1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <math.h>
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/av1_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/blend.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/aom_timer.h"
#include "aom_ports/mem.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/cfl.h"
#include "av1/common/blockd.h"
#include "av1/common/common.h"
#include "av1/common/common_data.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/enums.h"
#include "av1/common/idct.h"
#include "av1/common/mvref_common.h"
#include "av1/common/obmc.h"
#include "av1/common/pred_common.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/scan.h"
#include "av1/common/seg_common.h"
#include "av1/common/txb_common.h"
#include "av1/common/warped_motion.h"
#include "av1/encoder/aq_variance.h"
#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/block.h"
#include "av1/encoder/cost.h"
#include "av1/encoder/compound_type.h"
#include "av1/encoder/encodemb.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/encodetxb.h"
#include "av1/encoder/hybrid_fwd_txfm.h"
#include "av1/encoder/interp_search.h"
#include "av1/encoder/intra_mode_search.h"
#include "av1/encoder/intra_mode_search_utils.h"
#include "av1/encoder/mcomp.h"
#include "av1/encoder/ml.h"
#include "av1/encoder/mode_prune_model_weights.h"
#include "av1/encoder/model_rd.h"
#include "av1/encoder/motion_search_facade.h"
#include "av1/encoder/palette.h"
#include "av1/encoder/pustats.h"
#include "av1/encoder/random.h"
#include "av1/encoder/ratectrl.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/rdopt.h"
#include "av1/encoder/reconinter_enc.h"
#include "av1/encoder/tokenize.h"
#include "av1/encoder/tpl_model.h"
#include "av1/encoder/tx_search.h"
#include "av1/encoder/var_based_part.h"
#define LAST_NEW_MV_INDEX 6
// Mode_threshold multiplication factor table for prune_inter_modes_if_skippable
// The values are kept in Q12 format and equation used to derive is
// (2.5 - ((float)x->qindex / MAXQ) * 1.5)
#define MODE_THRESH_QBITS 12
static const int mode_threshold_mul_factor[QINDEX_RANGE] = {
10240, 10216, 10192, 10168, 10144, 10120, 10095, 10071, 10047, 10023, 9999,
9975, 9951, 9927, 9903, 9879, 9854, 9830, 9806, 9782, 9758, 9734,
9710, 9686, 9662, 9638, 9614, 9589, 9565, 9541, 9517, 9493, 9469,
9445, 9421, 9397, 9373, 9349, 9324, 9300, 9276, 9252, 9228, 9204,
9180, 9156, 9132, 9108, 9083, 9059, 9035, 9011, 8987, 8963, 8939,
8915, 8891, 8867, 8843, 8818, 8794, 8770, 8746, 8722, 8698, 8674,
8650, 8626, 8602, 8578, 8553, 8529, 8505, 8481, 8457, 8433, 8409,
8385, 8361, 8337, 8312, 8288, 8264, 8240, 8216, 8192, 8168, 8144,
8120, 8096, 8072, 8047, 8023, 7999, 7975, 7951, 7927, 7903, 7879,
7855, 7831, 7806, 7782, 7758, 7734, 7710, 7686, 7662, 7638, 7614,
7590, 7566, 7541, 7517, 7493, 7469, 7445, 7421, 7397, 7373, 7349,
7325, 7301, 7276, 7252, 7228, 7204, 7180, 7156, 7132, 7108, 7084,
7060, 7035, 7011, 6987, 6963, 6939, 6915, 6891, 6867, 6843, 6819,
6795, 6770, 6746, 6722, 6698, 6674, 6650, 6626, 6602, 6578, 6554,
6530, 6505, 6481, 6457, 6433, 6409, 6385, 6361, 6337, 6313, 6289,
6264, 6240, 6216, 6192, 6168, 6144, 6120, 6096, 6072, 6048, 6024,
5999, 5975, 5951, 5927, 5903, 5879, 5855, 5831, 5807, 5783, 5758,
5734, 5710, 5686, 5662, 5638, 5614, 5590, 5566, 5542, 5518, 5493,
5469, 5445, 5421, 5397, 5373, 5349, 5325, 5301, 5277, 5253, 5228,
5204, 5180, 5156, 5132, 5108, 5084, 5060, 5036, 5012, 4987, 4963,
4939, 4915, 4891, 4867, 4843, 4819, 4795, 4771, 4747, 4722, 4698,
4674, 4650, 4626, 4602, 4578, 4554, 4530, 4506, 4482, 4457, 4433,
4409, 4385, 4361, 4337, 4313, 4289, 4265, 4241, 4216, 4192, 4168,
4144, 4120, 4096
};
static const THR_MODES av1_default_mode_order[MAX_MODES] = {
THR_NEARESTMV,
THR_NEARESTL2,
THR_NEARESTL3,
THR_NEARESTB,
THR_NEARESTA2,
THR_NEARESTA,
THR_NEARESTG,
THR_NEWMV,
THR_NEWL2,
THR_NEWL3,
THR_NEWB,
THR_NEWA2,
THR_NEWA,
THR_NEWG,
THR_NEARMV,
THR_NEARL2,
THR_NEARL3,
THR_NEARB,
THR_NEARA2,
THR_NEARA,
THR_NEARG,
THR_GLOBALMV,
THR_GLOBALL2,
THR_GLOBALL3,
THR_GLOBALB,
THR_GLOBALA2,
THR_GLOBALA,
THR_GLOBALG,
THR_COMP_NEAREST_NEARESTLA,
THR_COMP_NEAREST_NEARESTL2A,
THR_COMP_NEAREST_NEARESTL3A,
THR_COMP_NEAREST_NEARESTGA,
THR_COMP_NEAREST_NEARESTLB,
THR_COMP_NEAREST_NEARESTL2B,
THR_COMP_NEAREST_NEARESTL3B,
THR_COMP_NEAREST_NEARESTGB,
THR_COMP_NEAREST_NEARESTLA2,
THR_COMP_NEAREST_NEARESTL2A2,
THR_COMP_NEAREST_NEARESTL3A2,
THR_COMP_NEAREST_NEARESTGA2,
THR_COMP_NEAREST_NEARESTLL2,
THR_COMP_NEAREST_NEARESTLL3,
THR_COMP_NEAREST_NEARESTLG,
THR_COMP_NEAREST_NEARESTBA,
THR_COMP_NEAR_NEARLB,
THR_COMP_NEW_NEWLB,
THR_COMP_NEW_NEARESTLB,
THR_COMP_NEAREST_NEWLB,
THR_COMP_NEW_NEARLB,
THR_COMP_NEAR_NEWLB,
THR_COMP_GLOBAL_GLOBALLB,
THR_COMP_NEAR_NEARLA,
THR_COMP_NEW_NEWLA,
THR_COMP_NEW_NEARESTLA,
THR_COMP_NEAREST_NEWLA,
THR_COMP_NEW_NEARLA,
THR_COMP_NEAR_NEWLA,
THR_COMP_GLOBAL_GLOBALLA,
THR_COMP_NEAR_NEARL2A,
THR_COMP_NEW_NEWL2A,
THR_COMP_NEW_NEARESTL2A,
THR_COMP_NEAREST_NEWL2A,
THR_COMP_NEW_NEARL2A,
THR_COMP_NEAR_NEWL2A,
THR_COMP_GLOBAL_GLOBALL2A,
THR_COMP_NEAR_NEARL3A,
THR_COMP_NEW_NEWL3A,
THR_COMP_NEW_NEARESTL3A,
THR_COMP_NEAREST_NEWL3A,
THR_COMP_NEW_NEARL3A,
THR_COMP_NEAR_NEWL3A,
THR_COMP_GLOBAL_GLOBALL3A,
THR_COMP_NEAR_NEARGA,
THR_COMP_NEW_NEWGA,
THR_COMP_NEW_NEARESTGA,
THR_COMP_NEAREST_NEWGA,
THR_COMP_NEW_NEARGA,
THR_COMP_NEAR_NEWGA,
THR_COMP_GLOBAL_GLOBALGA,
THR_COMP_NEAR_NEARL2B,
THR_COMP_NEW_NEWL2B,
THR_COMP_NEW_NEARESTL2B,
THR_COMP_NEAREST_NEWL2B,
THR_COMP_NEW_NEARL2B,
THR_COMP_NEAR_NEWL2B,
THR_COMP_GLOBAL_GLOBALL2B,
THR_COMP_NEAR_NEARL3B,
THR_COMP_NEW_NEWL3B,
THR_COMP_NEW_NEARESTL3B,
THR_COMP_NEAREST_NEWL3B,
THR_COMP_NEW_NEARL3B,
THR_COMP_NEAR_NEWL3B,
THR_COMP_GLOBAL_GLOBALL3B,
THR_COMP_NEAR_NEARGB,
THR_COMP_NEW_NEWGB,
THR_COMP_NEW_NEARESTGB,
THR_COMP_NEAREST_NEWGB,
THR_COMP_NEW_NEARGB,
THR_COMP_NEAR_NEWGB,
THR_COMP_GLOBAL_GLOBALGB,
THR_COMP_NEAR_NEARLA2,
THR_COMP_NEW_NEWLA2,
THR_COMP_NEW_NEARESTLA2,
THR_COMP_NEAREST_NEWLA2,
THR_COMP_NEW_NEARLA2,
THR_COMP_NEAR_NEWLA2,
THR_COMP_GLOBAL_GLOBALLA2,
THR_COMP_NEAR_NEARL2A2,
THR_COMP_NEW_NEWL2A2,
THR_COMP_NEW_NEARESTL2A2,
THR_COMP_NEAREST_NEWL2A2,
THR_COMP_NEW_NEARL2A2,
THR_COMP_NEAR_NEWL2A2,
THR_COMP_GLOBAL_GLOBALL2A2,
THR_COMP_NEAR_NEARL3A2,
THR_COMP_NEW_NEWL3A2,
THR_COMP_NEW_NEARESTL3A2,
THR_COMP_NEAREST_NEWL3A2,
THR_COMP_NEW_NEARL3A2,
THR_COMP_NEAR_NEWL3A2,
THR_COMP_GLOBAL_GLOBALL3A2,
THR_COMP_NEAR_NEARGA2,
THR_COMP_NEW_NEWGA2,
THR_COMP_NEW_NEARESTGA2,
THR_COMP_NEAREST_NEWGA2,
THR_COMP_NEW_NEARGA2,
THR_COMP_NEAR_NEWGA2,
THR_COMP_GLOBAL_GLOBALGA2,
THR_COMP_NEAR_NEARLL2,
THR_COMP_NEW_NEWLL2,
THR_COMP_NEW_NEARESTLL2,
THR_COMP_NEAREST_NEWLL2,
THR_COMP_NEW_NEARLL2,
THR_COMP_NEAR_NEWLL2,
THR_COMP_GLOBAL_GLOBALLL2,
THR_COMP_NEAR_NEARLL3,
THR_COMP_NEW_NEWLL3,
THR_COMP_NEW_NEARESTLL3,
THR_COMP_NEAREST_NEWLL3,
THR_COMP_NEW_NEARLL3,
THR_COMP_NEAR_NEWLL3,
THR_COMP_GLOBAL_GLOBALLL3,
THR_COMP_NEAR_NEARLG,
THR_COMP_NEW_NEWLG,
THR_COMP_NEW_NEARESTLG,
THR_COMP_NEAREST_NEWLG,
THR_COMP_NEW_NEARLG,
THR_COMP_NEAR_NEWLG,
THR_COMP_GLOBAL_GLOBALLG,
THR_COMP_NEAR_NEARBA,
THR_COMP_NEW_NEWBA,
THR_COMP_NEW_NEARESTBA,
THR_COMP_NEAREST_NEWBA,
THR_COMP_NEW_NEARBA,
THR_COMP_NEAR_NEWBA,
THR_COMP_GLOBAL_GLOBALBA,
THR_DC,
THR_PAETH,
THR_SMOOTH,
THR_SMOOTH_V,
THR_SMOOTH_H,
THR_H_PRED,
THR_V_PRED,
THR_D135_PRED,
THR_D203_PRED,
THR_D157_PRED,
THR_D67_PRED,
THR_D113_PRED,
THR_D45_PRED,
};
/*!\cond */
typedef struct SingleInterModeState {
int64_t rd;
MV_REFERENCE_FRAME ref_frame;
int valid;
} SingleInterModeState;
typedef struct InterModeSearchState {
int64_t best_rd;
int64_t best_skip_rd[2];
MB_MODE_INFO best_mbmode;
int best_rate_y;
int best_rate_uv;
int best_mode_skippable;
int best_skip2;
THR_MODES best_mode_index;
int num_available_refs;
int64_t dist_refs[REF_FRAMES];
int dist_order_refs[REF_FRAMES];
int64_t mode_threshold[MAX_MODES];
int64_t best_intra_rd;
unsigned int best_pred_sse;
/*!
* \brief Keep track of best intra rd for use in compound mode.
*/
int64_t best_pred_rd[REFERENCE_MODES];
// Save a set of single_newmv for each checked ref_mv.
int_mv single_newmv[MAX_REF_MV_SEARCH][REF_FRAMES];
int single_newmv_rate[MAX_REF_MV_SEARCH][REF_FRAMES];
int single_newmv_valid[MAX_REF_MV_SEARCH][REF_FRAMES];
int64_t modelled_rd[MB_MODE_COUNT][MAX_REF_MV_SEARCH][REF_FRAMES];
// The rd of simple translation in single inter modes
int64_t simple_rd[MB_MODE_COUNT][MAX_REF_MV_SEARCH][REF_FRAMES];
int64_t best_single_rd[REF_FRAMES];
PREDICTION_MODE best_single_mode[REF_FRAMES];
// Single search results by [directions][modes][reference frames]
SingleInterModeState single_state[2][SINGLE_INTER_MODE_NUM][FWD_REFS];
int single_state_cnt[2][SINGLE_INTER_MODE_NUM];
SingleInterModeState single_state_modelled[2][SINGLE_INTER_MODE_NUM]
[FWD_REFS];
int single_state_modelled_cnt[2][SINGLE_INTER_MODE_NUM];
MV_REFERENCE_FRAME single_rd_order[2][SINGLE_INTER_MODE_NUM][FWD_REFS];
IntraModeSearchState intra_search_state;
RD_STATS best_y_rdcost;
} InterModeSearchState;
/*!\endcond */
void av1_inter_mode_data_init(TileDataEnc *tile_data) {
for (int i = 0; i < BLOCK_SIZES_ALL; ++i) {
InterModeRdModel *md = &tile_data->inter_mode_rd_models[i];
md->ready = 0;
md->num = 0;
md->dist_sum = 0;
md->ld_sum = 0;
md->sse_sum = 0;
md->sse_sse_sum = 0;
md->sse_ld_sum = 0;
}
}
static int get_est_rate_dist(const TileDataEnc *tile_data, BLOCK_SIZE bsize,
int64_t sse, int *est_residue_cost,
int64_t *est_dist) {
const InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize];
if (md->ready) {
if (sse < md->dist_mean) {
*est_residue_cost = 0;
*est_dist = sse;
} else {
*est_dist = (int64_t)round(md->dist_mean);
const double est_ld = md->a * sse + md->b;
// Clamp estimated rate cost by INT_MAX / 2.
// TODO(angiebird@google.com): find better solution than clamping.
if (fabs(est_ld) < 1e-2) {
*est_residue_cost = INT_MAX / 2;
} else {
double est_residue_cost_dbl = ((sse - md->dist_mean) / est_ld);
if (est_residue_cost_dbl < 0) {
*est_residue_cost = 0;
} else {
*est_residue_cost =
(int)AOMMIN((int64_t)round(est_residue_cost_dbl), INT_MAX / 2);
}
}
if (*est_residue_cost <= 0) {
*est_residue_cost = 0;
*est_dist = sse;
}
}
return 1;
}
return 0;
}
void av1_inter_mode_data_fit(TileDataEnc *tile_data, int rdmult) {
for (int bsize = 0; bsize < BLOCK_SIZES_ALL; ++bsize) {
const int block_idx = inter_mode_data_block_idx(bsize);
InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize];
if (block_idx == -1) continue;
if ((md->ready == 0 && md->num < 200) || (md->ready == 1 && md->num < 64)) {
continue;
} else {
if (md->ready == 0) {
md->dist_mean = md->dist_sum / md->num;
md->ld_mean = md->ld_sum / md->num;
md->sse_mean = md->sse_sum / md->num;
md->sse_sse_mean = md->sse_sse_sum / md->num;
md->sse_ld_mean = md->sse_ld_sum / md->num;
} else {
const double factor = 3;
md->dist_mean =
(md->dist_mean * factor + (md->dist_sum / md->num)) / (factor + 1);
md->ld_mean =
(md->ld_mean * factor + (md->ld_sum / md->num)) / (factor + 1);
md->sse_mean =
(md->sse_mean * factor + (md->sse_sum / md->num)) / (factor + 1);
md->sse_sse_mean =
(md->sse_sse_mean * factor + (md->sse_sse_sum / md->num)) /
(factor + 1);
md->sse_ld_mean =
(md->sse_ld_mean * factor + (md->sse_ld_sum / md->num)) /
(factor + 1);
}
const double my = md->ld_mean;
const double mx = md->sse_mean;
const double dx = sqrt(md->sse_sse_mean);
const double dxy = md->sse_ld_mean;
md->a = (dxy - mx * my) / (dx * dx - mx * mx);
md->b = my - md->a * mx;
md->ready = 1;
md->num = 0;
md->dist_sum = 0;
md->ld_sum = 0;
md->sse_sum = 0;
md->sse_sse_sum = 0;
md->sse_ld_sum = 0;
}
(void)rdmult;
}
}
static inline void inter_mode_data_push(TileDataEnc *tile_data,
BLOCK_SIZE bsize, int64_t sse,
int64_t dist, int residue_cost) {
if (residue_cost == 0 || sse == dist) return;
const int block_idx = inter_mode_data_block_idx(bsize);
if (block_idx == -1) return;
InterModeRdModel *rd_model = &tile_data->inter_mode_rd_models[bsize];
if (rd_model->num < INTER_MODE_RD_DATA_OVERALL_SIZE) {
const double ld = (sse - dist) * 1. / residue_cost;
++rd_model->num;
rd_model->dist_sum += dist;
rd_model->ld_sum += ld;
rd_model->sse_sum += sse;
rd_model->sse_sse_sum += (double)sse * (double)sse;
rd_model->sse_ld_sum += sse * ld;
}
}
static inline void inter_modes_info_push(InterModesInfo *inter_modes_info,
int mode_rate, int64_t sse, int64_t rd,
RD_STATS *rd_cost, RD_STATS *rd_cost_y,
RD_STATS *rd_cost_uv,
const MB_MODE_INFO *mbmi) {
const int num = inter_modes_info->num;
assert(num < MAX_INTER_MODES);
inter_modes_info->mbmi_arr[num] = *mbmi;
inter_modes_info->mode_rate_arr[num] = mode_rate;
inter_modes_info->sse_arr[num] = sse;
inter_modes_info->est_rd_arr[num] = rd;
inter_modes_info->rd_cost_arr[num] = *rd_cost;
inter_modes_info->rd_cost_y_arr[num] = *rd_cost_y;
inter_modes_info->rd_cost_uv_arr[num] = *rd_cost_uv;
++inter_modes_info->num;
}
static int compare_rd_idx_pair(const void *a, const void *b) {
if (((RdIdxPair *)a)->rd == ((RdIdxPair *)b)->rd) {
// To avoid inconsistency in qsort() ordering when two elements are equal,
// using idx as tie breaker. Refer aomedia:2928
if (((RdIdxPair *)a)->idx == ((RdIdxPair *)b)->idx)
return 0;
else if (((RdIdxPair *)a)->idx > ((RdIdxPair *)b)->idx)
return 1;
else
return -1;
} else if (((const RdIdxPair *)a)->rd > ((const RdIdxPair *)b)->rd) {
return 1;
} else {
return -1;
}
}
static inline void inter_modes_info_sort(const InterModesInfo *inter_modes_info,
RdIdxPair *rd_idx_pair_arr) {
if (inter_modes_info->num == 0) {
return;
}
for (int i = 0; i < inter_modes_info->num; ++i) {
rd_idx_pair_arr[i].idx = i;
rd_idx_pair_arr[i].rd = inter_modes_info->est_rd_arr[i];
}
qsort(rd_idx_pair_arr, inter_modes_info->num, sizeof(rd_idx_pair_arr[0]),
compare_rd_idx_pair);
}
// Similar to get_horver_correlation, but also takes into account first
// row/column, when computing horizontal/vertical correlation.
