 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWL3A2] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEARL3A2] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEWL3A2] = 2000;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL3A2] = 2500;
rd->thresh_mult[THR_COMP_NEAR_NEARGA2] = 1200;
rd->thresh_mult[THR_COMP_NEAREST_NEWGA2] = 1500;
rd->thresh_mult[THR_COMP_NEW_NEARESTGA2] = 1500;
rd->thresh_mult[THR_COMP_NEAR_NEWGA2] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEARGA2] = 1700;
rd->thresh_mult[THR_COMP_NEW_NEWGA2] = 2000;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALGA2] = 2750;
rd->thresh_mult[THR_COMP_NEAR_NEARLL2] = 1600;
rd->thresh_mult[THR_COMP_NEAREST_NEWLL2] = 2000;
rd->thresh_mult[THR_COMP_NEW_NEARESTLL2] = 2000;
rd->thresh_mult[THR_COMP_NEAR_NEWLL2] = 2640;
rd->thresh_mult[THR_COMP_NEW_NEARLL2] = 2200;
rd->thresh_mult[THR_COMP_NEW_NEWLL2] = 2400;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLL2] = 3200;
rd->thresh_mult[THR_COMP_NEAR_NEARLL3] = 1600;
rd->thresh_mult[THR_COMP_NEAREST_NEWLL3] = 2000;
rd->thresh_mult[THR_COMP_NEW_NEARESTLL3] = 1800;
rd->thresh_mult[THR_COMP_NEAR_NEWLL3] = 2200;
rd->thresh_mult[THR_COMP_NEW_NEARLL3] = 2200;
rd->thresh_mult[THR_COMP_NEW_NEWLL3] = 2400;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLL3] = 3200;
rd->thresh_mult[THR_COMP_NEAR_NEARLG] = 1760;
rd->thresh_mult[THR_COMP_NEAREST_NEWLG] = 2400;
rd->thresh_mult[THR_COMP_NEW_NEARESTLG] = 2000;
rd->thresh_mult[THR_COMP_NEAR_NEWLG] = 1760;
rd->thresh_mult[THR_COMP_NEW_NEARLG] = 2640;
rd->thresh_mult[THR_COMP_NEW_NEWLG] = 2400;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLG] = 3200;
rd->thresh_mult[THR_COMP_NEAR_NEARBA] = 1600;
rd->thresh_mult[THR_COMP_NEAREST_NEWBA] = 2000;
rd->thresh_mult[THR_COMP_NEW_NEARESTBA] = 2000;
rd->thresh_mult[THR_COMP_NEAR_NEWBA] = 2200;
rd->thresh_mult[THR_COMP_NEW_NEARBA] = 1980;
rd->thresh_mult[THR_COMP_NEW_NEWBA] = 2640;
rd->thresh_mult[THR_COMP_GLOBAL_GLOBALBA] = 3200;
rd->thresh_mult[THR_DC] = 1000;
rd->thresh_mult[THR_PAETH] = 1000;
rd->thresh_mult[THR_SMOOTH] = 2200;
rd->thresh_mult[THR_SMOOTH_V] = 2000;
rd->thresh_mult[THR_SMOOTH_H] = 2000;
rd->thresh_mult[THR_H_PRED] = 2000;
rd->thresh_mult[THR_V_PRED] = 1800;
rd->thresh_mult[THR_D135_PRED] = 2500;
rd->thresh_mult[THR_D203_PRED] = 2000;
rd->thresh_mult[THR_D157_PRED] = 2500;
rd->thresh_mult[THR_D67_PRED] = 2000;
rd->thresh_mult[THR_D113_PRED] = 2500;
rd->thresh_mult[THR_D45_PRED] = 2500;
}
static inline void update_thr_fact(int (*factor_buf)[MAX_MODES],
THR_MODES best_mode_index,
THR_MODES mode_start, THR_MODES mode_end,
BLOCK_SIZE min_size, BLOCK_SIZE max_size,
int max_rd_thresh_factor) {
for (THR_MODES mode = mode_start; mode < mode_end; ++mode) {
for (BLOCK_SIZE bs = min_size; bs <= max_size; ++bs) {
int *const fact = &factor_buf[bs][mode];
if (mode == best_mode_index) {
*fact -= (*fact >> RD_THRESH_LOG_DEC_FACTOR);
} else {
*fact = AOMMIN(*fact + RD_THRESH_INC, max_rd_thresh_factor);
}
}
}
}
void av1_update_rd_thresh_fact(
const AV1_COMMON *const cm, int (*factor_buf)[MAX_MODES],
int use_adaptive_rd_thresh, BLOCK_SIZE bsize, THR_MODES best_mode_index,
THR_MODES inter_mode_start, THR_MODES inter_mode_end,
THR_MODES intra_mode_start, THR_MODES intra_mode_end) {
assert(use_adaptive_rd_thresh > 0);
const int max_rd_thresh_factor = use_adaptive_rd_thresh * RD_THRESH_MAX_FACT;
const int bsize_is_1_to_4 = bsize > cm->seq_params->sb_size;
BLOCK_SIZE min_size, max_size;
if (bsize_is_1_to_4) {
// This part handles block sizes with 1:4 and 4:1 aspect ratios
// TODO(any): Experiment with threshold update for parent/child blocks
min_size = bsize;
max_size = bsize;
} else {
min_size = AOMMAX(bsize - 2, BLOCK_4X4);
max_size = AOMMIN(bsize + 2, (int)cm->seq_params->sb_size);
}
update_thr_fact(factor_buf, best_mode_index, inter_mode_start, inter_mode_end,
min_size, max_size, max_rd_thresh_factor);
update_thr_fact(factor_buf, best_mode_index, intra_mode_start, intra_mode_end,
min_size, max_size, max_rd_thresh_factor);
}
int av1_get_intra_cost_penalty(int qindex, int qdelta,
aom_bit_depth_t bit_depth) {
const int q = av1_dc_quant_QTX(qindex, qdelta, bit_depth);
switch (bit_depth) {
case AOM_BITS_8: return 20 * q;
case AOM_BITS_10: return 5 * q;
case AOM_BITS_12: return ROUND_POWER_OF_TWO(5 * q, 2);
default:
assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12");
return -1;
}
}
|