void av1_get_horver_correlation_full_c(const int16_t *diff, int stride,
int width, int height, float *hcorr,
float *vcorr) {
// The following notation is used:
// x - current pixel
// y - left neighbor pixel
// z - top neighbor pixel
int64_t x_sum = 0, x2_sum = 0, xy_sum = 0, xz_sum = 0;
int64_t x_firstrow = 0, x_finalrow = 0, x_firstcol = 0, x_finalcol = 0;
int64_t x2_firstrow = 0, x2_finalrow = 0, x2_firstcol = 0, x2_finalcol = 0;
// First, process horizontal correlation on just the first row
x_sum += diff[0];
x2_sum += diff[0] * diff[0];
x_firstrow += diff[0];
x2_firstrow += diff[0] * diff[0];
for (int j = 1; j < width; ++j) {
const int16_t x = diff[j];
const int16_t y = diff[j - 1];
x_sum += x;
x_firstrow += x;
x2_sum += x * x;
x2_firstrow += x * x;
xy_sum += x * y;
}
// Process vertical correlation in the first column
x_firstcol += diff[0];
x2_firstcol += diff[0] * diff[0];
for (int i = 1; i < height; ++i) {
const int16_t x = diff[i * stride];
const int16_t z = diff[(i - 1) * stride];
x_sum += x;
x_firstcol += x;
x2_sum += x * x;
x2_firstcol += x * x;
xz_sum += x * z;
}
// Now process horiz and vert correlation through the rest unit
for (int i = 1; i < height; ++i) {
for (int j = 1; j < width; ++j) {
const int16_t x = diff[i * stride + j];
const int16_t y = diff[i * stride + j - 1];
const int16_t z = diff[(i - 1) * stride + j];
x_sum += x;
x2_sum += x * x;
xy_sum += x * y;
xz_sum += x * z;
}
}
for (int j = 0; j < width; ++j) {
x_finalrow += diff[(height - 1) * stride + j];
x2_finalrow +=
diff[(height - 1) * stride + j] * diff[(height - 1) * stride + j];
}
for (int i = 0; i < height; ++i) {
x_finalcol += diff[i * stride + width - 1];
x2_finalcol += diff[i * stride + width - 1] * diff[i * stride + width - 1];
}
int64_t xhor_sum = x_sum - x_finalcol;
int64_t xver_sum = x_sum - x_finalrow;
int64_t y_sum = x_sum - x_firstcol;
int64_t z_sum = x_sum - x_firstrow;
int64_t x2hor_sum = x2_sum - x2_finalcol;
int64_t x2ver_sum = x2_sum - x2_finalrow;
int64_t y2_sum = x2_sum - x2_firstcol;
int64_t z2_sum = x2_sum - x2_firstrow;
const float num_hor = (float)(height * (width - 1));
const float num_ver = (float)((height - 1) * width);
const float xhor_var_n = x2hor_sum - (xhor_sum * xhor_sum) / num_hor;
const float xver_var_n = x2ver_sum - (xver_sum * xver_sum) / num_ver;
const float y_var_n = y2_sum - (y_sum * y_sum) / num_hor;
const float z_var_n = z2_sum - (z_sum * z_sum) / num_ver;
const float xy_var_n = xy_sum - (xhor_sum * y_sum) / num_hor;
const float xz_var_n = xz_sum - (xver_sum * z_sum) / num_ver;
if (xhor_var_n > 0 && y_var_n > 0) {
*hcorr = xy_var_n / sqrtf(xhor_var_n * y_var_n);
*hcorr = *hcorr < 0 ? 0 : *hcorr;
} else {
*hcorr = 1.0;
}
if (xver_var_n > 0 && z_var_n > 0) {
*vcorr = xz_var_n / sqrtf(xver_var_n * z_var_n);
*vcorr = *vcorr < 0 ? 0 : *vcorr;
} else {
*vcorr = 1.0;
}
}
static void get_variance_stats_hbd(const MACROBLOCK *x, int64_t *src_var,
int64_t *rec_var) {
const MACROBLOCKD *xd = &x->e_mbd;
const MB_MODE_INFO *mbmi = xd->mi[0];
const struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y];
const struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y];
BLOCK_SIZE bsize = mbmi->bsize;
int bw = block_size_wide[bsize];
int bh = block_size_high[bsize];
static const int gau_filter[3][3] = {
{ 1, 2, 1 },
{ 2, 4, 2 },
{ 1, 2, 1 },
};
DECLARE_ALIGNED(16, uint16_t, dclevel[(MAX_SB_SIZE + 2) * (MAX_SB_SIZE + 2)]);
uint16_t *pred_ptr = &dclevel[bw + 1];
int pred_stride = xd->plane[0].dst.stride;
for (int idy = -1; idy < bh + 1; ++idy) {
for (int idx = -1; idx < bw + 1; ++idx) {
int offset_idy = idy;
int offset_idx = idx;
if (idy == -1) offset_idy = 0;
if (idy == bh) offset_idy = bh - 1;
if (idx == -1) offset_idx = 0;
if (idx == bw) offset_idx = bw - 1;
int offset = offset_idy * pred_stride + offset_idx;
pred_ptr[idy * bw + idx] = CONVERT_TO_SHORTPTR(pd->dst.buf)[offset];
}
}
*rec_var = 0;
for (int idy = 0; idy < bh; ++idy) {
for (int idx = 0; idx < bw; ++idx) {
int sum = 0;
for (int iy = 0; iy < 3; ++iy)
for (int ix = 0; ix < 3; ++ix)
sum += pred_ptr[(idy + iy - 1) * bw + (idx + ix - 1)] *
gau_filter[iy][ix];
sum = sum >> 4;
int64_t diff = pred_ptr[idy * bw + idx] - sum;
*rec_var += diff * diff;
}
}
*rec_var <<= 4;
int src_stride = p->src.stride;
for (int idy = -1; idy < bh + 1; ++idy) {
for (int idx = -1; idx < bw + 1; ++idx) {
int offset_idy = idy;
int offset_idx = idx;
if (idy == -1) offset_idy = 0;
if (idy == bh) offset_idy = bh - 1;
if (idx == -1) offset_idx = 0;
if (idx == bw) offset_idx = bw - 1;
int offset = offset_idy * src_stride + offset_idx;
pred_ptr[idy * bw + idx] = CONVERT_TO_SHORTPTR(p->src.buf)[offset];
}
}
*src_var = 0;
for (int idy = 0; idy < bh; ++idy) {
for (int idx = 0; idx < bw; ++idx) {
int sum = 0;
for (int iy = 0; iy < 3; ++iy)
for (int ix = 0; ix < 3; ++ix)
sum += pred_ptr[(idy + iy - 1) * bw + (idx + ix - 1)] *
gau_filter[iy][ix];
sum = sum >> 4;
int64_t diff = pred_ptr[idy * bw + idx] - sum;
*src_var += diff * diff;
}
}
*src_var <<= 4;
}
static void get_variance_stats(const MACROBLOCK *x, int64_t *src_var,
int64_t *rec_var) {
const MACROBLOCKD *xd = &x->e_mbd;
const MB_MODE_INFO *mbmi = xd->mi[0];
const struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y];
const struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y];
BLOCK_SIZE bsize = mbmi->bsize;
int bw = block_size_wide[bsize];
int bh = block_size_high[bsize];
static const int gau_filter[3][3] = {
{ 1, 2, 1 },
{ 2, 4, 2 },
{ 1, 2, 1 },
};
DECLARE_ALIGNED(16, uint8_t, dclevel[(MAX_SB_SIZE + 2) * (MAX_SB_SIZE + 2)]);
uint8_t *pred_ptr = &dclevel[bw + 1];
int pred_stride = xd->plane[0].dst.stride;
for (int idy = -1; idy < bh + 1; ++idy) {
for (int idx = -1; idx < bw + 1; ++idx) {
int offset_idy = idy;
int offset_idx = idx;
if (idy == -1) offset_idy = 0;
if (idy == bh) offset_idy = bh - 1;
if (idx == -1) offset_idx = 0;
if (idx == bw) offset_idx = bw - 1;
int offset = offset_idy * pred_stride + offset_idx;
pred_ptr[idy * bw + idx] = pd->dst.buf[offset];
}
}
*rec_var = 0;
for (int idy = 0; idy < bh; ++idy) {
for (int idx = 0; idx < bw; ++idx) {
int sum = 0;
for (int iy = 0; iy < 3; ++iy)
for (int ix = 0; ix < 3; ++ix)
sum += pred_ptr[(idy + iy - 1) * bw + (idx + ix - 1)] *
gau_filter[iy][ix];
sum = sum >> 4;
int64_t diff = pred_ptr[idy * bw + idx] - sum;
*rec_var += diff * diff;
}
}
*rec_var <<= 4;
int src_stride = p->src.stride;
for (int idy = -1; idy < bh + 1; ++idy) {
for (int idx = -1; idx < bw + 1; ++idx) {
int offset_idy = idy;
int offset_idx = idx;
if (idy == -1) offset_idy = 0;
if (idy == bh) offset_idy = bh - 1;
if (idx == -1) offset_idx = 0;
if (idx == bw) offset_idx = bw - 1;
int offset = offset_idy * src_stride + offset_idx;
pred_ptr[idy * bw + idx] = p->src.buf[offset];
}
}
*src_var = 0;
for (int idy = 0; idy < bh; ++idy) {
for (int idx = 0; idx < bw; ++idx) {
int sum = 0;
for (int iy = 0; iy < 3; ++iy)
for (int ix = 0; ix < 3; ++ix)
sum += pred_ptr[(idy + iy - 1) * bw + (idx + ix - 1)] *
gau_filter[iy][ix];
sum = sum >> 4;
int64_t diff = pred_ptr[idy * bw + idx] - sum;
*src_var += diff * diff;
}
}
*src_var <<= 4;
}
static void adjust_rdcost(const AV1_COMP *cpi, const MACROBLOCK *x,
RD_STATS *rd_cost) {
if (cpi->oxcf.algo_cfg.sharpness != 3) return;
if (frame_is_kf_gf_arf(cpi)) return;
int64_t src_var, rec_var;
const bool is_hbd = is_cur_buf_hbd(&x->e_mbd);
if (is_hbd)
get_variance_stats_hbd(x, &src_var, &rec_var);
else
get_variance_stats(x, &src_var, &rec_var);
if (src_var <= rec_var) return;
int64_t var_offset = src_var - rec_var;
rd_cost->dist += var_offset;
rd_cost->rdcost = RDCOST(x->rdmult, rd_cost->rate, rd_cost->dist);
}
static void adjust_cost(const AV1_COMP *cpi, const MACROBLOCK *x,
int64_t *rd_cost) {
if (cpi->oxcf.algo_cfg.sharpness != 3) return;
if (frame_is_kf_gf_arf(cpi)) return;
int64_t src_var, rec_var;
const bool is_hbd = is_cur_buf_hbd(&x->e_mbd);
if (is_hbd)
get_variance_stats_hbd(x, &src_var, &rec_var);
else
get_variance_stats(x, &src_var, &rec_var);
if (src_var <= rec_var) return;
int64_t var_offset = src_var - rec_var;
*rd_cost += RDCOST(x->rdmult, 0, var_offset);
}
static int64_t get_sse(const AV1_COMP *cpi, const MACROBLOCK *x,
int64_t *sse_y) {
const AV1_COMMON *cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
const MACROBLOCKD *xd = &x->e_mbd;
const MB_MODE_INFO *mbmi = xd->mi[0];
int64_t total_sse = 0;
for (int plane = 0; plane < num_planes; ++plane) {
if (plane && !xd->is_chroma_ref) break;
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
const BLOCK_SIZE bs =
get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y);
unsigned int sse;
cpi->ppi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf,
pd->dst.stride, &sse);
total_sse += sse;
if (!plane && sse_y) *sse_y = sse;
}
total_sse <<= 4;
return total_sse;
}
int64_t av1_block_error_c(const tran_low_t *coeff, const tran_low_t *dqcoeff,
intptr_t block_size, int64_t *ssz) {
int i;
int64_t error = 0, sqcoeff = 0;
for (i = 0; i < block_size; i++) {
const int diff = coeff[i] - dqcoeff[i];
error += diff * diff;
sqcoeff += coeff[i] * coeff[i];
}
*ssz = sqcoeff;
return error;
}
int64_t av1_block_error_lp_c(const int16_t *coeff, const int16_t *dqcoeff,
intptr_t block_size) {
int64_t error = 0;
for (int i = 0; i < block_size; i++) {
const int diff = coeff[i] - dqcoeff[i];
error += diff * diff;
}
return error;
}
#if CONFIG_AV1_HIGHBITDEPTH
int64_t av1_highbd_block_error_c(const tran_low_t *coeff,
const tran_low_t *dqcoeff, intptr_t block_size,
int64_t *ssz, int bd) {
int i;
int64_t error = 0, sqcoeff = 0;
int shift = 2 * (bd - 8);
int rounding = (1 << shift) >> 1;
for (i = 0; i < block_size; i++) {
const int64_t diff = coeff[i] - dqcoeff[i];
error += diff * diff;
sqcoeff += (int64_t)coeff[i] * (int64_t)coeff[i];
}
error = (error + rounding) >> shift;
sqcoeff = (sqcoeff + rounding) >> shift;
*ssz = sqcoeff;
return error;
}
#endif
static int conditional_skipintra(PREDICTION_MODE mode,
PREDICTION_MODE best_intra_mode) {
if (mode == D113_PRED && best_intra_mode != V_PRED &&
best_intra_mode != D135_PRED)
return 1;
if (mode == D67_PRED && best_intra_mode != V_PRED &&
best_intra_mode != D45_PRED)
return 1;
if (mode == D203_PRED && best_intra_mode != H_PRED &&
best_intra_mode != D45_PRED)
return 1;
if (mode == D157_PRED && best_intra_mode != H_PRED &&
best_intra_mode != D135_PRED)
return 1;
return 0;
}
static int cost_mv_ref(const ModeCosts *const mode_costs, PREDICTION_MODE mode,
int16_t mode_context) {
if (is_inter_compound_mode(mode)) {
return mode_costs
->inter_compound_mode_cost[mode_context][INTER_COMPOUND_OFFSET(mode)];
}
int mode_cost = 0;
int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;
assert(is_inter_mode(mode));
if (mode == NEWMV) {
mode_cost = mode_costs->newmv_mode_cost[mode_ctx][0];
return mode_cost;
} else {
mode_cost = mode_costs->newmv_mode_cost[mode_ctx][1];
mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
if (mode == GLOBALMV) {
mode_cost += mode_costs->zeromv_mode_cost[mode_ctx][0];
return mode_cost;
} else {
mode_cost += mode_costs->zeromv_mode_cost[mode_ctx][1];
mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
mode_cost += mode_costs->refmv_mode_cost[mode_ctx][mode != NEARESTMV];
return mode_cost;
}
}
}
static inline PREDICTION_MODE get_single_mode(PREDICTION_MODE this_mode,
int ref_idx) {
return ref_idx ? compound_ref1_mode(this_mode)
: compound_ref0_mode(this_mode);
}
static inline void estimate_ref_frame_costs(
const AV1_COMMON *cm, const MACROBLOCKD *xd, const ModeCosts *mode_costs,
int segment_id, unsigned int *ref_costs_single,
unsigned int (*ref_costs_comp)[REF_FRAMES]) {
int seg_ref_active =
segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME);
if (seg_ref_active) {
memset(ref_costs_single, 0, REF_FRAMES * sizeof(*ref_costs_single));
int ref_frame;
for (ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame)
memset(ref_costs_comp[ref_frame], 0,
REF_FRAMES * sizeof((*ref_costs_comp)[0]));
} else {
int intra_inter_ctx = av1_get_intra_inter_context(xd);
ref_costs_single[INTRA_FRAME] =
mode_costs->intra_inter_cost[intra_inter_ctx][0];
unsigned int base_cost = mode_costs->intra_inter_cost[intra_inter_ctx][1];
for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i)
ref_costs_single[i] = base_cost;
const int ctx_p1 = av1_get_pred_context_single_ref_p1(xd);
const int ctx_p2 = av1_get_pred_context_single_ref_p2(xd);
const int ctx_p3 = av1_get_pred_context_single_ref_p3(xd);
const int ctx_p4 = av1_get_pred_context_single_ref_p4(xd);
const int ctx_p5 = av1_get_pred_context_single_ref_p5(xd);
const int ctx_p6 = av1_get_pred_context_single_ref_p6(xd);
// Determine cost of a single ref frame, where frame types are represented
// by a tree:
// Level 0: add cost whether this ref is a forward or backward ref
ref_costs_single[LAST_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][0];
ref_costs_single[LAST2_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][0];
ref_costs_single[LAST3_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][0];
ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][0];
ref_costs_single[BWDREF_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][1];
ref_costs_single[ALTREF2_FRAME] +=
mode_costs->single_ref_cost[ctx_p1][0][1];
ref_costs_single[ALTREF_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][1];
// Level 1: if this ref is forward ref,
// add cost whether it is last/last2 or last3/golden
ref_costs_single[LAST_FRAME] += mode_costs->single_ref_cost[ctx_p3][2][0];
ref_costs_single[LAST2_FRAME] += mode_costs->single_ref_cost[ctx_p3][2][0];
ref_costs_single[LAST3_FRAME] += mode_costs->single_ref_cost[ctx_p3][2][1];
ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[ctx_p3][2][1];
// Level 1: if this ref is backward ref
// then add cost whether this ref is altref or backward ref
ref_costs_single[BWDREF_FRAME] += mode_costs->single_ref_cost[ctx_p2][1][0];
ref_costs_single[ALTREF2_FRAME] +=
mode_costs->single_ref_cost[ctx_p2][1][0];
ref_costs_single[ALTREF_FRAME] += mode_costs->single_ref_cost[ctx_p2][1][1];
// Level 2: further add cost whether this ref is last or last2
ref_costs_single[LAST_FRAME] += mode_costs->single_ref_cost[ctx_p4][3][0];
ref_costs_single[LAST2_FRAME] += mode_costs->single_ref_cost[ctx_p4][3][1];
// Level 2: last3 or golden
ref_costs_single[LAST3_FRAME] += mode_costs->single_ref_cost[ctx_p5][4][0];
ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[ctx_p5][4][1];
// Level 2: bwdref or altref2
ref_costs_single[BWDREF_FRAME] += mode_costs->single_ref_cost[ctx_p6][5][0];
ref_costs_single[ALTREF2_FRAME] +=
mode_costs->single_ref_cost[ctx_p6][5][1];
if (cm->current_frame.reference_mode != SINGLE_REFERENCE) {
// Similar to single ref, determine cost of compound ref frames.
// cost_compound_refs = cost_first_ref + cost_second_ref
const int bwdref_comp_ctx_p = av1_get_pred_context_comp_bwdref_p(xd);
const int bwdref_comp_ctx_p1 = av1_get_pred_context_comp_bwdref_p1(xd);
const int ref_comp_ctx_p = av1_get_pred_context_comp_ref_p(xd);
const int ref_comp_ctx_p1 = av1_get_pred_context_comp_ref_p1(xd);
const int ref_comp_ctx_p2 = av1_get_pred_context_comp_ref_p2(xd);
const int comp_ref_type_ctx = av1_get_comp_reference_type_context(xd);
unsigned int ref_bicomp_costs[REF_FRAMES] = { 0 };
ref_bicomp_costs[LAST_FRAME] = ref_bicomp_costs[LAST2_FRAME] =
ref_bicomp_costs[LAST3_FRAME] = ref_bicomp_costs[GOLDEN_FRAME] =
base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][1];
ref_bicomp_costs[BWDREF_FRAME] = ref_bicomp_costs[ALTREF2_FRAME] = 0;
ref_bicomp_costs[ALTREF_FRAME] = 0;
// cost of first ref frame
ref_bicomp_costs[LAST_FRAME] +=
mode_costs->comp_ref_cost[ref_comp_ctx_p][0][0];
ref_bicomp_costs[LAST2_FRAME] +=
mode_costs->comp_ref_cost[ref_comp_ctx_p][0][0];
ref_bicomp_costs[LAST3_FRAME] +=
mode_costs->comp_ref_cost[ref_comp_ctx_p][0][1];
ref_bicomp_costs[GOLDEN_FRAME] +=
mode_costs->comp_ref_cost[ref_comp_ctx_p][0][1];
ref_bicomp_costs[LAST_FRAME] +=
mode_costs->comp_ref_cost[ref_comp_ctx_p1][1][0];
ref_bicomp_costs[LAST2_FRAME] +=
mode_costs->comp_ref_cost[ref_comp_ctx_p1][1][1];
ref_bicomp_costs[LAST3_FRAME] +=
mode_costs->comp_ref_cost[ref_comp_ctx_p2][2][0];
ref_bicomp_costs[GOLDEN_FRAME] +=
mode_costs->comp_ref_cost[ref_comp_ctx_p2][2][1];
// cost of second ref frame
ref_bicomp_costs[BWDREF_FRAME] +=
mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p][0][0];
ref_bicomp_costs[ALTREF2_FRAME] +=
mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p][0][0];
ref_bicomp_costs[ALTREF_FRAME] +=
mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p][0][1];
ref_bicomp_costs[BWDREF_FRAME] +=
mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p1][1][0];
ref_bicomp_costs[ALTREF2_FRAME] +=
mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p1][1][1];
// cost: if one ref frame is forward ref, the other ref is backward ref
int ref0, ref1;
for (ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) {
for (ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1) {
ref_costs_comp[ref0][ref1] =
ref_bicomp_costs[ref0] + ref_bicomp_costs[ref1];
}
}
// cost: if both ref frames are the same side.
const int uni_comp_ref_ctx_p = av1_get_pred_context_uni_comp_ref_p(xd);
const int uni_comp_ref_ctx_p1 = av1_get_pred_context_uni_comp_ref_p1(xd);
const int uni_comp_ref_ctx_p2 = av1_get_pred_context_uni_comp_ref_p2(xd);
ref_costs_comp[LAST_FRAME][LAST2_FRAME] =
base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] +
mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] +
mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][0];
ref_costs_comp[LAST_FRAME][LAST3_FRAME] =
base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] +
mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] +
mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] +
mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][0];
ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] =
base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] +
mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] +
mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] +
mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][1];
ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] =
base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] +
mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][1];
} else {
int ref0, ref1;
for (ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) {
for (ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1)
ref_costs_comp[ref0][ref1] = 512;
}
ref_costs_comp[LAST_FRAME][LAST2_FRAME] = 512;
ref_costs_comp[LAST_FRAME][LAST3_FRAME] = 512;
ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] = 512;
ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] = 512;
}
}
}
static inline void store_coding_context(
#if CONFIG_INTERNAL_STATS
MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, int mode_index,
#else
MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
#endif // CONFIG_INTERNAL_STATS
int skippable) {
MACROBLOCKD *const xd = &x->e_mbd;
// Take a snapshot of the coding context so it can be
// restored if we decide to encode this way
ctx->rd_stats.skip_txfm = x->txfm_search_info.skip_txfm;
ctx->skippable = skippable;
#if CONFIG_INTERNAL_STATS
ctx->best_mode_index = mode_index;
#endif // CONFIG_INTERNAL_STATS
ctx->mic = *xd->mi[0];
av1_copy_mbmi_ext_to_mbmi_ext_frame(&ctx->mbmi_ext_best, &x->mbmi_ext,
av1_ref_frame_type(xd->mi[0]->ref_frame));
}
static inline void setup_buffer_ref_mvs_inter(
const AV1_COMP *const cpi, MACROBLOCK *x, MV_REFERENCE_FRAME ref_frame,
BLOCK_SIZE block_size, struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]) {
const AV1_COMMON *cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
const YV12_BUFFER_CONFIG *scaled_ref_frame =
av1_get_scaled_ref_frame(cpi, ref_frame);
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
const struct scale_factors *const sf =
get_ref_scale_factors_const(cm, ref_frame);
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, ref_frame);
assert(yv12 != NULL);
if (scaled_ref_frame) {
// Setup pred block based on scaled reference, because av1_mv_pred() doesn't
// support scaling.
av1_setup_pred_block(xd, yv12_mb[ref_frame], scaled_ref_frame, NULL, NULL,
num_planes);
} else {
av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, sf, sf, num_planes);
}
// Gets an initial list of candidate vectors from neighbours and orders them
av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count,
xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs,
mbmi_ext->mode_context);
// TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and
// mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs.
av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame);
// Further refinement that is encode side only to test the top few candidates
// in full and choose the best as the center point for subsequent searches.
// The current implementation doesn't support scaling.
av1_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12_mb[ref_frame][0].stride,
ref_frame, block_size);
// Go back to unscaled reference.
if (scaled_ref_frame) {
// We had temporarily setup pred block based on scaled reference above. Go
// back to unscaled reference now, for subsequent use.
av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, sf, sf, num_planes);
}
}
#define LEFT_TOP_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3)
#define RIGHT_BOTTOM_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3)
// TODO(jingning): this mv clamping function should be block size dependent.
static inline void clamp_mv2(MV *mv, const MACROBLOCKD *xd) {
const SubpelMvLimits mv_limits = { xd->mb_to_left_edge - LEFT_TOP_MARGIN,
xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN,
xd->mb_to_top_edge - LEFT_TOP_MARGIN,
xd->mb_to_bottom_edge +
RIGHT_BOTTOM_MARGIN };
clamp_mv(mv, &mv_limits);
}
/* If the current mode shares the same mv with other modes with higher cost,
* skip this mode. */
static int skip_repeated_mv(const AV1_COMMON *const cm,
const MACROBLOCK *const x,
PREDICTION_MODE this_mode,
const MV_REFERENCE_FRAME ref_frames[2],
InterModeSearchState *search_state) {
const int is_comp_pred = ref_frames[1] > INTRA_FRAME;
const uint8_t ref_frame_type = av1_ref_frame_type(ref_frames);
const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
const int ref_mv_count = mbmi_ext->ref_mv_count[ref_frame_type];
PREDICTION_MODE compare_mode = MB_MODE_COUNT;
if (!is_comp_pred) {
if (this_mode == NEARMV) {
if (ref_mv_count == 0) {
// NEARMV has the same motion vector as NEARESTMV
compare_mode = NEARESTMV;
}
if (ref_mv_count == 1 &&
cm->global_motion[ref_frames[0]].wmtype <= TRANSLATION) {
// NEARMV has the same motion vector as GLOBALMV
compare_mode = GLOBALMV;
}
}
if (this_mode == GLOBALMV) {
if (ref_mv_count == 0 &&
cm->global_motion[ref_frames[0]].wmtype <= TRANSLATION) {
// GLOBALMV has the same motion vector as NEARESTMV
compare_mode = NEARESTMV;
}
if (ref_mv_count == 1) {
// GLOBALMV has the same motion vector as NEARMV
compare_mode = NEARMV;
}
}
if (compare_mode != MB_MODE_COUNT) {
// Use modelled_rd to check whether compare mode was searched
if (search_state->modelled_rd[compare_mode][0][ref_frames[0]] !=
INT64_MAX) {
const int16_t mode_ctx =
av1_mode_context_analyzer(mbmi_ext->mode_context, ref_frames);
const int compare_cost =
cost_mv_ref(&x->mode_costs, compare_mode, mode_ctx);
const int this_cost = cost_mv_ref(&x->mode_costs, this_mode, mode_ctx);
// Only skip if the mode cost is larger than compare mode cost
if (this_cost > compare_cost) {
search_state->modelled_rd[this_mode][0][ref_frames[0]] =
search_state->modelled_rd[compare_mode][0][ref_frames[0]];
return 1;
}
}
}
}
return 0;
}
static inline int clamp_and_check_mv(int_mv *out_mv, int_mv in_mv,
const AV1_COMMON *cm,
const MACROBLOCK *x) {
const MACROBLOCKD *const xd = &x->e_mbd;
*out_mv = in_mv;
lower_mv_precision(&out_mv->as_mv, cm->features.allow_high_precision_mv,
cm->features.cur_frame_force_integer_mv);
clamp_mv2(&out_mv->as_mv, xd);
return av1_is_fullmv_in_range(&x->mv_limits,
get_fullmv_from_mv(&out_mv->as_mv));
}
// To use single newmv directly for compound modes, need to clamp the mv to the
// valid mv range. Without this, encoder would generate out of range mv, and
// this is seen in 8k encoding.
static inline void clamp_mv_in_range(MACROBLOCK *const x, int_mv *mv,
int ref_idx) {
const int_mv ref_mv = av1_get_ref_mv(x, ref_idx);
SubpelMvLimits mv_limits;
av1_set_subpel_mv_search_range(&mv_limits, &x->mv_limits, &ref_mv.as_mv);
clamp_mv(&mv->as_mv, &mv_limits);
}
static int64_t handle_newmv(const AV1_COMP *const cpi, MACROBLOCK *const x,
const BLOCK_SIZE bsize, int_mv *cur_mv,
int *const rate_mv, HandleInterModeArgs *const args,
inter_mode_info *mode_info) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
const int is_comp_pred = has_second_ref(mbmi);
const PREDICTION_MODE this_mode = mbmi->mode;
const int refs[2] = { mbmi->ref_frame[0],
mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1] };
const int ref_mv_idx = mbmi->ref_mv_idx;
if (is_comp_pred) {
const int valid_mv0 = args->single_newmv_valid[ref_mv_idx][refs[0]];
const int valid_mv1 = args->single_newmv_valid[ref_mv_idx][refs[1]];
if (this_mode == NEW_NEWMV) {
if (valid_mv0) {
cur_mv[0].as_int = args->single_newmv[ref_mv_idx][refs[0]].as_int;
clamp_mv_in_range(x, &cur_mv[0], 0);
}
if (valid_mv1) {
cur_mv[1].as_int = args->single_newmv[ref_mv_idx][refs[1]].as_int;
clamp_mv_in_range(x, &cur_mv[1], 1);
}
*rate_mv = 0;
for (int i = 0; i < 2; ++i) {
const int_mv ref_mv = av1_get_ref_mv(x, i);
*rate_mv += av1_mv_bit_cost(&cur_mv[i].as_mv, &ref_mv.as_mv,
x->mv_costs->nmv_joint_cost,
x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
}
} else if (this_mode == NEAREST_NEWMV || this_mode == NEAR_NEWMV) {
if (valid_mv1) {
cur_mv[1].as_int = args->single_newmv[ref_mv_idx][refs[1]].as_int;
clamp_mv_in_range(x, &cur_mv[1], 1);
}
const int_mv ref_mv = av1_get_ref_mv(x, 1);
*rate_mv = av1_mv_bit_cost(&cur_mv[1].as_mv, &ref_mv.as_mv,
x->mv_costs->nmv_joint_cost,
x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
} else {
assert(this_mode == NEW_NEARESTMV || this_mode == NEW_NEARMV);
if (valid_mv0) {
cur_mv[0].as_int = args->single_newmv[ref_mv_idx][refs[0]].as_int;
clamp_mv_in_range(x, &cur_mv[0], 0);
}
const int_mv ref_mv = av1_get_ref_mv(x, 0);
*rate_mv = av1_mv_bit_cost(&cur_mv[0].as_mv, &ref_mv.as_mv,
x->mv_costs->nmv_joint_cost,
x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
}
} else {
// Single ref case.
const int ref_idx = 0;
int search_range = INT_MAX;
if (cpi->sf.mv_sf.reduce_search_range && mbmi->ref_mv_idx > 0) {
const MV ref_mv = av1_get_ref_mv(x, ref_idx).as_mv;
int min_mv_diff = INT_MAX;
int best_match = -1;
MV prev_ref_mv[2] = { { 0 } };
for (int idx = 0; idx < mbmi->ref_mv_idx; ++idx) {
prev_ref_mv[idx] = av1_get_ref_mv_from_stack(ref_idx, mbmi->ref_frame,
idx, &x->mbmi_ext)
.as_mv;
const int ref_mv_diff = AOMMAX(abs(ref_mv.row - prev_ref_mv[idx].row),
abs(ref_mv.col - prev_ref_mv[idx].col));
if (min_mv_diff > ref_mv_diff) {
min_mv_diff = ref_mv_diff;
best_match = idx;
}
}
if (min_mv_diff < (16 << 3)) {
if (args->single_newmv_valid[best_match][refs[0]]) {
search_range = min_mv_diff;
search_range +=
AOMMAX(abs(args->single_newmv[best_match][refs[0]].as_mv.row -
prev_ref_mv[best_match].row),
abs(args->single_newmv[best_match][refs[0]].as_mv.col -
prev_ref_mv[best_match].col));
// Get full pixel search range.
search_range = (search_range + 4) >> 3;
}
}
}
int_mv best_mv;
av1_single_motion_search(cpi, x, bsize, ref_idx, rate_mv, search_range,
mode_info, &best_mv, args);
if (best_mv.as_int == INVALID_MV) return INT64_MAX;
args->single_newmv[ref_mv_idx][refs[0]] = best_mv;
args->single_newmv_rate[ref_mv_idx][refs[0]] = *rate_mv;
args->single_newmv_valid[ref_mv_idx][refs[0]] = 1;
cur_mv[0].as_int = best_mv.as_int;
// Return after single_newmv is set.
if (mode_info[mbmi->ref_mv_idx].skip) return INT64_MAX;
}
return 0;
}
static inline void update_mode_start_end_index(
const AV1_COMP *const cpi, const MB_MODE_INFO *const mbmi,
int *mode_index_start, int *mode_index_end, int last_motion_mode_allowed,
int interintra_allowed, int eval_motion_mode) {
*mode_index_start = (int)SIMPLE_TRANSLATION;
*mode_index_end = (int)last_motion_mode_allowed + interintra_allowed;
if (cpi->sf.winner_mode_sf.motion_mode_for_winner_cand) {
if (!eval_motion_mode) {
*mode_index_end = (int)SIMPLE_TRANSLATION;
} else {
// Set the start index appropriately to process motion modes other than
// simple translation
*mode_index_start = 1;
}
}
if (cpi->sf.inter_sf.extra_prune_warped && mbmi->bsize > BLOCK_16X16)
*mode_index_end = SIMPLE_TRANSLATION;
}
// Increase rd cost of warp mode for low complexity decoding.
static inline void increase_warp_mode_rd(const MB_MODE_INFO *const best_mbmi,
const MB_MODE_INFO *const this_mbmi,
int64_t *const best_scaled_rd,
int64_t *const this_scaled_rd,
int rd_bias_scale_pct) {
// Check rd bias percentage is non-zero.
if (!rd_bias_scale_pct) return;
if (*best_scaled_rd == INT64_MAX || *this_scaled_rd == INT64_MAX) return;
// Experiments have been performed with increasing the RD cost of warp mode at
// the below locations of inter mode evaluation.
// (1). Inter mode evaluation loop in av1_rd_pick_inter_mode().
// (2). Motion mode evaluation during handle_inter_mode() call.
// (3). Motion mode evaluation for winner motion modes.
// (4). Tx search for best inter candidates.
// Based on the speed quality trade-off results of this speed feature, the rd
// bias logic is enabled only at (2), (3) and (4).
const double rd_bias_scale = rd_bias_scale_pct / 100.0;
if (best_mbmi->motion_mode == WARPED_CAUSAL)
*best_scaled_rd += (int64_t)(rd_bias_scale * *best_scaled_rd);
if (this_mbmi->motion_mode == WARPED_CAUSAL)
*this_scaled_rd += (int64_t)(rd_bias_scale * *this_scaled_rd);
}
/*!\brief AV1 motion mode search
*
* \ingroup inter_mode_search
* Function to search over and determine the motion mode. It will update
* mbmi->motion_mode to one of SIMPLE_TRANSLATION, OBMC_CAUSAL, or
* WARPED_CAUSAL and determine any necessary side information for the selected
* motion mode. It will also perform the full transform search, unless the
* input parameter do_tx_search indicates to do an estimation of the RD rather
* than an RD corresponding to a full transform search. It will return the
* RD for the final motion_mode.
* Do the RD search for a given inter mode and compute all information relevant
* to the input mode. It will compute the best MV,
* compound parameters (if the mode is a compound mode) and interpolation filter
* parameters.
*
* \param[in] cpi Top-level encoder structure.
* \param[in] tile_data Pointer to struct holding adaptive
* data/contexts/models for the tile during
* encoding.
* \param[in] x Pointer to struct holding all the data for
* the current macroblock.
* \param[in] bsize Current block size.
* \param[in,out] rd_stats Struct to keep track of the overall RD
* information.
* \param[in,out] rd_stats_y Struct to keep track of the RD information
* for only the Y plane.
* \param[in,out] rd_stats_uv Struct to keep track of the RD information
* for only the UV planes.
* \param[in] args HandleInterModeArgs struct holding
* miscellaneous arguments for inter mode
* search. See the documentation for this
* struct for a description of each member.
* \param[in] ref_best_rd Best RD found so far for this block.
* It is used for early termination of this
* search if the RD exceeds this value.
* \param[in,out] ref_skip_rd A length 2 array, where skip_rd[0] is the
* best total RD for a skip mode so far, and
* skip_rd[1] is the best RD for a skip mode so
* far in luma. This is used as a speed feature
* to skip the transform search if the computed
* skip RD for the current mode is not better
* than the best skip_rd so far.
* \param[in,out] rate_mv The rate associated with the motion vectors.
* This will be modified if a motion search is
* done in the motion mode search.
* \param[in,out] orig_dst A prediction buffer to hold a computed
* prediction. This will eventually hold the
* final prediction, and the tmp_dst info will
* be copied here.
* \param[in,out] best_est_rd Estimated RD for motion mode search if
* do_tx_search (see below) is 0.
* \param[in] do_tx_search Parameter to indicate whether or not to do
* a full transform search. This will compute
* an estimated RD for the modes without the
* transform search and later perform the full
* transform search on the best candidates.
* \param[in] inter_modes_info InterModesInfo struct to hold inter mode
* information to perform a full transform
* search only on winning candidates searched
* with an estimate for transform coding RD.
* \param[in] eval_motion_mode Boolean whether or not to evaluate motion
* motion modes other than SIMPLE_TRANSLATION.
* \param[out] yrd Stores the rdcost corresponding to encoding
* the luma plane.
* \return Returns INT64_MAX if the determined motion mode is invalid and the
* current motion mode being tested should be skipped. It returns 0 if the
* motion mode search is a success.
*/
static int64_t motion_mode_rd(
const AV1_COMP *const cpi, TileDataEnc *tile_data, MACROBLOCK *const x,
BLOCK_SIZE bsize, RD_STATS *rd_stats, RD_STATS *rd_stats_y,
RD_STATS *rd_stats_uv, HandleInterModeArgs *const args, int64_t ref_best_rd,
int64_t *ref_skip_rd, int *rate_mv, const BUFFER_SET *orig_dst,
int64_t *best_est_rd, int do_tx_search, InterModesInfo *inter_modes_info,
int eval_motion_mode, int64_t *yrd) {
const AV1_COMMON *const cm = &cpi->common;
const FeatureFlags *const features = &cm->features;
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
const int is_comp_pred = has_second_ref(mbmi);
const PREDICTION_MODE this_mode = mbmi->mode;
const int rate2_nocoeff = rd_stats->rate;
int best_xskip_txfm = 0;
RD_STATS best_rd_stats, best_rd_stats_y, best_rd_stats_uv;
uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
const int rate_mv0 = *rate_mv;
const int interintra_allowed = cm->seq_params->enable_interintra_compound &&
is_interintra_allowed(mbmi) &&
mbmi->compound_idx;
WARP_SAMPLE_INFO *const warp_sample_info =
&x->warp_sample_info[mbmi->ref_frame[0]];
int *pts0 = warp_sample_info->pts;
int *pts_inref0 = warp_sample_info->pts_inref;
assert(mbmi->ref_frame[1] != INTRA_FRAME);
const MV_REFERENCE_FRAME ref_frame_1 = mbmi->ref_frame[1];
av1_invalid_rd_stats(&best_rd_stats);
mbmi->num_proj_ref = 1; // assume num_proj_ref >=1
MOTION_MODE last_motion_mode_allowed = SIMPLE_TRANSLATION;
*yrd = INT64_MAX;
if (features->switchable_motion_mode) {
// Determine which motion modes to search if more than SIMPLE_TRANSLATION
// is allowed.
last_motion_mode_allowed = motion_mode_allowed(
xd->global_motion, xd, mbmi, features->allow_warped_motion);
}
if (last_motion_mode_allowed == WARPED_CAUSAL) {
// Collect projection samples used in least squares approximation of
// the warped motion parameters if WARPED_CAUSAL is going to be searched.
if (warp_sample_info->num < 0) {
warp_sample_info->num = av1_findSamples(cm, xd, pts0, pts_inref0);
}
mbmi->num_proj_ref = warp_sample_info->num;
}
const int total_samples = mbmi->num_proj_ref;
if (total_samples == 0) {
// Do not search WARPED_CAUSAL if there are no samples to use to determine
// warped parameters.
last_motion_mode_allowed = OBMC_CAUSAL;
}
const MB_MODE_INFO base_mbmi = *mbmi;
MB_MODE_INFO best_mbmi;
const int interp_filter = features->interp_filter;
const int switchable_rate =
av1_is_interp_needed(xd)
? av1_get_switchable_rate(x, xd, interp_filter,
cm->seq_params->enable_dual_filter)
: 0;
int64_t best_rd = INT64_MAX;
int best_rate_mv = rate_mv0;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
int mode_index_start, mode_index_end;
const int txfm_rd_gate_level =
get_txfm_rd_gate_level(cm->seq_params->enable_masked_compound,
cpi->sf.inter_sf.txfm_rd_gate_level, bsize,
TX_SEARCH_MOTION_MODE, eval_motion_mode);
// Modify the start and end index according to speed features. For example,
// if SIMPLE_TRANSLATION has already been searched according to
// the motion_mode_for_winner_cand speed feature, update the mode_index_start
// to avoid searching it again.
update_mode_start_end_index(cpi, mbmi, &mode_index_start, &mode_index_end,
last_motion_mode_allowed, interintra_allowed,
eval_motion_mode);
// Main function loop. This loops over all of the possible motion modes and
// computes RD to determine the best one. This process includes computing
// any necessary side information for the motion mode and performing the
// transform search.
for (int mode_index = mode_index_start; mode_index <= mode_index_end;
mode_index++) {
if (args->skip_motion_mode && mode_index) continue;
int tmp_rate2 = rate2_nocoeff;
const int is_interintra_mode = mode_index > (int)last_motion_mode_allowed;
int tmp_rate_mv = rate_mv0;
*mbmi = base_mbmi;
if (is_interintra_mode) {
// Only use SIMPLE_TRANSLATION for interintra
mbmi->motion_mode = SIMPLE_TRANSLATION;
} else {
mbmi->motion_mode = (MOTION_MODE)mode_index;
assert(mbmi->ref_frame[1] != INTRA_FRAME);
}
if (cpi->oxcf.algo_cfg.sharpness == 3 &&
(mbmi->motion_mode == OBMC_CAUSAL ||
mbmi->motion_mode == WARPED_CAUSAL))
continue;
// Do not search OBMC if the probability of selecting it is below a
// predetermined threshold for this update_type and block size.
const FRAME_UPDATE_TYPE update_type =
get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
int use_actual_frame_probs = 1;
int prune_obmc;
#if CONFIG_FPMT_TEST
use_actual_frame_probs =
(cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) ? 0 : 1;
if (!use_actual_frame_probs) {
prune_obmc = cpi->ppi->temp_frame_probs.obmc_probs[update_type][bsize] <
cpi->sf.inter_sf.prune_obmc_prob_thresh;
}
#endif
if (use_actual_frame_probs) {
prune_obmc = cpi->ppi->frame_probs.obmc_probs[update_type][bsize] <
cpi->sf.inter_sf.prune_obmc_prob_thresh;
}
if ((!cpi->oxcf.motion_mode_cfg.enable_obmc || prune_obmc) &&
mbmi->motion_mode == OBMC_CAUSAL)
continue;
if (mbmi->motion_mode == SIMPLE_TRANSLATION && !is_interintra_mode) {
// SIMPLE_TRANSLATION mode: no need to recalculate.
// The prediction is calculated before motion_mode_rd() is called in
// handle_inter_mode()
} else if (mbmi->motion_mode == OBMC_CAUSAL) {
const uint32_t cur_mv = mbmi->mv[0].as_int;
// OBMC_CAUSAL not allowed for compound prediction
assert(!is_comp_pred);
if (have_newmv_in_inter_mode(this_mode)) {
av1_single_motion_search(cpi, x, bsize, 0, &tmp_rate_mv, INT_MAX, NULL,
&mbmi->mv[0], NULL);
tmp_rate2 = rate2_nocoeff - rate_mv0 + tmp_rate_mv;
}
if ((mbmi->mv[0].as_int != cur_mv) || eval_motion_mode) {
// Build the predictor according to the current motion vector if it has
// not already been built
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize,
0, av1_num_planes(cm) - 1);
}
// Build the inter predictor by blending the predictor corresponding to
// this MV, and the neighboring blocks using the OBMC model
av1_build_obmc_inter_prediction(
cm, xd, args->above_pred_buf, args->above_pred_stride,
args->left_pred_buf, args->left_pred_stride);
#if !CONFIG_REALTIME_ONLY
} else if (mbmi->motion_mode == WARPED_CAUSAL) {
int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE];
mbmi->motion_mode = WARPED_CAUSAL;
mbmi->wm_params.wmtype = DEFAULT_WMTYPE;
mbmi->interp_filters =
av1_broadcast_interp_filter(av1_unswitchable_filter(interp_filter));
memcpy(pts, pts0, total_samples * 2 * sizeof(*pts0));
memcpy(pts_inref, pts_inref0, total_samples * 2 * sizeof(*pts_inref0));
// Select the samples according to motion vector difference
if (mbmi->num_proj_ref > 1) {
mbmi->num_proj_ref = av1_selectSamples(
&mbmi->mv[0].as_mv, pts, pts_inref, mbmi->num_proj_ref, bsize);
}
// Compute the warped motion parameters with a least squares fit
// using the collected samples
if (!av1_find_projection(mbmi->num_proj_ref, pts, pts_inref, bsize,
mbmi->mv[0].as_mv.row, mbmi->mv[0].as_mv.col,
&mbmi->wm_params, mi_row, mi_col)) {
assert(!is_comp_pred);
if (have_newmv_in_inter_mode(this_mode)) {
// Refine MV for NEWMV mode
const int_mv mv0 = mbmi->mv[0];
const WarpedMotionParams wm_params0 = mbmi->wm_params;
const int num_proj_ref0 = mbmi->num_proj_ref;
const int_mv ref_mv = av1_get_ref_mv(x, 0);
SUBPEL_MOTION_SEARCH_PARAMS ms_params;
av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize,
&ref_mv.as_mv, NULL);
// Refine MV in a small range.
av1_refine_warped_mv(xd, cm, &ms_params, bsize, pts0, pts_inref0,
total_samples, cpi->sf.mv_sf.warp_search_method,
cpi->sf.mv_sf.warp_search_iters);
if (mv0.as_int != mbmi->mv[0].as_int) {
// Keep the refined MV and WM parameters.
tmp_rate_mv = av1_mv_bit_cost(
&mbmi->mv[0].as_mv, &ref_mv.as_mv, x->mv_costs->nmv_joint_cost,
x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
tmp_rate2 = rate2_nocoeff - rate_mv0 + tmp_rate_mv;
} else {
// Restore the old MV and WM parameters.
mbmi->mv[0] = mv0;
mbmi->wm_params = wm_params0;
mbmi->num_proj_ref = num_proj_ref0;
}
}
// Build the warped predictor
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0,
av1_num_planes(cm) - 1);
} else {
continue;
}
#endif // !CONFIG_REALTIME_ONLY
} else if (is_interintra_mode) {
const int ret =
av1_handle_inter_intra_mode(cpi, x, bsize, mbmi, args, ref_best_rd,
&tmp_rate_mv, &tmp_rate2, orig_dst);
if (ret < 0) continue;
}
// If we are searching newmv and the mv is the same as refmv, skip the
// current mode
if (!av1_check_newmv_joint_nonzero(cm, x)) continue;
// Update rd_stats for the current motion mode
txfm_info->skip_txfm = 0;
rd_stats->dist = 0;
rd_stats->sse = 0;
rd_stats->skip_txfm = 1;
rd_stats->rate = tmp_rate2;
const ModeCosts *mode_costs = &x->mode_costs;
if (mbmi->motion_mode != WARPED_CAUSAL) rd_stats->rate += switchable_rate;
if (interintra_allowed) {
rd_stats->rate +=
mode_costs->interintra_cost[size_group_lookup[bsize]]
[mbmi->ref_frame[1] == INTRA_FRAME];
}
if ((last_motion_mode_allowed > SIMPLE_TRANSLATION) &&
(mbmi->ref_frame[1] != INTRA_FRAME)) {
if (last_motion_mode_allowed == WARPED_CAUSAL) {
rd_stats->rate +=
mode_costs->motion_mode_cost[bsize][mbmi->motion_mode];
} else {
rd_stats->rate +=
mode_costs->motion_mode_cost1[bsize][mbmi->motion_mode];
}
}
int64_t this_yrd = INT64_MAX;
if (!do_tx_search) {
// Avoid doing a transform search here to speed up the overall mode
// search. It will be done later in the mode search if the current
// motion mode seems promising.
int64_t curr_sse = -1;
int64_t sse_y = -1;
int est_residue_cost = 0;
int64_t est_dist = 0;
int64_t est_rd = 0;
if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) {
curr_sse = get_sse(cpi, x, &sse_y);
const int has_est_rd = get_est_rate_dist(tile_data, bsize, curr_sse,
&est_residue_cost, &est_dist);
(void)has_est_rd;
assert(has_est_rd);
} else if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 2 ||
cpi->sf.rt_sf.use_nonrd_pick_mode) {
model_rd_sb_fn[MODELRD_TYPE_MOTION_MODE_RD](
cpi, bsize, x, xd, 0, num_planes - 1, &est_residue_cost, &est_dist,
NULL, &curr_sse, NULL, NULL, NULL);
sse_y = x->pred_sse[xd->mi[0]->ref_frame[0]];
}
est_rd = RDCOST(x->rdmult, rd_stats->rate + est_residue_cost, est_dist);
if (est_rd * 0.80 > *best_est_rd) {
mbmi->ref_frame[1] = ref_frame_1;
continue;
}
const int mode_rate = rd_stats->rate;
rd_stats->rate += est_residue_cost;
rd_stats->dist = est_dist;
rd_stats->rdcost = est_rd;
if (rd_stats->rdcost < *best_est_rd) {
*best_est_rd = rd_stats->rdcost;
assert(sse_y >= 0);
ref_skip_rd[1] = txfm_rd_gate_level
? RDCOST(x->rdmult, mode_rate, (sse_y << 4))
: INT64_MAX;
}
if (cm->current_frame.reference_mode == SINGLE_REFERENCE) {
if (!is_comp_pred) {
assert(curr_sse >= 0);
inter_modes_info_push(inter_modes_info, mode_rate, curr_sse,
rd_stats->rdcost, rd_stats, rd_stats_y,
rd_stats_uv, mbmi);
}
} else {
assert(curr_sse >= 0);
inter_modes_info_push(inter_modes_info, mode_rate, curr_sse,
rd_stats->rdcost, rd_stats, rd_stats_y,
rd_stats_uv, mbmi);
}
mbmi->skip_txfm = 0;
} else {
// Perform full transform search
int64_t skip_rd = INT64_MAX;
int64_t skip_rdy = INT64_MAX;
if (txfm_rd_gate_level) {
// Check if the mode is good enough based on skip RD
int64_t sse_y = INT64_MAX;
int64_t curr_sse = get_sse(cpi, x, &sse_y);
skip_rd = RDCOST(x->rdmult, rd_stats->rate, curr_sse);
skip_rdy = RDCOST(x->rdmult, rd_stats->rate, (sse_y << 4));
int eval_txfm = check_txfm_eval(x, bsize, ref_skip_rd[0], skip_rd,
txfm_rd_gate_level, 0);
if (!eval_txfm) continue;
}
// Do transform search
const int mode_rate = rd_stats->rate;
if (!av1_txfm_search(cpi, x, bsize, rd_stats, rd_stats_y, rd_stats_uv,
rd_stats->rate, ref_best_rd)) {
if (rd_stats_y->rate == INT_MAX && mode_index == 0) {
return INT64_MAX;
}
continue;
}
const int skip_ctx = av1_get_skip_txfm_context(xd);
const int y_rate =
rd_stats->skip_txfm
? x->mode_costs.skip_txfm_cost[skip_ctx][1]
: (rd_stats_y->rate + x->mode_costs.skip_txfm_cost[skip_ctx][0]);
this_yrd = RDCOST(x->rdmult, y_rate + mode_rate, rd_stats_y->dist);
const int64_t curr_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
if (curr_rd < ref_best_rd) {
ref_best_rd = curr_rd;
ref_skip_rd[0] = skip_rd;
ref_skip_rd[1] = skip_rdy;
}
if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) {
inter_mode_data_push(
tile_data, mbmi->bsize, rd_stats->sse, rd_stats->dist,
rd_stats_y->rate + rd_stats_uv->rate +
mode_costs->skip_txfm_cost[skip_ctx][mbmi->skip_txfm]);
}
}
if (this_mode == GLOBALMV || this_mode == GLOBAL_GLOBALMV) {
if (is_nontrans_global_motion(xd, xd->mi[0])) {
mbmi->interp_filters =
av1_broadcast_interp_filter(av1_unswitchable_filter(interp_filter));
}
}
adjust_cost(cpi, x, &this_yrd);
adjust_rdcost(cpi, x, rd_stats);
adjust_rdcost(cpi, x, rd_stats_y);
const int64_t tmp_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
if (mode_index == 0) {
args->simple_rd[this_mode][mbmi->ref_mv_idx][mbmi->ref_frame[0]] = tmp_rd;
}
int64_t best_scaled_rd = best_rd;
int64_t this_scaled_rd = tmp_rd;
if (mode_index != 0)
increase_warp_mode_rd(&best_mbmi, mbmi, &best_scaled_rd, &this_scaled_rd,
cpi->sf.inter_sf.bias_warp_mode_rd_scale_pct);
if (mode_index == 0 || this_scaled_rd < best_scaled_rd) {
// Update best_rd data if this is the best motion mode so far
best_mbmi = *mbmi;
best_rd = tmp_rd;
best_rd_stats = *rd_stats;
best_rd_stats_y = *rd_stats_y;
best_rate_mv = tmp_rate_mv;
*yrd = this_yrd;
if (num_planes > 1) best_rd_stats_uv = *rd_stats_uv;
memcpy(best_blk_skip, txfm_info->blk_skip,
sizeof(txfm_info->blk_skip[0]) * xd->height * xd->width);
av1_copy_array(best_tx_type_map, xd->tx_type_map, xd->height * xd->width);
best_xskip_txfm = mbmi->skip_txfm;
}
}
// Update RD and mbmi stats for selected motion mode
mbmi->ref_frame[1] = ref_frame_1;
*rate_mv = best_rate_mv;
if (best_rd == INT64_MAX || !av1_check_newmv_joint_nonzero(cm, x)) {
av1_invalid_rd_stats(rd_stats);
restore_dst_buf(xd, *orig_dst, num_planes);
return INT64_MAX;
}
*mbmi = best_mbmi;
*rd_stats = best_rd_stats;
*rd_stats_y = best_rd_stats_y;
if (num_planes > 1) *rd_stats_uv = best_rd_stats_uv;
memcpy(txfm_info->blk_skip, best_blk_skip,
sizeof(txfm_info->blk_skip[0]) * xd->height * xd->width);
av1_copy_array(xd->tx_type_map, best_tx_type_map, xd->height * xd->width);
txfm_info->skip_txfm = best_xskip_txfm;
restore_dst_buf(xd, *orig_dst, num_planes);
return 0;
}
static int64_t skip_mode_rd(RD_STATS *rd_stats, const AV1_COMP *const cpi,
MACROBLOCK *const x, BLOCK_SIZE bsize,
const BUFFER_SET *const orig_dst, int64_t best_rd) {
assert(bsize < BLOCK_SIZES_ALL);
const AV1_COMMON *cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *const xd = &x->e_mbd;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
int64_t total_sse = 0;
int64_t this_rd = INT64_MAX;
const int skip_mode_ctx = av1_get_skip_mode_context(xd);
rd_stats->rate = x->mode_costs.skip_mode_cost[skip_mode_ctx][1];
for (int plane = 0; plane < num_planes; ++plane) {
// Call av1_enc_build_inter_predictor() for one plane at a time.
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize,
plane, plane);
const struct macroblockd_plane *const pd = &xd->plane[plane];
const BLOCK_SIZE plane_bsize =
get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
av1_subtract_plane(x, plane_bsize, plane);
int64_t sse =
av1_pixel_diff_dist(x, plane, 0, 0, plane_bsize, plane_bsize, NULL);
if (is_cur_buf_hbd(xd)) sse = ROUND_POWER_OF_TWO(sse, (xd->bd - 8) * 2);
sse <<= 4;
total_sse += sse;
// When current rd cost is more than the best rd, skip evaluation of
// remaining planes.
this_rd = RDCOST(x->rdmult, rd_stats->rate, total_sse);
if (this_rd > best_rd) break;
}
rd_stats->dist = rd_stats->sse = total_sse;
rd_stats->rdcost = this_rd;
restore_dst_buf(xd, *orig_dst, num_planes);
return 0;
}
// Check NEARESTMV, NEARMV, GLOBALMV ref mvs for duplicate and skip the relevant
// mode
// Note(rachelbarker): This speed feature currently does not interact correctly
// with global motion. The issue is that, when global motion is used, GLOBALMV
// produces a different prediction to NEARESTMV/NEARMV even if the motion
// vectors are the same. Thus GLOBALMV should not be pruned in this case.
static inline int check_repeat_ref_mv(const MB_MODE_INFO_EXT *mbmi_ext,
int ref_idx,
const MV_REFERENCE_FRAME *ref_frame,
PREDICTION_MODE single_mode) {
const uint8_t ref_frame_type = av1_ref_frame_type(ref_frame);
const int ref_mv_count = mbmi_ext->ref_mv_count[ref_frame_type];
assert(single_mode != NEWMV);
if (single_mode == NEARESTMV) {
return 0;
} else if (single_mode == NEARMV) {
// when ref_mv_count = 0, NEARESTMV and NEARMV are same as GLOBALMV
// when ref_mv_count = 1, NEARMV is same as GLOBALMV
if (ref_mv_count < 2) return 1;
} else if (single_mode == GLOBALMV) {
// when ref_mv_count == 0, GLOBALMV is same as NEARESTMV
if (ref_mv_count == 0) return 1;
// when ref_mv_count == 1, NEARMV is same as GLOBALMV
else if (ref_mv_count == 1)
return 0;
int stack_size = AOMMIN(USABLE_REF_MV_STACK_SIZE, ref_mv_count);
// Check GLOBALMV is matching with any mv in ref_mv_stack
for (int ref_mv_idx = 0; ref_mv_idx < stack_size; ref_mv_idx++) {
int_mv this_mv;
if (ref_idx == 0)
this_mv = mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].this_mv;
else
this_mv = mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].comp_mv;
if (this_mv.as_int == mbmi_ext->global_mvs[ref_frame[ref_idx]].as_int)
return 1;
}
}
return 0;
}
static inline int get_this_mv(int_mv *this_mv, PREDICTION_MODE this_mode,
int ref_idx, int ref_mv_idx,
int skip_repeated_ref_mv,
const MV_REFERENCE_FRAME *ref_frame,
const MB_MODE_INFO_EXT *mbmi_ext) {
const PREDICTION_MODE single_mode = get_single_mode(this_mode, ref_idx);
assert(is_inter_singleref_mode(single_mode));
if (single_mode == NEWMV) {
this_mv->as_int = INVALID_MV;
} else if (single_mode == GLOBALMV) {
if (skip_repeated_ref_mv &&
check_repeat_ref_mv(mbmi_ext, ref_idx, ref_frame, single_mode))
return 0;
*this_mv = mbmi_ext->global_mvs[ref_frame[ref_idx]];
} else {
assert(single_mode == NEARMV || single_mode == NEARESTMV);
const uint8_t ref_frame_type = av1_ref_frame_type(ref_frame);
const int ref_mv_offset = single_mode == NEARESTMV ? 0 : ref_mv_idx + 1;
if (ref_mv_offset < mbmi_ext->ref_mv_count[ref_frame_type]) {
assert(ref_mv_offset >= 0);
if (ref_idx == 0) {
*this_mv =
mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_offset].this_mv;
} else {
*this_mv =
mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_offset].comp_mv;
}
} else {
if (skip_repeated_ref_mv &&
check_repeat_ref_mv(mbmi_ext, ref_idx, ref_frame, single_mode))
return 0;
*this_mv = mbmi_ext->global_mvs[ref_frame[ref_idx]];
}
}
return 1;
}
// Skip NEARESTMV and NEARMV modes based on refmv weight computed in ref mv list
// population
static inline int skip_nearest_near_mv_using_refmv_weight(
const MACROBLOCK *const x, const PREDICTION_MODE this_mode,
const int8_t ref_frame_type, PREDICTION_MODE best_mode) {
if (this_mode != NEARESTMV && this_mode != NEARMV) return 0;
// Do not skip the mode if the current block has not yet obtained a valid
// inter mode.
if (!is_inter_mode(best_mode)) return 0;
const MACROBLOCKD *xd = &x->e_mbd;
// Do not skip the mode if both the top and left neighboring blocks are not
// available.
if (!xd->left_available || !xd->up_available) return 0;
const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
const uint16_t *const ref_mv_weight = mbmi_ext->weight[ref_frame_type];
const int ref_mv_count =
AOMMIN(MAX_REF_MV_SEARCH, mbmi_ext->ref_mv_count[ref_frame_type]);
if (ref_mv_count == 0) return 0;
// If ref mv list has at least one nearest candidate do not prune NEARESTMV
if (this_mode == NEARESTMV && ref_mv_weight[0] >= REF_CAT_LEVEL) return 0;
// Count number of ref mvs populated from nearest candidates
int nearest_refmv_count = 0;
for (int ref_mv_idx = 0; ref_mv_idx < ref_mv_count; ref_mv_idx++) {
if (ref_mv_weight[ref_mv_idx] >= REF_CAT_LEVEL) nearest_refmv_count++;
}
// nearest_refmv_count indicates the closeness of block motion characteristics
// with respect to its spatial neighbor. Smaller value of nearest_refmv_count
// w.r.t to ref_mv_count means less correlation with its spatial neighbors.
// Hence less possibility for NEARESTMV and NEARMV modes becoming the best
// mode since these modes work well for blocks that shares similar motion
// characteristics with its neighbor. Thus, NEARMV mode is pruned when
// nearest_refmv_count is relatively smaller than ref_mv_count and NEARESTMV
// mode is pruned if none of the ref mvs are populated from nearest candidate.
const int prune_thresh = 1 + (ref_mv_count >= 2);
if (nearest_refmv_count < prune_thresh) return 1;
return 0;
}
// This function update the non-new mv for the current prediction mode
static inline int build_cur_mv(int_mv *cur_mv, PREDICTION_MODE this_mode,
const AV1_COMMON *cm, const MACROBLOCK *x,
int skip_repeated_ref_mv) {
const MACROBLOCKD *xd = &x->e_mbd;
const MB_MODE_INFO *mbmi = xd->mi[0];
const int is_comp_pred = has_second_ref(mbmi);
int ret = 1;
for (int i = 0; i < is_comp_pred + 1; ++i) {
int_mv this_mv;
this_mv.as_int = INVALID_MV;
ret = get_this_mv(&this_mv, this_mode, i, mbmi->ref_mv_idx,
skip_repeated_ref_mv, mbmi->ref_frame, &x->mbmi_ext);
if (!ret) return 0;
const PREDICTION_MODE single_mode = get_single_mode(this_mode, i);
if (single_mode == NEWMV) {
const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
cur_mv[i] =
(i == 0) ? x->mbmi_ext.ref_mv_stack[ref_frame_type][mbmi->ref_mv_idx]
.this_mv
: x->mbmi_ext.ref_mv_stack[ref_frame_type][mbmi->ref_mv_idx]
.comp_mv;
} else {
ret &= clamp_and_check_mv(cur_mv + i, this_mv, cm, x);
}
}
return ret;
}
static inline int get_drl_cost(const MB_MODE_INFO *mbmi,
const MB_MODE_INFO_EXT *mbmi_ext,
const int (*const drl_mode_cost0)[2],
int8_t ref_frame_type) {
int cost = 0;
if (mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV) {
for (int idx = 0; idx < 2; ++idx) {
if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
uint8_t drl_ctx = av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx);
cost += drl_mode_cost0[drl_ctx][mbmi->ref_mv_idx != idx];
if (mbmi->ref_mv_idx == idx) return cost;
}
}
return cost;
}
if (have_nearmv_in_inter_mode(mbmi->mode)) {
for (int idx = 1; idx < 3; ++idx) {
if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
uint8_t drl_ctx = av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx);
cost += drl_mode_cost0[drl_ctx][mbmi->ref_mv_idx != (idx - 1)];
if (mbmi->ref_mv_idx == (idx - 1)) return cost;
}
}
return cost;
}
return cost;
}
static inline int is_single_newmv_valid(const HandleInterModeArgs *const args,
const MB_MODE_INFO *const mbmi,
PREDICTION_MODE this_mode) {
for (int ref_idx = 0; ref_idx < 2; ++ref_idx) {
const PREDICTION_MODE single_mode = get_single_mode(this_mode, ref_idx);
const MV_REFERENCE_FRAME ref = mbmi->ref_frame[ref_idx];
if (single_mode == NEWMV &&
args->single_newmv_valid[mbmi->ref_mv_idx][ref] == 0) {
return 0;
}
}
return 1;
}
static int get_drl_refmv_count(const MACROBLOCK *const x,
const MV_REFERENCE_FRAME *ref_frame,
PREDICTION_MODE mode) {
const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
const int8_t ref_frame_type = av1_ref_frame_type(ref_frame);
const int has_nearmv = have_nearmv_in_inter_mode(mode) ? 1 : 0;
const int ref_mv_count = mbmi_ext->ref_mv_count[ref_frame_type];
const int only_newmv = (mode == NEWMV || mode == NEW_NEWMV);
const int has_drl =
(has_nearmv && ref_mv_count > 2) || (only_newmv && ref_mv_count > 1);
const int ref_set =
has_drl ? AOMMIN(MAX_REF_MV_SEARCH, ref_mv_count - has_nearmv) : 1;
return ref_set;
}
// Checks if particular ref_mv_idx should be pruned.
static int prune_ref_mv_idx_using_qindex(const int reduce_inter_modes,
const int qindex,
const int ref_mv_idx) {
if (reduce_inter_modes >= 3) return 1;
// Q-index logic based pruning is enabled only for
// reduce_inter_modes = 2.
assert(reduce_inter_modes == 2);
// When reduce_inter_modes=2, pruning happens as below based on q index.
// For q index range between 0 and 85: prune if ref_mv_idx >= 1.
// For q index range between 86 and 170: prune if ref_mv_idx == 2.
// For q index range between 171 and 255: no pruning.
const int min_prune_ref_mv_idx = (qindex * 3 / QINDEX_RANGE) + 1;
return (ref_mv_idx >= min_prune_ref_mv_idx);
}
// Whether this reference motion vector can be skipped, based on initial
// heuristics.
static bool ref_mv_idx_early_breakout(
const SPEED_FEATURES *const sf,
const RefFrameDistanceInfo *const ref_frame_dist_info, MACROBLOCK *x,
const HandleInterModeArgs *const args, int64_t ref_best_rd,
int ref_mv_idx) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
const int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
const int is_comp_pred = has_second_ref(mbmi);
if (sf->inter_sf.reduce_inter_modes && ref_mv_idx > 0) {
if (mbmi->ref_frame[0] == LAST2_FRAME ||
mbmi->ref_frame[0] == LAST3_FRAME ||
mbmi->ref_frame[1] == LAST2_FRAME ||
mbmi->ref_frame[1] == LAST3_FRAME) {
const int has_nearmv = have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0;
if (mbmi_ext->weight[ref_frame_type][ref_mv_idx + has_nearmv] <
REF_CAT_LEVEL) {
return true;
}
}
// TODO(any): Experiment with reduce_inter_modes for compound prediction
if (sf->inter_sf.reduce_inter_modes >= 2 && !is_comp_pred &&
have_newmv_in_inter_mode(mbmi->mode)) {
if (mbmi->ref_frame[0] != ref_frame_dist_info->nearest_past_ref &&
mbmi->ref_frame[0] != ref_frame_dist_info->nearest_future_ref) {
const int has_nearmv = have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0;
const int do_prune = prune_ref_mv_idx_using_qindex(
sf->inter_sf.reduce_inter_modes, x->qindex, ref_mv_idx);
if (do_prune &&
(mbmi_ext->weight[ref_frame_type][ref_mv_idx + has_nearmv] <
REF_CAT_LEVEL)) {
return true;
}
}
}
}
mbmi->ref_mv_idx = ref_mv_idx;
if (is_comp_pred && (!is_single_newmv_valid(args, mbmi, mbmi->mode))) {
return true;
}
size_t est_rd_rate = args->ref_frame_cost + args->single_comp_cost;
const int drl_cost = get_drl_cost(
mbmi, mbmi_ext, x->mode_costs.drl_mode_cost0, ref_frame_type);
est_rd_rate += drl_cost;
if (RDCOST(x->rdmult, est_rd_rate, 0) > ref_best_rd &&
mbmi->mode != NEARESTMV && mbmi->mode != NEAREST_NEARESTMV) {
return true;
}
return false;
}
// Compute the estimated RD cost for the motion vector with simple translation.
static int64_t simple_translation_pred_rd(AV1_COMP *const cpi, MACROBLOCK *x,
RD_STATS *rd_stats,
HandleInterModeArgs *args,
int ref_mv_idx, int64_t ref_best_rd,
BLOCK_SIZE bsize) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
const int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
const AV1_COMMON *cm = &cpi->common;
const int is_comp_pred = has_second_ref(mbmi);
const ModeCosts *mode_costs = &x->mode_costs;
struct macroblockd_plane *p = xd->plane;
const BUFFER_SET orig_dst = {
{ p[0].dst.buf, p[1].dst.buf, p[2].dst.buf },
{ p[0].dst.stride, p[1].dst.stride, p[2].dst.stride },
};
av1_init_rd_stats(rd_stats);
mbmi->interinter_comp.type = COMPOUND_AVERAGE;
mbmi->comp_group_idx = 0;
mbmi->compound_idx = 1;
if (mbmi->ref_frame[1] == INTRA_FRAME) {
mbmi->ref_frame[1] = NONE_FRAME;
}
int16_t mode_ctx =
av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame);
mbmi->num_proj_ref = 0;
mbmi->motion_mode = SIMPLE_TRANSLATION;
mbmi->ref_mv_idx = ref_mv_idx;
rd_stats->rate += args->ref_frame_cost + args->single_comp_cost;
const int drl_cost =
get_drl_cost(mbmi, mbmi_ext, mode_costs->drl_mode_cost0, ref_frame_type);
rd_stats->rate += drl_cost;
int_mv cur_mv[2];
if (!build_cur_mv(cur_mv, mbmi->mode, cm, x, 0)) {
return INT64_MAX;
}
assert(have_nearmv_in_inter_mode(mbmi->mode));
for (int i = 0; i < is_comp_pred + 1; ++i) {
mbmi->mv[i].as_int = cur_mv[i].as_int;
}
const int ref_mv_cost = cost_mv_ref(mode_costs, mbmi->mode, mode_ctx);
rd_stats->rate += ref_mv_cost;
if (RDCOST(x->rdmult, rd_stats->rate, 0) > ref_best_rd) {
return INT64_MAX;
}
mbmi->motion_mode = SIMPLE_TRANSLATION;
mbmi->num_proj_ref = 0;
if (is_comp_pred) {
// Only compound_average
mbmi->interinter_comp.type = COMPOUND_AVERAGE;
mbmi->comp_group_idx = 0;
mbmi->compound_idx = 1;
}
set_default_interp_filters(mbmi, cm->features.interp_filter);
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, &orig_dst, bsize,
AOM_PLANE_Y, AOM_PLANE_Y);
int est_rate;
int64_t est_dist;
model_rd_sb_fn[MODELRD_CURVFIT](cpi, bsize, x, xd, 0, 0, &est_rate, &est_dist,
NULL, NULL, NULL, NULL, NULL);
return RDCOST(x->rdmult, rd_stats->rate + est_rate, est_dist);
}
// Represents a set of integers, from 0 to sizeof(int) * 8, as bits in
// an integer. 0 for the i-th bit means that integer is excluded, 1 means
// it is included.
static inline void mask_set_bit(int *mask, int index) { *mask |= (1 << index); }
static inline bool mask_check_bit(int mask, int index) {
return (mask >> index) & 0x1;
}
// Before performing the full MV search in handle_inter_mode, do a simple
// translation search and see if we can eliminate any motion vectors.
// Returns an integer where, if the i-th bit is set, it means that the i-th
// motion vector should be searched. This is only set for NEAR_MV.
static int ref_mv_idx_to_search(AV1_COMP *const cpi, MACROBLOCK *x,
RD_STATS *rd_stats,
HandleInterModeArgs *const args,
int64_t ref_best_rd, BLOCK_SIZE bsize,
const int ref_set) {
// If the number of ref mv count is equal to 1, do not prune the same. It
// is better to evaluate the same than to prune it.
if (ref_set == 1) return 1;
AV1_COMMON *const cm = &cpi->common;
const MACROBLOCKD *const xd = &x->e_mbd;
const MB_MODE_INFO *const mbmi = xd->mi[0];
const PREDICTION_MODE this_mode = mbmi->mode;
// Only search indices if they have some chance of being good.
int good_indices = 0;
for (int i = 0; i < ref_set; ++i) {
if (ref_mv_idx_early_breakout(&cpi->sf, &cpi->ref_frame_dist_info, x, args,
ref_best_rd, i)) {
continue;
}
mask_set_bit(&good_indices, i);
}
// Only prune in NEARMV mode, if the speed feature is set, and the block size
// is large enough. If these conditions are not met, return all good indices
// found so far.
if (!cpi->sf.inter_sf.prune_mode_search_simple_translation)
return good_indices;
if (!have_nearmv_in_inter_mode(this_mode)) return good_indices;
if (num_pels_log2_lookup[bsize] <= 6) return good_indices;
// Do not prune when there is internal resizing. TODO(elliottk) fix this
// so b/2384 can be resolved.
if (av1_is_scaled(get_ref_scale_factors(cm, mbmi->ref_frame[0])) ||
(mbmi->ref_frame[1] > 0 &&
av1_is_scaled(get_ref_scale_factors(cm, mbmi->ref_frame[1])))) {
return good_indices;
}
// Calculate the RD cost for the motion vectors using simple translation.
int64_t idx_rdcost[] = { INT64_MAX, INT64_MAX, INT64_MAX };
for (int ref_mv_idx = 0; ref_mv_idx < ref_set; ++ref_mv_idx) {
// If this index is bad, ignore it.
if (!mask_check_bit(good_indices, ref_mv_idx)) {
continue;
}
idx_rdcost[ref_mv_idx] = simple_translation_pred_rd(
cpi, x, rd_stats, args, ref_mv_idx, ref_best_rd, bsize);
}
// Find the index with the best RD cost.
int best_idx = 0;
for (int i = 1; i < MAX_REF_MV_SEARCH; ++i) {
if (idx_rdcost[i] < idx_rdcost[best_idx]) {
best_idx = i;
}
}
// Only include indices that are good and within a % of the best.
const double dth = has_second_ref(mbmi) ? 1.05 : 1.001;
// If the simple translation cost is not within this multiple of the
// best RD, skip it. Note that the cutoff is derived experimentally.
const double ref_dth = 5;
int result = 0;
for (int i = 0; i < ref_set; ++i) {
if (mask_check_bit(good_indices, i) &&
(1.0 * idx_rdcost[i]) / idx_rdcost[best_idx] < dth &&
(1.0 * idx_rdcost[i]) / ref_best_rd < ref_dth) {
mask_set_bit(&result, i);
}
}
return result;
}
/*!\brief Motion mode information for inter mode search speedup.
*
* Used in a speed feature to search motion modes other than
* SIMPLE_TRANSLATION only on winning candidates.
*/
typedef struct motion_mode_candidate {
/*!
* Mode info for the motion mode candidate.
*/
MB_MODE_INFO mbmi;
/*!
* Rate describing the cost of the motion vectors for this candidate.
*/
int rate_mv;
/*!
* Rate before motion mode search and transform coding is applied.
*/
int rate2_nocoeff;
/*!
* An integer value 0 or 1 which indicates whether or not to skip the motion
* mode search and default to SIMPLE_TRANSLATION as a speed feature for this
* candidate.
*/
int skip_motion_mode;
/*!
* Total RD cost for this candidate.
*/
int64_t rd_cost;
} motion_mode_candidate;
/*!\cond */
typedef struct motion_mode_best_st_candidate {
motion_mode_candidate motion_mode_cand[MAX_WINNER_MOTION_MODES];
int num_motion_mode_cand;
} motion_mode_best_st_candidate;
// Checks if the current reference frame matches with neighbouring block's
// (top/left) reference frames
static inline int ref_match_found_in_nb_blocks(MB_MODE_INFO *cur_mbmi,
MB_MODE_INFO *nb_mbmi) {
MV_REFERENCE_FRAME nb_ref_frames[2] = { nb_mbmi->ref_frame[0],
nb_mbmi->ref_frame[1] };
MV_REFERENCE_FRAME cur_ref_frames[2] = { cur_mbmi->ref_frame[0],
cur_mbmi->ref_frame[1] };
const int is_cur_comp_pred = has_second_ref(cur_mbmi);
int match_found = 0;
for (int i = 0; i < (is_cur_comp_pred + 1); i++) {
if ((cur_ref_frames[i] == nb_ref_frames[0]) ||
(cur_ref_frames[i] == nb_ref_frames[1]))
match_found = 1;
}
return match_found;
}
static inline int find_ref_match_in_above_nbs(const int total_mi_cols,
MACROBLOCKD *xd) {
if (!xd->up_available) return 1;
const int mi_col = xd->mi_col;
MB_MODE_INFO **cur_mbmi = xd->mi;
// prev_row_mi points into the mi array, starting at the beginning of the
// previous row.
MB_MODE_INFO **prev_row_mi = xd->mi - mi_col - 1 * xd->mi_stride;
const int end_col = AOMMIN(mi_col + xd->width, total_mi_cols);
uint8_t mi_step;
for (int above_mi_col = mi_col; above_mi_col < end_col;
above_mi_col += mi_step) {
MB_MODE_INFO **above_mi = prev_row_mi + above_mi_col;
mi_step = mi_size_wide[above_mi[0]->bsize];
int match_found = 0;
if (is_inter_block(*above_mi))
match_found = ref_match_found_in_nb_blocks(*cur_mbmi, *above_mi);
if (match_found) return 1;
}
return 0;
}
static inline int find_ref_match_in_left_nbs(const int total_mi_rows,
MACROBLOCKD *xd) {
if (!xd->left_available) return 1;
const int mi_row = xd->mi_row;
MB_MODE_INFO **cur_mbmi = xd->mi;
// prev_col_mi points into the mi array, starting at the top of the
// previous column
MB_MODE_INFO **prev_col_mi = xd->mi - 1 - mi_row * xd->mi_stride;
const int end_row = AOMMIN(mi_row + xd->height, total_mi_rows);
uint8_t mi_step;
for (int left_mi_row = mi_row; left_mi_row < end_row;
left_mi_row += mi_step) {
MB_MODE_INFO **left_mi = prev_col_mi + left_mi_row * xd->mi_stride;
mi_step = mi_size_high[left_mi[0]->bsize];
int match_found = 0;
if (is_inter_block(*left_mi))
match_found = ref_match_found_in_nb_blocks(*cur_mbmi, *left_mi);
if (match_found) return 1;
}
return 0;
}
/*!\endcond */
/*! \brief Struct used to hold TPL data to
* narrow down parts of the inter mode search.
*/
typedef struct {
/*!
* The best inter cost out of all of the reference frames.
*/
int64_t best_inter_cost;
/*!
* The inter cost for each reference frame.
*/
int64_t ref_inter_cost[INTER_REFS_PER_FRAME];
} PruneInfoFromTpl;
#if !CONFIG_REALTIME_ONLY
// TODO(Remya): Check if get_tpl_stats_b() can be reused
static inline void get_block_level_tpl_stats(
AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row, int mi_col, int *valid_refs,
PruneInfoFromTpl *inter_cost_info_from_tpl) {
AV1_COMMON *const cm = &cpi->common;
assert(IMPLIES(cpi->ppi->gf_group.size > 0,
cpi->gf_frame_index < cpi->ppi->gf_group.size));
const int tpl_idx = cpi->gf_frame_index;
TplParams *const tpl_data = &cpi->ppi->tpl_data;
if (!av1_tpl_stats_ready(tpl_data, tpl_idx)) return;
const TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
const TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
const int mi_wide = mi_size_wide[bsize];
const int mi_high = mi_size_high[bsize];
const int tpl_stride = tpl_frame->stride;
const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
const int mi_col_sr =
coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
const int mi_col_end_sr =
coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
const int row_step = step;
const int col_step_sr =
coded_to_superres_mi(step, cm->superres_scale_denominator);
for (int row = mi_row; row < AOMMIN(mi_row + mi_high, cm->mi_params.mi_rows);
row += row_step) {
for (int col = mi_col_sr; col < AOMMIN(mi_col_end_sr, mi_cols_sr);
col += col_step_sr) {
const TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
// Sums up the inter cost of corresponding ref frames
for (int ref_idx = 0; ref_idx < INTER_REFS_PER_FRAME; ref_idx++) {
inter_cost_info_from_tpl->ref_inter_cost[ref_idx] +=
this_stats->pred_error[ref_idx];
}
}
}
// Computes the best inter cost (minimum inter_cost)
int64_t best_inter_cost = INT64_MAX;
for (int ref_idx = 0; ref_idx < INTER_REFS_PER_FRAME; ref_idx++) {
const int64_t cur_inter_cost =
inter_cost_info_from_tpl->ref_inter_cost[ref_idx];
// For invalid ref frames, cur_inter_cost = 0 and has to be handled while
// calculating the minimum inter_cost
if (cur_inter_cost != 0 && (cur_inter_cost < best_inter_cost) &&
valid_refs[ref_idx])
best_inter_cost = cur_inter_cost;
}
inter_cost_info_from_tpl->best_inter_cost = best_inter_cost;
}
#endif
static inline int prune_modes_based_on_tpl_stats(
PruneInfoFromTpl *inter_cost_info_from_tpl, const int *refs, int ref_mv_idx,
const PREDICTION_MODE this_mode, int prune_mode_level) {
const int have_newmv = have_newmv_in_inter_mode(this_mode);
if ((prune_mode_level < 2) && have_newmv) return 0;
const int64_t best_inter_cost = inter_cost_info_from_tpl->best_inter_cost;
if (best_inter_cost == INT64_MAX) return 0;
const int prune_level = prune_mode_level - 1;
int64_t cur_inter_cost;
const int is_globalmv =
(this_mode == GLOBALMV) || (this_mode == GLOBAL_GLOBALMV);
const int prune_index = is_globalmv ? MAX_REF_MV_SEARCH : ref_mv_idx;
// Thresholds used for pruning:
// Lower value indicates aggressive pruning and higher value indicates
// conservative pruning which is set based on ref_mv_idx and speed feature.
// 'prune_index' 0, 1, 2 corresponds to ref_mv indices 0, 1 and 2. prune_index
// 3 corresponds to GLOBALMV/GLOBAL_GLOBALMV
static const int tpl_inter_mode_prune_mul_factor[3][MAX_REF_MV_SEARCH + 1] = {
{ 6, 6, 6, 4 }, { 6, 4, 4, 4 }, { 5, 4, 4, 4 }
};
const int is_comp_pred = (refs[1] > INTRA_FRAME);
if (!is_comp_pred) {
cur_inter_cost = inter_cost_info_from_tpl->ref_inter_cost[refs[0] - 1];
} else {
const int64_t inter_cost_ref0 =
inter_cost_info_from_tpl->ref_inter_cost[refs[0] - 1];
const int64_t inter_cost_ref1 =
inter_cost_info_from_tpl->ref_inter_cost[refs[1] - 1];
// Choose maximum inter_cost among inter_cost_ref0 and inter_cost_ref1 for
// more aggressive pruning
cur_inter_cost = AOMMAX(inter_cost_ref0, inter_cost_ref1);
}
// Prune the mode if cur_inter_cost is greater than threshold times
// best_inter_cost
if (cur_inter_cost >
((tpl_inter_mode_prune_mul_factor[prune_level][prune_index] *
best_inter_cost) >>
2))
return 1;
return 0;
}
/*!\brief High level function to select parameters for compound mode.
*
* \ingroup inter_mode_search
* The main search functionality is done in the call to av1_compound_type_rd().
*
* \param[in] cpi Top-level encoder structure.
* \param[in] x Pointer to struct holding all the data for
* the current macroblock.
* \param[in] args HandleInterModeArgs struct holding
* miscellaneous arguments for inter mode
* search. See the documentation for this
* struct for a description of each member.
* \param[in] ref_best_rd Best RD found so far for this block.
* It is used for early termination of this
* search if the RD exceeds this value.
* \param[in,out] cur_mv Current motion vector.
* \param[in] bsize Current block size.
* \param[in,out] compmode_interinter_cost RD of the selected interinter
compound mode.
* \param[in,out] rd_buffers CompoundTypeRdBuffers struct to hold all
* allocated buffers for the compound
* predictors and masks in the compound type
* search.
* \param[in,out] orig_dst A prediction buffer to hold a computed
* prediction. This will eventually hold the
* final prediction, and the tmp_dst info will
* be copied here.
* \param[in] tmp_dst A temporary prediction buffer to hold a
* computed prediction.
* \param[in,out] rate_mv The rate associated with the motion vectors.
* This will be modified if a motion search is
* done in the motion mode search.
* \param[in,out] rd_stats Struct to keep track of the overall RD
* information.
* \param[in,out] skip_rd An array of length 2 where skip_rd[0] is the
* best total RD for a skip mode so far, and
* skip_rd[1] is the best RD for a skip mode so
* far in luma. This is used as a speed feature
* to skip the transform search if the computed
* skip RD for the current mode is not better
* than the best skip_rd so far.
* \param[in,out] skip_build_pred Indicates whether or not to build the inter
* predictor. If this is 0, the inter predictor
* has already been built and thus we can avoid
* repeating computation.
* \return Returns 1 if this mode is worse than one already seen and 0 if it is
* a viable candidate.
*/
static int process_compound_inter_mode(
AV1_COMP *const cpi, MACROBLOCK *x, HandleInterModeArgs *args,
int64_t ref_best_rd, int_mv *cur_mv, BLOCK_SIZE bsize,
int *compmode_interinter_cost, const CompoundTypeRdBuffers *rd_buffers,
const BUFFER_SET *orig_dst, const BUFFER_SET *tmp_dst, int *rate_mv,
RD_STATS *rd_stats, int64_t *skip_rd, int *skip_build_pred) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
const AV1_COMMON *cm = &cpi->common;
const int masked_compound_used = is_any_masked_compound_used(bsize) &&
cm->seq_params->enable_masked_compound;
int mode_search_mask = (1 << COMPOUND_AVERAGE) | (1 << COMPOUND_DISTWTD) |
(1 << COMPOUND_WEDGE) | (1 << COMPOUND_DIFFWTD);
const int num_planes = av1_num_planes(cm);
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
int is_luma_interp_done = 0;
set_default_interp_filters(mbmi, cm->features.interp_filter);
int64_t best_rd_compound;
int64_t rd_thresh;
const int comp_type_rd_shift = COMP_TYPE_RD_THRESH_SHIFT;
const int comp_type_rd_scale = COMP_TYPE_RD_THRESH_SCALE;
rd_thresh = get_rd_thresh_from_best_rd(ref_best_rd, (1 << comp_type_rd_shift),
comp_type_rd_scale);
// Select compound type and any parameters related to that type
// (for example, the mask parameters if it is a masked mode) and compute
// the RD
*compmode_interinter_cost = av1_compound_type_rd(
cpi, x, args, bsize, cur_mv, mode_search_mask, masked_compound_used,
orig_dst, tmp_dst, rd_buffers, rate_mv, &best_rd_compound, rd_stats,
ref_best_rd, skip_rd[1], &is_luma_interp_done, rd_thresh);
if (ref_best_rd < INT64_MAX &&
(best_rd_compound >> comp_type_rd_shift) * comp_type_rd_scale >
ref_best_rd) {
restore_dst_buf(xd, *orig_dst, num_planes);
return 1;
}
// Build only uv predictor for COMPOUND_AVERAGE.
// Note there is no need to call av1_enc_build_inter_predictor
// for luma if COMPOUND_AVERAGE is selected because it is the first
// candidate in av1_compound_type_rd, which means it used the dst_buf
// rather than the tmp_buf.
if (mbmi->interinter_comp.type == COMPOUND_AVERAGE && is_luma_interp_done) {
if (num_planes > 1) {
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize,
AOM_PLANE_U, num_planes - 1);
}
*skip_build_pred = 1;
}
return 0;
}
// Speed feature to prune out MVs that are similar to previous MVs if they
// don't achieve the best RD advantage.
static int prune_ref_mv_idx_search(int ref_mv_idx, int best_ref_mv_idx,
int_mv save_mv[MAX_REF_MV_SEARCH - 1][2],
MB_MODE_INFO *mbmi, int pruning_factor) {
int i;
const int is_comp_pred = has_second_ref(mbmi);
const int thr = (1 + is_comp_pred) << (pruning_factor + 1);
// Skip the evaluation if an MV match is found.
if (ref_mv_idx > 0) {
for (int idx = 0; idx < ref_mv_idx; ++idx) {
if (save_mv[idx][0].as_int == INVALID_MV) continue;
int mv_diff = 0;
for (i = 0; i < 1 + is_comp_pred; ++i) {
mv_diff += abs(save_mv[idx][i].as_mv.row - mbmi->mv[i].as_mv.row) +
abs(save_mv[idx][i].as_mv.col - mbmi->mv[i].as_mv.col);
}
// If this mode is not the best one, and current MV is similar to
// previous stored MV, terminate this ref_mv_idx evaluation.
if (best_ref_mv_idx == -1 && mv_diff <= thr) return 1;
}
}
if (ref_mv_idx < MAX_REF_MV_SEARCH - 1) {
for (i = 0; i < is_comp_pred + 1; ++i)
save_mv[ref_mv_idx][i].as_int = mbmi->mv[i].as_int;
}
return 0;
}
/*!\brief Prunes ZeroMV Search Using Best NEWMV's SSE
*
* \ingroup inter_mode_search
*
* Compares the sse of zero mv and the best sse found in single new_mv. If the
* sse of the zero_mv is higher, returns 1 to signal zero_mv can be skipped.
* Else returns 0.
*
* Note that the sse of here comes from single_motion_search. So it is
* interpolated with the filter in motion search, not the actual interpolation
* filter used in encoding.
*
* \param[in] fn_ptr A table of function pointers to compute SSE.
* \param[in] x Pointer to struct holding all the data for
* the current macroblock.
* \param[in] bsize The current block_size.
* \param[in] args The args to handle_inter_mode, used to track
* the best SSE.
* \param[in] prune_zero_mv_with_sse The argument holds speed feature
* prune_zero_mv_with_sse value
* \return Returns 1 if zero_mv is pruned, 0 otherwise.
*/
static inline int prune_zero_mv_with_sse(const aom_variance_fn_ptr_t *fn_ptr,
const MACROBLOCK *x, BLOCK_SIZE bsize,
const HandleInterModeArgs *args,
int prune_zero_mv_with_sse) {
const MACROBLOCKD *xd = &x->e_mbd;
const MB_MODE_INFO *mbmi = xd->mi[0];
const int is_comp_pred = has_second_ref(mbmi);
const MV_REFERENCE_FRAME *refs = mbmi->ref_frame;
for (int idx = 0; idx < 1 + is_comp_pred; idx++) {
if (xd->global_motion[refs[idx]].wmtype != IDENTITY) {
// Pruning logic only works for IDENTITY type models
// Note: In theory we could apply similar logic for TRANSLATION
// type models, but we do not code these due to a spec bug
// (see comments in gm_get_motion_vector() in av1/common/mv.h)
assert(xd->global_motion[refs[idx]].wmtype != TRANSLATION);
return 0;
}
// Don't prune if we have invalid data
assert(mbmi->mv[idx].as_int == 0);
if (args->best_single_sse_in_refs[refs[idx]] == INT32_MAX) {
return 0;
}
}
// Sum up the sse of ZEROMV and best NEWMV
unsigned int this_sse_sum = 0;
unsigned int best_sse_sum = 0;
for (int idx = 0; idx < 1 + is_comp_pred; idx++) {
const struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y];
const struct macroblockd_plane *pd = xd->plane;
const struct buf_2d *src_buf = &p->src;
const struct buf_2d *ref_buf = &pd->pre[idx];
const uint8_t *src = src_buf->buf;
const uint8_t *ref = ref_buf->buf;
const int src_stride = src_buf->stride;
const int ref_stride = ref_buf->stride;
unsigned int this_sse;
fn_ptr[bsize].vf(ref, ref_stride, src, src_stride, &this_sse);
this_sse_sum += this_sse;
const unsigned int best_sse = args->best_single_sse_in_refs[refs[idx]];
best_sse_sum += best_sse;
}
const double mul = prune_zero_mv_with_sse > 1 ? 1.00 : 1.25;
if ((double)this_sse_sum > (mul * (double)best_sse_sum)) {
return 1;
}
return 0;
}
/*!\brief Searches for interpolation filter in realtime mode during winner eval
*
* \ingroup inter_mode_search
*
* Does a simple interpolation filter search during winner mode evaluation. This
* is currently only used by realtime mode as \ref
* av1_interpolation_filter_search is not called during realtime encoding.
*
* This function only searches over two possible filters. EIGHTTAP_REGULAR is
* always search. For lowres clips (<= 240p), MULTITAP_SHARP is also search. For
* higher res slips (>240p), EIGHTTAP_SMOOTH is also searched.
* *
* \param[in] cpi Pointer to the compressor. Used for feature
* flags.
* \param[in,out] x Pointer to macroblock. This is primarily
* used to access the buffers.
* \param[in] mi_row The current row in mi unit (4X4 pixels).
* \param[in] mi_col The current col in mi unit (4X4 pixels).
* \param[in] bsize The current block_size.
* \return Returns true if a predictor is built in xd->dst, false otherwise.
*/
static inline bool fast_interp_search(const AV1_COMP *cpi, MACROBLOCK *x,
int mi_row, int mi_col,
BLOCK_SIZE bsize) {
static const InterpFilters filters_ref_set[3] = {
{ EIGHTTAP_REGULAR, EIGHTTAP_REGULAR },
{ EIGHTTAP_SMOOTH, EIGHTTAP_SMOOTH },
{ MULTITAP_SHARP, MULTITAP_SHARP }
};
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mi = xd->mi[0];
int64_t best_cost = INT64_MAX;
int best_filter_index = -1;
// dst_bufs[0] sores the new predictor, and dist_bifs[1] stores the best
const int num_planes = av1_num_planes(cm);
const int is_240p_or_lesser = AOMMIN(cm->width, cm->height) <= 240;
assert(is_inter_mode(mi->mode));
assert(mi->motion_mode == SIMPLE_TRANSLATION);
assert(!is_inter_compound_mode(mi->mode));
if (!av1_is_interp_needed(xd)) {
return false;
}
struct macroblockd_plane *pd = xd->plane;
const BUFFER_SET orig_dst = {
{ pd[0].dst.buf, pd[1].dst.buf, pd[2].dst.buf },
{ pd[0].dst.stride, pd[1].dst.stride, pd[2].dst.stride },
};
uint8_t *const tmp_buf = get_buf_by_bd(xd, x->tmp_pred_bufs[0]);
const BUFFER_SET tmp_dst = { { tmp_buf, tmp_buf + 1 * MAX_SB_SQUARE,
tmp_buf + 2 * MAX_SB_SQUARE },
{ MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE } };
const BUFFER_SET *dst_bufs[2] = { &orig_dst, &tmp_dst };
for (int i = 0; i < 3; ++i) {
if (is_240p_or_lesser) {
if (filters_ref_set[i].x_filter == EIGHTTAP_SMOOTH) {
continue;
}
} else {
if (filters_ref_set[i].x_filter == MULTITAP_SHARP) {
continue;
}
}
int64_t cost;
RD_STATS tmp_rd = { 0 };
mi->interp_filters.as_filters = filters_ref_set[i];
av1_enc_build_inter_predictor_y(xd, mi_row, mi_col);
model_rd_sb_fn[cpi->sf.rt_sf.use_simple_rd_model
? MODELRD_LEGACY
: MODELRD_TYPE_INTERP_FILTER](
cpi, bsize, x, xd, AOM_PLANE_Y, AOM_PLANE_Y, &tmp_rd.rate, &tmp_rd.dist,
&tmp_rd.skip_txfm, &tmp_rd.sse, NULL, NULL, NULL);
tmp_rd.rate += av1_get_switchable_rate(x, xd, cm->features.interp_filter,
cm->seq_params->enable_dual_filter);
cost = RDCOST(x->rdmult, tmp_rd.rate, tmp_rd.dist);
if (cost < best_cost) {
best_filter_index = i;
best_cost = cost;
swap_dst_buf(xd, dst_bufs, num_planes);
}
}
assert(best_filter_index >= 0);
mi->interp_filters.as_filters = filters_ref_set[best_filter_index];
const bool is_best_pred_in_orig = &orig_dst == dst_bufs[1];
if (is_best_pred_in_orig) {
swap_dst_buf(xd, dst_bufs, num_planes);
} else {
// Note that xd->pd's bufers are kept in sync with dst_bufs[0]. So if
// is_best_pred_in_orig is false, that means the current buffer is the
// original one.
assert(&orig_dst == dst_bufs[0]);
assert(xd->plane[AOM_PLANE_Y].dst.buf == orig_dst.plane[AOM_PLANE_Y]);
const int width = block_size_wide[bsize];
const int height = block_size_high[bsize];
#if CONFIG_AV1_HIGHBITDEPTH
const bool is_hbd = is_cur_buf_hbd(xd);
if (is_hbd) {
aom_highbd_convolve_copy(CONVERT_TO_SHORTPTR(tmp_dst.plane[AOM_PLANE_Y]),
tmp_dst.stride[AOM_PLANE_Y],
CONVERT_TO_SHORTPTR(orig_dst.plane[AOM_PLANE_Y]),
orig_dst.stride[AOM_PLANE_Y], width, height);
} else {
aom_convolve_copy(tmp_dst.plane[AOM_PLANE_Y], tmp_dst.stride[AOM_PLANE_Y],
orig_dst.plane[AOM_PLANE_Y],
orig_dst.stride[AOM_PLANE_Y], width, height);
}
#else
aom_convolve_copy(tmp_dst.plane[AOM_PLANE_Y], tmp_dst.stride[AOM_PLANE_Y],
orig_dst.plane[AOM_PLANE_Y], orig_dst.stride[AOM_PLANE_Y],
width, height);
#endif
}
// Build the YUV predictor.
if (num_planes > 1) {
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
AOM_PLANE_U, AOM_PLANE_V);
}
return true;
}
/*!\brief AV1 inter mode RD computation
*
* \ingroup inter_mode_search
* Do the RD search for a given inter mode and compute all information relevant
* to the input mode. It will compute the best MV,
* compound parameters (if the mode is a compound mode) and interpolation filter
* parameters.
*
* \param[in] cpi Top-level encoder structure.
* \param[in] tile_data Pointer to struct holding adaptive
* data/contexts/models for the tile during
* encoding.
* \param[in] x Pointer to structure holding all the data
* for the current macroblock.
* \param[in] bsize Current block size.
* \param[in,out] rd_stats Struct to keep track of the overall RD
* information.
* \param[in,out] rd_stats_y Struct to keep track of the RD information
* for only the Y plane.
* \param[in,out] rd_stats_uv Struct to keep track of the RD information
* for only the UV planes.
* \param[in] args HandleInterModeArgs struct holding
* miscellaneous arguments for inter mode
* search. See the documentation for this
* struct for a description of each member.
* \param[in] ref_best_rd Best RD found so far for this block.
* It is used for early termination of this
* search if the RD exceeds this value.
* \param[in] tmp_buf Temporary buffer used to hold predictors
* built in this search.
* \param[in,out] rd_buffers CompoundTypeRdBuffers struct to hold all
* allocated buffers for the compound
* predictors and masks in the compound type
* search.
* \param[in,out] best_est_rd Estimated RD for motion mode search if
* do_tx_search (see below) is 0.
* \param[in] do_tx_search Parameter to indicate whether or not to do
* a full transform search. This will compute
* an estimated RD for the modes without the
* transform search and later perform the full
* transform search on the best candidates.
* \param[in,out] inter_modes_info InterModesInfo struct to hold inter mode
* information to perform a full transform
* search only on winning candidates searched
* with an estimate for transform coding RD.
* \param[in,out] motion_mode_cand A motion_mode_candidate struct to store
* motion mode information used in a speed
* feature to search motion modes other than
* SIMPLE_TRANSLATION only on winning
* candidates.
* \param[in,out] skip_rd A length 2 array, where skip_rd[0] is the
* best total RD for a skip mode so far, and
* skip_rd[1] is the best RD for a skip mode so
* far in luma. This is used as a speed feature
* to skip the transform search if the computed
* skip RD for the current mode is not better
* than the best skip_rd so far.
* \param[in] inter_cost_info_from_tpl A PruneInfoFromTpl struct used to
* narrow down the search based on data
* collected in the TPL model.
* \param[out] yrd Stores the rdcost corresponding to encoding
* the luma plane.
*
* \return The RD cost for the mode being searched.
*/
static int64_t handle_inter_mode(
AV1_COMP *const cpi, TileDataEnc *tile_data, MACROBLOCK *x,
BLOCK_SIZE bsize, RD_STATS *rd_stats, RD_STATS *rd_stats_y,
RD_STATS *rd_stats_uv, HandleInterModeArgs *args, int64_t ref_best_rd,
uint8_t *const tmp_buf, const CompoundTypeRdBuffers *rd_buffers,
int64_t *best_est_rd, const int do_tx_search,
InterModesInfo *inter_modes_info, motion_mode_candidate *motion_mode_cand,
int64_t *skip_rd, PruneInfoFromTpl *inter_cost_info_from_tpl,
int64_t *yrd) {
const AV1_COMMON *cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
const int is_comp_pred = has_second_ref(mbmi);
const PREDICTION_MODE this_mode = mbmi->mode;
#if CONFIG_REALTIME_ONLY
const int prune_modes_based_on_tpl = 0;
#else // CONFIG_REALTIME_ONLY
const TplParams *const tpl_data = &cpi->ppi->tpl_data;
const int prune_modes_based_on_tpl =
cpi->sf.inter_sf.prune_inter_modes_based_on_tpl &&
av1_tpl_stats_ready(tpl_data, cpi->gf_frame_index);
#endif // CONFIG_REALTIME_ONLY
int i;
// Reference frames for this mode
const int refs[2] = { mbmi->ref_frame[0],
(mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) };
int rate_mv = 0;
int64_t rd = INT64_MAX;
// Do first prediction into the destination buffer. Do the next
// prediction into a temporary buffer. Then keep track of which one
// of these currently holds the best predictor, and use the other
// one for future predictions. In the end, copy from tmp_buf to
// dst if necessary.
struct macroblockd_plane *pd = xd->plane;
const BUFFER_SET orig_dst = {
{ pd[0].dst.buf, pd[1].dst.buf, pd[2].dst.buf },
{ pd[0].dst.stride, pd[1].dst.stride, pd[2].dst.stride },
};
const BUFFER_SET tmp_dst = { { tmp_buf, tmp_buf + 1 * MAX_SB_SQUARE,
tmp_buf + 2 * MAX_SB_SQUARE },
{ MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE } };
int64_t ret_val = INT64_MAX;
const int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
RD_STATS best_rd_stats, best_rd_stats_y, best_rd_stats_uv;
int64_t best_rd = INT64_MAX;
uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
int64_t best_yrd = INT64_MAX;
MB_MODE_INFO best_mbmi = *mbmi;
int best_xskip_txfm = 0;
int64_t newmv_ret_val = INT64_MAX;
inter_mode_info mode_info[MAX_REF_MV_SEARCH];
// Do not prune the mode based on inter cost from tpl if the current ref frame
// is the winner ref in neighbouring blocks.
int ref_match_found_in_above_nb = 0;
int ref_match_found_in_left_nb = 0;
if (prune_modes_based_on_tpl) {
ref_match_found_in_above_nb =
find_ref_match_in_above_nbs(cm->mi_params.mi_cols, xd);
ref_match_found_in_left_nb =
find_ref_match_in_left_nbs(cm->mi_params.mi_rows, xd);
}
// First, perform a simple translation search for each of the indices. If
// an index performs well, it will be fully searched in the main loop
// of this function.
const int ref_set = get_drl_refmv_count(x, mbmi->ref_frame, this_mode);
// Save MV results from first 2 ref_mv_idx.
int_mv save_mv[MAX_REF_MV_SEARCH - 1][2];
int best_ref_mv_idx = -1;
const int idx_mask =
ref_mv_idx_to_search(cpi, x, rd_stats, args, ref_best_rd, bsize, ref_set);
const int16_t mode_ctx =
av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame);
const ModeCosts *mode_costs = &x->mode_costs;
const int ref_mv_cost = cost_mv_ref(mode_costs, this_mode, mode_ctx);
const int base_rate =
args->ref_frame_cost + args->single_comp_cost + ref_mv_cost;
for (i = 0; i < MAX_REF_MV_SEARCH - 1; ++i) {
save_mv[i][0].as_int = INVALID_MV;
save_mv[i][1].as_int = INVALID_MV;
}
args->start_mv_cnt = 0;
// Main loop of this function. This will iterate over all of the ref mvs
// in the dynamic reference list and do the following:
// 1.) Get the current MV. Create newmv MV if necessary
// 2.) Search compound type and parameters if applicable
// 3.) Do interpolation filter search
// 4.) Build the inter predictor
// 5.) Pick the motion mode (SIMPLE_TRANSLATION, OBMC_CAUSAL,
// WARPED_CAUSAL)
// 6.) Update stats if best so far
for (int ref_mv_idx = 0; ref_mv_idx < ref_set; ++ref_mv_idx) {
mbmi->ref_mv_idx = ref_mv_idx;
mode_info[ref_mv_idx].full_search_mv.as_int = INVALID_MV;
mode_info[ref_mv_idx].full_mv_bestsme = INT_MAX;
const int drl_cost = get_drl_cost(
mbmi, mbmi_ext, mode_costs->drl_mode_cost0, ref_frame_type);
mode_info[ref_mv_idx].drl_cost = drl_cost;
mode_info[ref_mv_idx].skip = 0;
if (!mask_check_bit(idx_mask, ref_mv_idx)) {
// MV did not perform well in simple translation search. Skip it.
continue;
}
if (prune_modes_based_on_tpl && !ref_match_found_in_above_nb &&
!ref_match_found_in_left_nb && (ref_best_rd != INT64_MAX)) {
// Skip mode if TPL model indicates it will not be beneficial.
if (prune_modes_based_on_tpl_stats(
inter_cost_info_from_tpl, refs, ref_mv_idx, this_mode,
cpi->sf.inter_sf.prune_inter_modes_based_on_tpl))
continue;
}
av1_init_rd_stats(rd_stats);
// Initialize compound mode data
mbmi->interinter_comp.type = COMPOUND_AVERAGE;
mbmi->comp_group_idx = 0;
mbmi->compound_idx = 1;
if (mbmi->ref_frame[1] == INTRA_FRAME) mbmi->ref_frame[1] = NONE_FRAME;
mbmi->num_proj_ref = 0;
mbmi->motion_mode = SIMPLE_TRANSLATION;
// Compute cost for signalling this DRL index
rd_stats->rate = base_rate;
rd_stats->rate += drl_cost;
int rs = 0;
int compmode_interinter_cost = 0;
int_mv cur_mv[2];
// TODO(Cherma): Extend this speed feature to support compound mode
int skip_repeated_ref_mv =
is_comp_pred ? 0 : cpi->sf.inter_sf.skip_repeated_ref_mv;
// Generate the current mv according to the prediction mode
if (!build_cur_mv(cur_mv, this_mode, cm, x, skip_repeated_ref_mv)) {
continue;
}
// The above call to build_cur_mv does not handle NEWMV modes. Build
// the mv here if we have NEWMV for any predictors.
if (have_newmv_in_inter_mode(this_mode)) {
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, handle_newmv_time);
#endif
newmv_ret_val =
handle_newmv(cpi, x, bsize, cur_mv, &rate_mv, args, mode_info);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, handle_newmv_time);
#endif
if (newmv_ret_val != 0) continue;
if (is_inter_singleref_mode(this_mode) &&
cur_mv[0].as_int != INVALID_MV) {
const MV_REFERENCE_FRAME ref = refs[0];
const unsigned int this_sse = x->pred_sse[ref];
if (this_sse < args->best_single_sse_in_refs[ref]) {
args->best_single_sse_in_refs[ref] = this_sse;
}
if (cpi->sf.rt_sf.skip_newmv_mode_based_on_sse) {
const int th_idx = cpi->sf.rt_sf.skip_newmv_mode_based_on_sse - 1;
const int pix_idx = num_pels_log2_lookup[bsize] - 4;
const double scale_factor[3][11] = {
{ 0.7, 0.7, 0.7, 0.7, 0.7, 0.8, 0.8, 0.9, 0.9, 0.9, 0.9 },
{ 0.7, 0.7, 0.7, 0.7, 0.8, 0.8, 1, 1, 1, 1, 1 },
{ 0.7, 0.7, 0.7, 0.7, 1, 1, 1, 1, 1, 1, 1 }
};
assert(pix_idx >= 0);
assert(th_idx <= 2);
if (args->best_pred_sse < scale_factor[th_idx][pix_idx] * this_sse)
continue;
}
}
rd_stats->rate += rate_mv;
}
// Copy the motion vector for this mode into mbmi struct
for (i = 0; i < is_comp_pred + 1; ++i) {
mbmi->mv[i].as_int = cur_mv[i].as_int;
}
if (RDCOST(x->rdmult, rd_stats->rate, 0) > ref_best_rd &&
mbmi->mode != NEARESTMV && mbmi->mode != NEAREST_NEARESTMV) {
continue;
}
// Skip the rest of the search if prune_ref_mv_idx_search speed feature
// is enabled, and the current MV is similar to a previous one.
if (cpi->sf.inter_sf.prune_ref_mv_idx_search && is_comp_pred &&
prune_ref_mv_idx_search(ref_mv_idx, best_ref_mv_idx, save_mv, mbmi,
cpi->sf.inter_sf.prune_ref_mv_idx_search))
continue;
if (cpi->sf.gm_sf.prune_zero_mv_with_sse &&
(this_mode == GLOBALMV || this_mode == GLOBAL_GLOBALMV)) {
if (prune_zero_mv_with_sse(cpi->ppi->fn_ptr, x, bsize, args,
cpi->sf.gm_sf.prune_zero_mv_with_sse)) {
continue;
}
}
int skip_build_pred = 0;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
// Handle a compound predictor, continue if it is determined this
// cannot be the best compound mode
if (is_comp_pred) {
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, compound_type_rd_time);
#endif
const int not_best_mode = process_compound_inter_mode(
cpi, x, args, ref_best_rd, cur_mv, bsize, &compmode_interinter_cost,
rd_buffers, &orig_dst, &tmp_dst, &rate_mv, rd_stats, skip_rd,
&skip_build_pred);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, compound_type_rd_time);
#endif
if (not_best_mode) continue;
}
if (!args->skip_ifs) {
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, interpolation_filter_search_time);
#endif
// Determine the interpolation filter for this mode
ret_val = av1_interpolation_filter_search(
x, cpi, tile_data, bsize, &tmp_dst, &orig_dst, &rd, &rs,
&skip_build_pred, args, ref_best_rd);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, interpolation_filter_search_time);
#endif
if (args->modelled_rd != NULL && !is_comp_pred) {
args->modelled_rd[this_mode][ref_mv_idx][refs[0]] = rd;
}
if (ret_val != 0) {
restore_dst_buf(xd, orig_dst, num_planes);
continue;
} else if (cpi->sf.inter_sf.model_based_post_interp_filter_breakout &&
ref_best_rd != INT64_MAX && (rd >> 3) * 3 > ref_best_rd) {
restore_dst_buf(xd, orig_dst, num_planes);
continue;
}
// Compute modelled RD if enabled
if (args->modelled_rd != NULL) {
if (is_comp_pred) {
const int mode0 = compound_ref0_mode(this_mode);
const int mode1 = compound_ref1_mode(this_mode);
const int64_t mrd =
AOMMIN(args->modelled_rd[mode0][ref_mv_idx][refs[0]],
args->modelled_rd[mode1][ref_mv_idx][refs[1]]);
if ((rd >> 3) * 6 > mrd && ref_best_rd < INT64_MAX) {
restore_dst_buf(xd, orig_dst, num_planes);
continue;
}
}
}
}
rd_stats->rate += compmode_interinter_cost;
if (skip_build_pred != 1) {
// Build this inter predictor if it has not been previously built
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, &orig_dst, bsize, 0,
av1_num_planes(cm) - 1);
}
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, motion_mode_rd_time);
#endif
int rate2_nocoeff = rd_stats->rate;
// Determine the motion mode. This will be one of SIMPLE_TRANSLATION,
// OBMC_CAUSAL or WARPED_CAUSAL
int64_t this_yrd;
ret_val = motion_mode_rd(cpi, tile_data, x, bsize, rd_stats, rd_stats_y,
rd_stats_uv, args, ref_best_rd, skip_rd, &rate_mv,
&orig_dst, best_est_rd, do_tx_search,
inter_modes_info, 0, &this_yrd);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, motion_mode_rd_time);
#endif
assert(
IMPLIES(!av1_check_newmv_joint_nonzero(cm, x), ret_val == INT64_MAX));
if (ret_val != INT64_MAX) {
int64_t tmp_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
const THR_MODES mode_enum = get_prediction_mode_idx(
mbmi->mode, mbmi->ref_frame[0], mbmi->ref_frame[1]);
// Collect mode stats for multiwinner mode processing
store_winner_mode_stats(&cpi->common, x, mbmi, rd_stats, rd_stats_y,
rd_stats_uv, mode_enum, NULL, bsize, tmp_rd,
cpi->sf.winner_mode_sf.multi_winner_mode_type,
do_tx_search);
if (tmp_rd < best_rd) {
best_yrd = this_yrd;
// Update the best rd stats if we found the best mode so far
best_rd_stats = *rd_stats;
best_rd_stats_y = *rd_stats_y;
best_rd_stats_uv = *rd_stats_uv;
best_rd = tmp_rd;
best_mbmi = *mbmi;
best_xskip_txfm = txfm_info->skip_txfm;
memcpy(best_blk_skip, txfm_info->blk_skip,
sizeof(best_blk_skip[0]) * xd->height * xd->width);
av1_copy_array(best_tx_type_map, xd->tx_type_map,
xd->height * xd->width);
motion_mode_cand->rate_mv = rate_mv;
motion_mode_cand->rate2_nocoeff = rate2_nocoeff;
}
if (tmp_rd < ref_best_rd) {
ref_best_rd = tmp_rd;
best_ref_mv_idx = ref_mv_idx;
}
}
restore_dst_buf(xd, orig_dst, num_planes);
}
if (best_rd == INT64_MAX) return INT64_MAX;
// re-instate status of the best choice
*rd_stats = best_rd_stats;
*rd_stats_y = best_rd_stats_y;
*rd_stats_uv = best_rd_stats_uv;
*yrd = best_yrd;
*mbmi = best_mbmi;
txfm_info->skip_txfm = best_xskip_txfm;
assert(IMPLIES(mbmi->comp_group_idx == 1,
mbmi->interinter_comp.type != COMPOUND_AVERAGE));
memcpy(txfm_info->blk_skip, best_blk_skip,
sizeof(best_blk_skip[0]) * xd->height * xd->width);
av1_copy_array(xd->tx_type_map, best_tx_type_map, xd->height * xd->width);
rd_stats->rdcost = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
return rd_stats->rdcost;
}
/*!\brief Search for the best intrabc predictor
*
* \ingroup intra_mode_search
* \callergraph
* This function performs a motion search to find the best intrabc predictor.
*
* \returns Returns the best overall rdcost (including the non-intrabc modes
* search before this function).
*/
static int64_t rd_pick_intrabc_mode_sb(const AV1_COMP *cpi, MACROBLOCK *x,
PICK_MODE_CONTEXT *ctx,
RD_STATS *rd_stats, BLOCK_SIZE bsize,
int64_t best_rd) {
const AV1_COMMON *const cm = &cpi->common;
if (!av1_allow_intrabc(cm) || !cpi->oxcf.kf_cfg.enable_intrabc ||
!cpi->sf.mv_sf.use_intrabc || cpi->sf.rt_sf.use_nonrd_pick_mode)
return INT64_MAX;
if (cpi->sf.mv_sf.intrabc_search_level >= 1 && bsize != BLOCK_4X4 &&
bsize != BLOCK_8X8 && bsize != BLOCK_16X16) {
return INT64_MAX;
}
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *const xd = &x->e_mbd;
const TileInfo *tile = &xd->tile;
MB_MODE_INFO *mbmi = xd->mi[0];
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
const int w = block_size_wide[bsize];
const int h = block_size_high[bsize];
const int sb_row = mi_row >> cm->seq_params->mib_size_log2;
const int sb_col = mi_col >> cm->seq_params->mib_size_log2;
MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
const MV_REFERENCE_FRAME ref_frame = INTRA_FRAME;
av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count,
xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs,
mbmi_ext->mode_context);
// TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and
// mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs.
av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame);
int_mv nearestmv, nearmv;
av1_find_best_ref_mvs_from_stack(0, mbmi_ext, ref_frame, &nearestmv, &nearmv,
0);
if (nearestmv.as_int == INVALID_MV) {
nearestmv.as_int = 0;
}
if (nearmv.as_int == INVALID_MV) {
nearmv.as_int = 0;
}
int_mv dv_ref = nearestmv.as_int == 0 ? nearmv : nearestmv;
if (dv_ref.as_int == 0) {
av1_find_ref_dv(&dv_ref, tile, cm->seq_params->mib_size, mi_row);
}
// Ref DV should not have sub-pel.
assert((dv_ref.as_mv.col & 7) == 0);
assert((dv_ref.as_mv.row & 7) == 0);
mbmi_ext->ref_mv_stack[INTRA_FRAME][0].this_mv = dv_ref;
struct buf_2d yv12_mb[MAX_MB_PLANE];
av1_setup_pred_block(xd, yv12_mb, xd->cur_buf, NULL, NULL, num_planes);
for (int i = 0; i < num_planes; ++i) {
xd->plane[i].pre[0] = yv12_mb[i];
}
enum IntrabcMotionDirection {
IBC_MOTION_ABOVE,
IBC_MOTION_LEFT,
IBC_MOTION_DIRECTIONS
};
MB_MODE_INFO best_mbmi = *mbmi;
RD_STATS best_rdstats = *rd_stats;
uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE] = { 0 };
uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
av1_copy_array(best_tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
FULLPEL_MOTION_SEARCH_PARAMS fullms_params;
const SEARCH_METHODS search_method =
av1_get_default_mv_search_method(x, &cpi->sf.mv_sf, bsize);
const search_site_config *lookahead_search_sites =
cpi->mv_search_params.search_site_cfg[SS_CFG_LOOKAHEAD];
const FULLPEL_MV start_mv = get_fullmv_from_mv(&dv_ref.as_mv);
av1_make_default_fullpel_ms_params(&fullms_params, cpi, x, bsize,
&dv_ref.as_mv, start_mv,
lookahead_search_sites, search_method,
/*fine_search_interval=*/0);
const IntraBCMVCosts *const dv_costs = x->dv_costs;
av1_set_ms_to_intra_mode(&fullms_params, dv_costs);
const enum IntrabcMotionDirection max_dir = cpi->sf.mv_sf.intrabc_search_level
? IBC_MOTION_LEFT
: IBC_MOTION_DIRECTIONS;
for (enum IntrabcMotionDirection dir = IBC_MOTION_ABOVE; dir < max_dir;
++dir) {
switch (dir) {
case IBC_MOTION_ABOVE:
fullms_params.mv_limits.col_min =
(tile->mi_col_start - mi_col) * MI_SIZE;
fullms_params.mv_limits.col_max =
(tile->mi_col_end - mi_col) * MI_SIZE - w;
fullms_params.mv_limits.row_min =
(tile->mi_row_start - mi_row) * MI_SIZE;
fullms_params.mv_limits.row_max =
(sb_row * cm->seq_params->mib_size - mi_row) * MI_SIZE - h;
break;
case IBC_MOTION_LEFT:
fullms_params.mv_limits.col_min =
(tile->mi_col_start - mi_col) * MI_SIZE;
fullms_params.mv_limits.col_max =
(sb_col * cm->seq_params->mib_size - mi_col) * MI_SIZE - w;
// TODO(aconverse@google.com): Minimize the overlap between above and
// left areas.
fullms_params.mv_limits.row_min =
(tile->mi_row_start - mi_row) * MI_SIZE;
int bottom_coded_mi_edge =
AOMMIN((sb_row + 1) * cm->seq_params->mib_size, tile->mi_row_end);
fullms_params.mv_limits.row_max =
(bottom_coded_mi_edge - mi_row) * MI_SIZE - h;
break;
default: assert(0);
}
assert(fullms_params.mv_limits.col_min >= fullms_params.mv_limits.col_min);
assert(fullms_params.mv_limits.col_max <= fullms_params.mv_limits.col_max);
assert(fullms_params.mv_limits.row_min >= fullms_params.mv_limits.row_min);
assert(fullms_params.mv_limits.row_max <= fullms_params.mv_limits.row_max);
av1_set_mv_search_range(&fullms_params.mv_limits, &dv_ref.as_mv);
if (fullms_params.mv_limits.col_max < fullms_params.mv_limits.col_min ||
fullms_params.mv_limits.row_max < fullms_params.mv_limits.row_min) {
continue;
}
const int step_param = cpi->mv_search_params.mv_step_param;
IntraBCHashInfo *intrabc_hash_info = &x->intrabc_hash_info;
int_mv best_mv;
FULLPEL_MV_STATS best_mv_stats;
int bestsme = INT_MAX;
// Perform a hash search first, and see if we get any matches.
if (!cpi->sf.mv_sf.hash_max_8x8_intrabc_blocks || bsize <= BLOCK_8X8) {
bestsme = av1_intrabc_hash_search(cpi, xd, &fullms_params,
intrabc_hash_info, &best_mv.as_fullmv);
}
// If intrabc_search_level is not 0 and we found a hash search match, do
// not proceed with pixel search as the hash match is very likely to be the
// best intrabc candidate anyway.
if (bestsme == INT_MAX || cpi->sf.mv_sf.intrabc_search_level == 0) {
int_mv best_pixel_mv;
const int pixelsme =
av1_full_pixel_search(start_mv, &fullms_params, step_param, NULL,
&best_pixel_mv.as_fullmv, &best_mv_stats, NULL);
if (pixelsme < bestsme) {
bestsme = pixelsme;
best_mv = best_pixel_mv;
}
}
if (bestsme == INT_MAX) continue;
const MV dv = get_mv_from_fullmv(&best_mv.as_fullmv);
if (!av1_is_fullmv_in_range(&fullms_params.mv_limits,
get_fullmv_from_mv(&dv)))
continue;
if (!av1_is_dv_valid(dv, cm, xd, mi_row, mi_col, bsize,
cm->seq_params->mib_size_log2))
continue;
// DV should not have sub-pel.
assert((dv.col & 7) == 0);
assert((dv.row & 7) == 0);
memset(&mbmi->palette_mode_info, 0, sizeof(mbmi->palette_mode_info));
mbmi->filter_intra_mode_info.use_filter_intra = 0;
mbmi->use_intrabc = 1;
mbmi->mode = DC_PRED;
mbmi->uv_mode = UV_DC_PRED;
mbmi->motion_mode = SIMPLE_TRANSLATION;
mbmi->mv[0].as_mv = dv;
mbmi->interp_filters = av1_broadcast_interp_filter(BILINEAR);
mbmi->skip_txfm = 0;
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0,
av1_num_planes(cm) - 1);
// TODO(aconverse@google.com): The full motion field defining discount
// in MV_COST_WEIGHT is too large. Explore other values.
const int rate_mv = av1_mv_bit_cost(&dv, &dv_ref.as_mv, dv_costs->joint_mv,
dv_costs->dv_costs, MV_COST_WEIGHT_SUB);
const int rate_mode = x->mode_costs.intrabc_cost[1];
RD_STATS rd_stats_yuv, rd_stats_y, rd_stats_uv;
if (!av1_txfm_search(cpi, x, bsize, &rd_stats_yuv, &rd_stats_y,
&rd_stats_uv, rate_mode + rate_mv, INT64_MAX))
continue;
rd_stats_yuv.rdcost =
RDCOST(x->rdmult, rd_stats_yuv.rate, rd_stats_yuv.dist);
if (rd_stats_yuv.rdcost < best_rd) {
best_rd = rd_stats_yuv.rdcost;
best_mbmi = *mbmi;
best_rdstats = rd_stats_yuv;
memcpy(best_blk_skip, txfm_info->blk_skip,
sizeof(txfm_info->blk_skip[0]) * xd->height * xd->width);
av1_copy_array(best_tx_type_map, xd->tx_type_map, xd->height * xd->width);
}
}
*mbmi = best_mbmi;
*rd_stats = best_rdstats;
memcpy(txfm_info->blk_skip, best_blk_skip,
sizeof(txfm_info->blk_skip[0]) * xd->height * xd->width);
av1_copy_array(xd->tx_type_map, best_tx_type_map, ctx->num_4x4_blk);
#if CONFIG_RD_DEBUG
mbmi->rd_stats = *rd_stats;
#endif
return best_rd;
}
// TODO(chiyotsai@google.com): We are using struct $struct_name instead of their
// typedef here because Doxygen doesn't know about the typedefs yet. So using
// the typedef will prevent doxygen from finding this function and generating
// the callgraph. Once documents for AV1_COMP and MACROBLOCK are added to
// doxygen, we can revert back to using the typedefs.
void av1_rd_pick_intra_mode_sb(const struct AV1_COMP *cpi, struct macroblock *x,
struct RD_STATS *rd_cost, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx, int64_t best_rd) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
const int num_planes = av1_num_planes(cm);
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
int rate_y = 0, rate_uv = 0, rate_y_tokenonly = 0, rate_uv_tokenonly = 0;
uint8_t y_skip_txfm = 0, uv_skip_txfm = 0;
int64_t dist_y = 0, dist_uv = 0;
ctx->rd_stats.skip_txfm = 0;
mbmi->ref_frame[0] = INTRA_FRAME;
mbmi->ref_frame[1] = NONE_FRAME;
mbmi->use_intrabc = 0;
mbmi->mv[0].as_int = 0;
mbmi->skip_mode = 0;
const int64_t intra_yrd =
av1_rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly, &dist_y,
&y_skip_txfm, bsize, best_rd, ctx);
// Initialize default mode evaluation params
set_mode_eval_params(cpi, x, DEFAULT_EVAL);
if (intra_yrd < best_rd) {
// Search intra modes for uv planes if needed
if (num_planes > 1) {
// Set up the tx variables for reproducing the y predictions in case we
// need it for chroma-from-luma.
if (xd->is_chroma_ref && store_cfl_required_rdo(cm, x)) {
memcpy(txfm_info->blk_skip, ctx->blk_skip,
sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk);
av1_copy_array(xd->tx_type_map, ctx->tx_type_map, ctx->num_4x4_blk);
}
const TX_SIZE max_uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd);
av1_rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly,
&dist_uv, &uv_skip_txfm, bsize,
max_uv_tx_size);
}
// Intra block is always coded as non-skip
rd_cost->rate =
rate_y + rate_uv +
x->mode_costs.skip_txfm_cost[av1_get_skip_txfm_context(xd)][0];
rd_cost->dist = dist_y + dist_uv;
rd_cost->rdcost = RDCOST(x->rdmult, rd_cost->rate, rd_cost->dist);
rd_cost->skip_txfm = 0;
} else {
rd_cost->rate = INT_MAX;
}
if (rd_cost->rate != INT_MAX && rd_cost->rdcost < best_rd)
best_rd = rd_cost->rdcost;
if (rd_pick_intrabc_mode_sb(cpi, x, ctx, rd_cost, bsize, best_rd) < best_rd) {
ctx->rd_stats.skip_txfm = mbmi->skip_txfm;
memcpy(ctx->blk_skip, txfm_info->blk_skip,
sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk);
assert(rd_cost->rate != INT_MAX);
}
if (rd_cost->rate == INT_MAX) return;
ctx->mic = *xd->mi[0];
av1_copy_mbmi_ext_to_mbmi_ext_frame(&ctx->mbmi_ext_best, &x->mbmi_ext,
av1_ref_frame_type(xd->mi[0]->ref_frame));
av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
}
static inline void calc_target_weighted_pred(
const AV1_COMMON *cm, const MACROBLOCK *x, const MACROBLOCKD *xd,
const uint8_t *above, int above_stride, const uint8_t *left,
int left_stride);
static inline void rd_pick_skip_mode(
RD_STATS *rd_cost, InterModeSearchState *search_state,
const AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize,
struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]) {
const AV1_COMMON *const cm = &cpi->common;
const SkipModeInfo *const skip_mode_info = &cm->current_frame.skip_mode_info;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
x->compound_idx = 1; // COMPOUND_AVERAGE
RD_STATS skip_mode_rd_stats;
av1_invalid_rd_stats(&skip_mode_rd_stats);
if (skip_mode_info->ref_frame_idx_0 == INVALID_IDX ||
skip_mode_info->ref_frame_idx_1 == INVALID_IDX) {
return;
}
const MV_REFERENCE_FRAME ref_frame =
LAST_FRAME + skip_mode_info->ref_frame_idx_0;
const MV_REFERENCE_FRAME second_ref_frame =
LAST_FRAME + skip_mode_info->ref_frame_idx_1;
const PREDICTION_MODE this_mode = NEAREST_NEARESTMV;
const THR_MODES mode_index =
get_prediction_mode_idx(this_mode, ref_frame, second_ref_frame);
if (mode_index == THR_INVALID) {
return;
}
if ((!cpi->oxcf.ref_frm_cfg.enable_onesided_comp ||
cpi->sf.inter_sf.disable_onesided_comp) &&
cpi->all_one_sided_refs) {
return;
}
mbmi->mode = this_mode;
mbmi->uv_mode = UV_DC_PRED;
mbmi->ref_frame[0] = ref_frame;
mbmi->ref_frame[1] = second_ref_frame;
const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
if (x->mbmi_ext.ref_mv_count[ref_frame_type] == UINT8_MAX) {
MB_MODE_INFO_EXT *mbmi_ext = &x->mbmi_ext;
if (mbmi_ext->ref_mv_count[ref_frame] == UINT8_MAX ||
mbmi_ext->ref_mv_count[second_ref_frame] == UINT8_MAX) {
return;
}
av1_find_mv_refs(cm, xd, mbmi, ref_frame_type, mbmi_ext->ref_mv_count,
xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs,
mbmi_ext->mode_context);
// TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and
// mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs.
av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame_type);
}
assert(this_mode == NEAREST_NEARESTMV);
if (!build_cur_mv(mbmi->mv, this_mode, cm, x, 0)) {
return;
}
mbmi->filter_intra_mode_info.use_filter_intra = 0;
mbmi->interintra_mode = (INTERINTRA_MODE)(II_DC_PRED - 1);
mbmi->comp_group_idx = 0;
mbmi->compound_idx = x->compound_idx;
mbmi->interinter_comp.type = COMPOUND_AVERAGE;
mbmi->motion_mode = SIMPLE_TRANSLATION;
mbmi->ref_mv_idx = 0;
mbmi->skip_mode = mbmi->skip_txfm = 1;
mbmi->palette_mode_info.palette_size[0] = 0;
mbmi->palette_mode_info.palette_size[1] = 0;
set_default_interp_filters(mbmi, cm->features.interp_filter);
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
for (int i = 0; i < num_planes; i++) {
xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i];
xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i];
}
BUFFER_SET orig_dst;
for (int i = 0; i < num_planes; i++) {
orig_dst.plane[i] = xd->plane[i].dst.buf;
orig_dst.stride[i] = xd->plane[i].dst.stride;
}
// Compare the use of skip_mode with the best intra/inter mode obtained.
const int skip_mode_ctx = av1_get_skip_mode_context(xd);
int64_t best_intra_inter_mode_cost = INT64_MAX;
if (rd_cost->dist < INT64_MAX && rd_cost->rate < INT32_MAX) {
const ModeCosts *mode_costs = &x->mode_costs;
best_intra_inter_mode_cost = RDCOST(
x->rdmult, rd_cost->rate + mode_costs->skip_mode_cost[skip_mode_ctx][0],
rd_cost->dist);
// Account for non-skip mode rate in total rd stats
rd_cost->rate += mode_costs->skip_mode_cost[skip_mode_ctx][0];
av1_rd_cost_update(x->rdmult, rd_cost);
}
// Obtain the rdcost for skip_mode.
skip_mode_rd(&skip_mode_rd_stats, cpi, x, bsize, &orig_dst,
best_intra_inter_mode_cost);
if (skip_mode_rd_stats.rdcost <= best_intra_inter_mode_cost &&
(!xd->lossless[mbmi->segment_id] || skip_mode_rd_stats.dist == 0)) {
assert(mode_index != THR_INVALID);
search_state->best_mbmode.skip_mode = 1;
search_state->best_mbmode = *mbmi;
memset(search_state->best_mbmode.inter_tx_size,
search_state->best_mbmode.tx_size,
sizeof(search_state->best_mbmode.inter_tx_size));
set_txfm_ctxs(search_state->best_mbmode.tx_size, xd->width, xd->height,
search_state->best_mbmode.skip_txfm && is_inter_block(mbmi),
xd);
search_state->best_mode_index = mode_index;
// Update rd_cost
rd_cost->rate = skip_mode_rd_stats.rate;
rd_cost->dist = rd_cost->sse = skip_mode_rd_stats.dist;
rd_cost->rdcost = skip_mode_rd_stats.rdcost;
search_state->best_rd = rd_cost->rdcost;
search_state->best_skip2 = 1;
search_state->best_mode_skippable = 1;
x->txfm_search_info.skip_txfm = 1;
}
}
// Get winner mode stats of given mode index
static inline MB_MODE_INFO *get_winner_mode_stats(
MACROBLOCK *x, MB_MODE_INFO *best_mbmode, RD_STATS *best_rd_cost,
int best_rate_y, int best_rate_uv, THR_MODES *best_mode_index,
RD_STATS **winner_rd_cost, int *winner_rate_y, int *winner_rate_uv,
THR_MODES *winner_mode_index, MULTI_WINNER_MODE_TYPE multi_winner_mode_type,
int mode_idx) {
MB_MODE_INFO *winner_mbmi;
if (multi_winner_mode_type) {
assert(mode_idx >= 0 && mode_idx < x->winner_mode_count);
WinnerModeStats *winner_mode_stat = &x->winner_mode_stats[mode_idx];
winner_mbmi = &winner_mode_stat->mbmi;
*winner_rd_cost = &winner_mode_stat->rd_cost;
*winner_rate_y = winner_mode_stat->rate_y;
*winner_rate_uv = winner_mode_stat->rate_uv;
*winner_mode_index = winner_mode_stat->mode_index;
} else {
winner_mbmi = best_mbmode;
*winner_rd_cost = best_rd_cost;
*winner_rate_y = best_rate_y;
*winner_rate_uv = best_rate_uv;
*winner_mode_index = *best_mode_index;
}
return winner_mbmi;
}
// speed feature: fast intra/inter transform type search
// Used for speed >= 2
// When this speed feature is on, in rd mode search, only DCT is used.
// After the mode is determined, this function is called, to select
// transform types and get accurate rdcost.
static inline void refine_winner_mode_tx(
const AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *rd_cost, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx, THR_MODES *best_mode_index,
MB_MODE_INFO *best_mbmode, struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE],
int best_rate_y, int best_rate_uv, int *best_skip2, int winner_mode_count) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
TxfmSearchParams *txfm_params = &x->txfm_search_params;
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
int64_t best_rd;
const int num_planes = av1_num_planes(cm);
if (!is_winner_mode_processing_enabled(cpi, x, best_mbmode,
rd_cost->skip_txfm))
return;
// Set params for winner mode evaluation
set_mode_eval_params(cpi, x, WINNER_MODE_EVAL);
// No best mode identified so far
if (*best_mode_index == THR_INVALID) return;
best_rd = RDCOST(x->rdmult, rd_cost->rate, rd_cost->dist);
for (int mode_idx = 0; mode_idx < winner_mode_count; mode_idx++) {
RD_STATS *winner_rd_stats = NULL;
int winner_rate_y = 0, winner_rate_uv = 0;
THR_MODES winner_mode_index = 0;
// TODO(any): Combine best mode and multi-winner mode processing paths
// Get winner mode stats for current mode index
MB_MODE_INFO *winner_mbmi = get_winner_mode_stats(
x, best_mbmode, rd_cost, best_rate_y, best_rate_uv, best_mode_index,
&winner_rd_stats, &winner_rate_y, &winner_rate_uv, &winner_mode_index,
cpi->sf.winner_mode_sf.multi_winner_mode_type, mode_idx);
if (xd->lossless[winner_mbmi->segment_id] == 0 &&
winner_mode_index != THR_INVALID &&
is_winner_mode_processing_enabled(cpi, x, winner_mbmi,
rd_cost->skip_txfm)) {
RD_STATS rd_stats = *winner_rd_stats;
int skip_blk = 0;
RD_STATS rd_stats_y, rd_stats_uv;
const int skip_ctx = av1_get_skip_txfm_context(xd);
*mbmi = *winner_mbmi;
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
// Select prediction reference frames.
for (int i = 0; i < num_planes; i++) {
xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i];
if (has_second_ref(mbmi))
xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i];
}
if (is_inter_mode(mbmi->mode)) {
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
bool is_predictor_built = false;
const PREDICTION_MODE prediction_mode = mbmi->mode;
// Do interpolation filter search for realtime mode if applicable.
if (cpi->sf.winner_mode_sf.winner_mode_ifs &&
cpi->oxcf.mode == REALTIME &&
cm->current_frame.reference_mode == SINGLE_REFERENCE &&
is_inter_mode(prediction_mode) &&
mbmi->motion_mode == SIMPLE_TRANSLATION &&
!is_inter_compound_mode(prediction_mode)) {
is_predictor_built =
fast_interp_search(cpi, x, mi_row, mi_col, bsize);
}
if (!is_predictor_built) {
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0,
av1_num_planes(cm) - 1);
}
if (mbmi->motion_mode == OBMC_CAUSAL)
av1_build_obmc_inter_predictors_sb(cm, xd);
av1_subtract_plane(x, bsize, 0);
if (txfm_params->tx_mode_search_type == TX_MODE_SELECT &&
!xd->lossless[mbmi->segment_id]) {
av1_pick_recursive_tx_size_type_yrd(cpi, x, &rd_stats_y, bsize,
INT64_MAX);
assert(rd_stats_y.rate != INT_MAX);
} else {
av1_pick_uniform_tx_size_type_yrd(cpi, x, &rd_stats_y, bsize,
INT64_MAX);
memset(mbmi->inter_tx_size, mbmi->tx_size,
sizeof(mbmi->inter_tx_size));
for (int i = 0; i < xd->height * xd->width; ++i)
set_blk_skip(txfm_info->blk_skip, 0, i, rd_stats_y.skip_txfm);
}
} else {
av1_pick_uniform_tx_size_type_yrd(cpi, x, &rd_stats_y, bsize,
INT64_MAX);
}
if (num_planes > 1) {
av1_txfm_uvrd(cpi, x, &rd_stats_uv, bsize, INT64_MAX);
} else {
av1_init_rd_stats(&rd_stats_uv);
}
const int comp_pred = mbmi->ref_frame[1] > INTRA_FRAME;
const ModeCosts *mode_costs = &x->mode_costs;
if (is_inter_mode(mbmi->mode) &&
(!cpi->oxcf.algo_cfg.sharpness || !comp_pred) &&
RDCOST(x->rdmult,
mode_costs->skip_txfm_cost[skip_ctx][0] + rd_stats_y.rate +
rd_stats_uv.rate,
(rd_stats_y.dist + rd_stats_uv.dist)) >
RDCOST(x->rdmult, mode_costs->skip_txfm_cost[skip_ctx][1],
(rd_stats_y.sse + rd_stats_uv.sse))) {
skip_blk = 1;
rd_stats_y.rate = mode_costs->skip_txfm_cost[skip_ctx][1];
rd_stats_uv.rate = 0;
rd_stats_y.dist = rd_stats_y.sse;
rd_stats_uv.dist = rd_stats_uv.sse;
} else {
skip_blk = 0;
rd_stats_y.rate += mode_costs->skip_txfm_cost[skip_ctx][0];
}
int this_rate = rd_stats.rate + rd_stats_y.rate + rd_stats_uv.rate -
winner_rate_y - winner_rate_uv;
int64_t this_rd =
RDCOST(x->rdmult, this_rate, (rd_stats_y.dist + rd_stats_uv.dist));
if (best_rd > this_rd) {
*best_mbmode = *mbmi;
*best_mode_index = winner_mode_index;
av1_copy_array(ctx->blk_skip, txfm_info->blk_skip, ctx->num_4x4_blk);
av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
rd_cost->rate = this_rate;
rd_cost->dist = rd_stats_y.dist + rd_stats_uv.dist;
rd_cost->sse = rd_stats_y.sse + rd_stats_uv.sse;
rd_cost->rdcost = this_rd;
best_rd = this_rd;
*best_skip2 = skip_blk;
}
}
}
}
/*!\cond */
typedef struct {
// Mask for each reference frame, specifying which prediction modes to NOT try
// during search.
uint32_t pred_modes[REF_FRAMES];
// If ref_combo[i][j + 1] is true, do NOT try prediction using combination of
// reference frames (i, j).
// Note: indexing with 'j + 1' is due to the fact that 2nd reference can be -1
// (NONE_FRAME).
bool ref_combo[REF_FRAMES][REF_FRAMES + 1];
} mode_skip_mask_t;
/*!\endcond */
// Update 'ref_combo' mask to disable given 'ref' in single and compound modes.
static inline void disable_reference(
MV_REFERENCE_FRAME ref, bool ref_combo[REF_FRAMES][REF_FRAMES + 1]) {
for (MV_REFERENCE_FRAME ref2 = NONE_FRAME; ref2 < REF_FRAMES; ++ref2) {
ref_combo[ref][ref2 + 1] = true;
}
}
// Update 'ref_combo' mask to disable all inter references except ALTREF.
static inline void disable_inter_references_except_altref(
bool ref_combo[REF_FRAMES][REF_FRAMES + 1]) {
disable_reference(LAST_FRAME, ref_combo);
disable_reference(LAST2_FRAME, ref_combo);
disable_reference(LAST3_FRAME, ref_combo);
disable_reference(GOLDEN_FRAME, ref_combo);
disable_reference(BWDREF_FRAME, ref_combo);
disable_reference(ALTREF2_FRAME, ref_combo);
}
static const MV_REFERENCE_FRAME reduced_ref_combos[][2] = {
{ LAST_FRAME, NONE_FRAME }, { ALTREF_FRAME, NONE_FRAME },
{ LAST_FRAME, ALTREF_FRAME }, { GOLDEN_FRAME, NONE_FRAME },
{ INTRA_FRAME, NONE_FRAME }, { GOLDEN_FRAME, ALTREF_FRAME },
{ LAST_FRAME, GOLDEN_FRAME }, { LAST_FRAME, INTRA_FRAME },
{ LAST_FRAME, BWDREF_FRAME }, { LAST_FRAME, LAST3_FRAME },
{ GOLDEN_FRAME, BWDREF_FRAME }, { GOLDEN_FRAME, INTRA_FRAME },
{ BWDREF_FRAME, NONE_FRAME }, { BWDREF_FRAME, ALTREF_FRAME },
{ ALTREF_FRAME, INTRA_FRAME }, { BWDREF_FRAME, INTRA_FRAME },
};
typedef enum { REF_SET_FULL, REF_SET_REDUCED, REF_SET_REALTIME } REF_SET;
static inline void default_skip_mask(mode_skip_mask_t *mask, REF_SET ref_set) {
if (ref_set == REF_SET_FULL) {
// Everything available by default.
memset(mask, 0, sizeof(*mask));
} else {
// All modes available by default.
memset(mask->pred_modes, 0, sizeof(mask->pred_modes));
// All references disabled first.
for (MV_REFERENCE_FRAME ref1 = INTRA_FRAME; ref1 < REF_FRAMES; ++ref1) {
for (MV_REFERENCE_FRAME ref2 = NONE_FRAME; ref2 < REF_FRAMES; ++ref2) {
mask->ref_combo[ref1][ref2 + 1] = true;
}
}
const MV_REFERENCE_FRAME(*ref_set_combos)[2];
int num_ref_combos;
// Then enable reduced set of references explicitly.
switch (ref_set) {
case REF_SET_REDUCED:
ref_set_combos = reduced_ref_combos;
num_ref_combos =
(int)sizeof(reduced_ref_combos) / sizeof(reduced_ref_combos[0]);
break;
case REF_SET_REALTIME:
ref_set_combos = real_time_ref_combos;
num_ref_combos =
(int)sizeof(real_time_ref_combos) / sizeof(real_time_ref_combos[0]);
break;
default: assert(0); num_ref_combos = 0;
}
for (int i = 0; i < num_ref_combos; ++i) {
const MV_REFERENCE_FRAME *const this_combo = ref_set_combos[i];
mask->ref_combo[this_combo[0]][this_combo[1] + 1] = false;
}
}
}
static inline void init_mode_skip_mask(mode_skip_mask_t *mask,
const AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize) {
const AV1_COMMON *const cm = &cpi->common;
const struct segmentation *const seg = &cm->seg;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
unsigned char segment_id = mbmi->segment_id;
const SPEED_FEATURES *const sf = &cpi->sf;
const INTER_MODE_SPEED_FEATURES *const inter_sf = &sf->inter_sf;
REF_SET ref_set = REF_SET_FULL;
if (sf->rt_sf.use_real_time_ref_set)
ref_set = REF_SET_REALTIME;
else if (cpi->oxcf.ref_frm_cfg.enable_reduced_reference_set)
ref_set = REF_SET_REDUCED;
default_skip_mask(mask, ref_set);
int min_pred_mv_sad = INT_MAX;
MV_REFERENCE_FRAME ref_frame;
if (ref_set == REF_SET_REALTIME) {
// For real-time encoding, we only look at a subset of ref frames. So the
// threshold for pruning should be computed from this subset as well.
const int num_rt_refs =
sizeof(real_time_ref_combos) / sizeof(*real_time_ref_combos);
for (int r_idx = 0; r_idx < num_rt_refs; r_idx++) {
const MV_REFERENCE_FRAME ref = real_time_ref_combos[r_idx][0];
if (ref != INTRA_FRAME) {
min_pred_mv_sad = AOMMIN(min_pred_mv_sad, x->pred_mv_sad[ref]);
}
}
} else {
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame)
min_pred_mv_sad = AOMMIN(min_pred_mv_sad, x->pred_mv_sad[ref_frame]);
}
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
if (!(cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame])) {
// Skip checking missing reference in both single and compound reference
// modes.
disable_reference(ref_frame, mask->ref_combo);
} else {
// Skip fixed mv modes for poor references
if ((x->pred_mv_sad[ref_frame] >> 2) > min_pred_mv_sad) {
mask->pred_modes[ref_frame] |= INTER_NEAREST_NEAR_ZERO;
}
}
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) {
// Reference not used for the segment.
disable_reference(ref_frame, mask->ref_combo);
}
}
// Note: We use the following drop-out only if the SEG_LVL_REF_FRAME feature
// is disabled for this segment. This is to prevent the possibility that we
// end up unable to pick any mode.
if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
// Only consider GLOBALMV/ALTREF_FRAME for alt ref frame,
// unless ARNR filtering is enabled in which case we want
// an unfiltered alternative. We allow near/nearest as well
// because they may result in zero-zero MVs but be cheaper.
if (cpi->rc.is_src_frame_alt_ref &&
(cpi->oxcf.algo_cfg.arnr_max_frames == 0)) {
disable_inter_references_except_altref(mask->ref_combo);
mask->pred_modes[ALTREF_FRAME] = ~INTER_NEAREST_NEAR_ZERO;
const MV_REFERENCE_FRAME tmp_ref_frames[2] = { ALTREF_FRAME, NONE_FRAME };
int_mv near_mv, nearest_mv, global_mv;
get_this_mv(&nearest_mv, NEARESTMV, 0, 0, 0, tmp_ref_frames,
&x->mbmi_ext);
get_this_mv(&near_mv, NEARMV, 0, 0, 0, tmp_ref_frames, &x->mbmi_ext);
get_this_mv(&global_mv, GLOBALMV, 0, 0, 0, tmp_ref_frames, &x->mbmi_ext);
if (near_mv.as_int != global_mv.as_int)
mask->pred_modes[ALTREF_FRAME] |= (1 << NEARMV);
if (nearest_mv.as_int != global_mv.as_int)
mask->pred_modes[ALTREF_FRAME] |= (1 << NEARESTMV);
}
}
if (cpi->rc.is_src_frame_alt_ref) {
if (inter_sf->alt_ref_search_fp &&
(cpi->ref_frame_flags & av1_ref_frame_flag_list[ALTREF_FRAME])) {
mask->pred_modes[ALTREF_FRAME] = 0;
disable_inter_references_except_altref(mask->ref_combo);
disable_reference(INTRA_FRAME, mask->ref_combo);
}
}
if (inter_sf->alt_ref_search_fp) {
if (!cm->show_frame && x->best_pred_mv_sad[0] < INT_MAX) {
int sad_thresh = x->best_pred_mv_sad[0] + (x->best_pred_mv_sad[0] >> 3);
// Conservatively skip the modes w.r.t. BWDREF, ALTREF2 and ALTREF, if
// those are past frames
MV_REFERENCE_FRAME start_frame =
inter_sf->alt_ref_search_fp == 1 ? ALTREF2_FRAME : BWDREF_FRAME;
for (ref_frame = start_frame; ref_frame <= ALTREF_FRAME; ref_frame++) {
if (cpi->ref_frame_dist_info.ref_relative_dist[ref_frame - LAST_FRAME] <
0) {
// Prune inter modes when relative dist of ALTREF2 and ALTREF is close
// to the relative dist of LAST_FRAME.
if (inter_sf->alt_ref_search_fp == 1 &&
(abs(cpi->ref_frame_dist_info
.ref_relative_dist[ref_frame - LAST_FRAME]) >
1.5 * abs(cpi->ref_frame_dist_info
.ref_relative_dist[LAST_FRAME - LAST_FRAME]))) {
continue;
}
if (x->pred_mv_sad[ref_frame] > sad_thresh)
mask->pred_modes[ref_frame] |= INTER_ALL;
}
}
}
}
if (sf->rt_sf.prune_inter_modes_wrt_gf_arf_based_on_sad) {
if (x->best_pred_mv_sad[0] < INT_MAX) {
int sad_thresh = x->best_pred_mv_sad[0] + (x->best_pred_mv_sad[0] >> 1);
const int prune_ref_list[2] = { GOLDEN_FRAME, ALTREF_FRAME };
// Conservatively skip the modes w.r.t. GOLDEN and ALTREF references
for (int ref_idx = 0; ref_idx < 2; ref_idx++) {
ref_frame = prune_ref_list[ref_idx];
if (x->pred_mv_sad[ref_frame] > sad_thresh)
mask->pred_modes[ref_frame] |= INTER_NEAREST_NEAR_ZERO;
}
}
}
if (bsize > sf->part_sf.max_intra_bsize) {
disable_reference(INTRA_FRAME, mask->ref_combo);
}
if (!cpi->oxcf.tool_cfg.enable_global_motion) {
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
mask->pred_modes[ref_frame] |= (1 << GLOBALMV);
mask->pred_modes[ref_frame] |= (1 << GLOBAL_GLOBALMV);
}
}
mask->pred_modes[INTRA_FRAME] |=
~(uint32_t)sf->intra_sf.intra_y_mode_mask[max_txsize_lookup[bsize]];
// Prune reference frames which are not the closest to the current
// frame and with large pred_mv_sad.
if (inter_sf->prune_single_ref) {
assert(inter_sf->prune_single_ref > 0 && inter_sf->prune_single_ref < 3);
const double prune_threshes[2] = { 1.20, 1.05 };
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
const RefFrameDistanceInfo *const ref_frame_dist_info =
&cpi->ref_frame_dist_info;
const int is_closest_ref =
(ref_frame == ref_frame_dist_info->nearest_past_ref) ||
(ref_frame == ref_frame_dist_info->nearest_future_ref);
if (!is_closest_ref) {
const int dir =
(ref_frame_dist_info->ref_relative_dist[ref_frame - LAST_FRAME] < 0)
? 0
: 1;
if (x->best_pred_mv_sad[dir] < INT_MAX &&
x->pred_mv_sad[ref_frame] >
prune_threshes[inter_sf->prune_single_ref - 1] *
x->best_pred_mv_sad[dir])
mask->pred_modes[ref_frame] |= INTER_SINGLE_ALL;
}
}
}
}
static inline void init_neighbor_pred_buf(const OBMCBuffer *const obmc_buffer,
HandleInterModeArgs *const args,
int is_hbd) {
if (is_hbd) {
const int len = sizeof(uint16_t);
args->above_pred_buf[0] = CONVERT_TO_BYTEPTR(obmc_buffer->above_pred);
args->above_pred_buf[1] = CONVERT_TO_BYTEPTR(obmc_buffer->above_pred +
(MAX_SB_SQUARE >> 1) * len);
args->above_pred_buf[2] =
CONVERT_TO_BYTEPTR(obmc_buffer->above_pred + MAX_SB_SQUARE * len);
args->left_pred_buf[0] = CONVERT_TO_BYTEPTR(obmc_buffer->left_pred);
args->left_pred_buf[1] =
CONVERT_TO_BYTEPTR(obmc_buffer->left_pred + (MAX_SB_SQUARE >> 1) * len);
args->left_pred_buf[2] =
CONVERT_TO_BYTEPTR(obmc_buffer->left_pred + MAX_SB_SQUARE * len);
} else {
args->above_pred_buf[0] = obmc_buffer->above_pred;
args->above_pred_buf[1] = obmc_buffer->above_pred + (MAX_SB_SQUARE >> 1);
args->above_pred_buf[2] = obmc_buffer->above_pred + MAX_SB_SQUARE;
args->left_pred_buf[0] = obmc_buffer->left_pred;
args->left_pred_buf[1] = obmc_buffer->left_pred + (MAX_SB_SQUARE >> 1);
args->left_pred_buf[2] = obmc_buffer->left_pred + MAX_SB_SQUARE;
}
}
static inline int prune_ref_frame(const AV1_COMP *cpi, const MACROBLOCK *x,
MV_REFERENCE_FRAME ref_frame) {
const AV1_COMMON *const cm = &cpi->common;
MV_REFERENCE_FRAME rf[2];
av1_set_ref_frame(rf, ref_frame);
if ((cpi->prune_ref_frame_mask >> ref_frame) & 1) return 1;
if (prune_ref_by_selective_ref_frame(cpi, x, rf,
cm->cur_frame->ref_display_order_hint)) {
return 1;
}
return 0;
}
static inline int is_ref_frame_used_by_compound_ref(int ref_frame,
int skip_ref_frame_mask) {
for (int r = ALTREF_FRAME + 1; r < MODE_CTX_REF_FRAMES; ++r) {
if (!(skip_ref_frame_mask & (1 << r))) {
const MV_REFERENCE_FRAME *rf = ref_frame_map[r - REF_FRAMES];
if (rf[0] == ref_frame || rf[1] == ref_frame) {
return 1;
}
}
}
return 0;
}
static inline int is_ref_frame_used_in_cache(MV_REFERENCE_FRAME ref_frame,
const MB_MODE_INFO *mi_cache) {
if (!mi_cache) {
return 0;
}
if (ref_frame < REF_FRAMES) {
return (ref_frame == mi_cache->ref_frame[0] ||
ref_frame == mi_cache->ref_frame[1]);
}
// if we are here, then the current mode is compound.
MV_REFERENCE_FRAME cached_ref_type = av1_ref_frame_type(mi_cache->ref_frame);
return ref_frame == cached_ref_type;
}
// Please add/modify parameter setting in this function, making it consistent
// and easy to read and maintain.
static inline void set_params_rd_pick_inter_mode(
const AV1_COMP *cpi, MACROBLOCK *x, HandleInterModeArgs *args,
BLOCK_SIZE bsize, mode_skip_mask_t *mode_skip_mask, int skip_ref_frame_mask,
unsigned int *ref_costs_single, unsigned int (*ref_costs_comp)[REF_FRAMES],
struct buf_2d (*yv12_mb)[MAX_MB_PLANE]) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
unsigned char segment_id = mbmi->segment_id;
init_neighbor_pred_buf(&x->obmc_buffer, args, is_cur_buf_hbd(&x->e_mbd));
av1_collect_neighbors_ref_counts(xd);
estimate_ref_frame_costs(cm, xd, &x->mode_costs, segment_id, ref_costs_single,
ref_costs_comp);
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
x->best_pred_mv_sad[0] = INT_MAX;
x->best_pred_mv_sad[1] = INT_MAX;
for (MV_REFERENCE_FRAME ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME;
++ref_frame) {
x->pred_mv_sad[ref_frame] = INT_MAX;
mbmi_ext->mode_context[ref_frame] = 0;
mbmi_ext->ref_mv_count[ref_frame] = UINT8_MAX;
if (cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame]) {
// Skip the ref frame if the mask says skip and the ref is not used by
// compound ref.
if (skip_ref_frame_mask & (1 << ref_frame) &&
!is_ref_frame_used_by_compound_ref(ref_frame, skip_ref_frame_mask) &&
!is_ref_frame_used_in_cache(ref_frame, x->mb_mode_cache)) {
continue;
}
assert(get_ref_frame_yv12_buf(cm, ref_frame) != NULL);
setup_buffer_ref_mvs_inter(cpi, x, ref_frame, bsize, yv12_mb);
}
if (cpi->sf.inter_sf.alt_ref_search_fp ||
cpi->sf.inter_sf.prune_single_ref ||
cpi->sf.rt_sf.prune_inter_modes_wrt_gf_arf_based_on_sad) {
// Store the best pred_mv_sad across all past frames
if (cpi->ref_frame_dist_info.ref_relative_dist[ref_frame - LAST_FRAME] <
0)
x->best_pred_mv_sad[0] =
AOMMIN(x->best_pred_mv_sad[0], x->pred_mv_sad[ref_frame]);
else
// Store the best pred_mv_sad across all future frames
x->best_pred_mv_sad[1] =
AOMMIN(x->best_pred_mv_sad[1], x->pred_mv_sad[ref_frame]);
}
}
if (!cpi->sf.rt_sf.use_real_time_ref_set && is_comp_ref_allowed(bsize)) {
// No second reference on RT ref set, so no need to initialize
for (MV_REFERENCE_FRAME ref_frame = EXTREF_FRAME;
ref_frame < MODE_CTX_REF_FRAMES; ++ref_frame) {
mbmi_ext->mode_context[ref_frame] = 0;
mbmi_ext->ref_mv_count[ref_frame] = UINT8_MAX;
const MV_REFERENCE_FRAME *rf = ref_frame_map[ref_frame - REF_FRAMES];
if (!((cpi->ref_frame_flags & av1_ref_frame_flag_list[rf[0]]) &&
(cpi->ref_frame_flags & av1_ref_frame_flag_list[rf[1]]))) {
continue;
}
if (skip_ref_frame_mask & (1 << ref_frame) &&
!is_ref_frame_used_in_cache(ref_frame, x->mb_mode_cache)) {
continue;
}
// Ref mv list population is not required, when compound references are
// pruned.
if (prune_ref_frame(cpi, x, ref_frame)) continue;
av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count,
xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs,
mbmi_ext->mode_context);
// TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and
// mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs.
av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame);
}
}
av1_count_overlappable_neighbors(cm, xd);
const FRAME_UPDATE_TYPE update_type =
get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
int use_actual_frame_probs = 1;
int prune_obmc;
#if CONFIG_FPMT_TEST
use_actual_frame_probs =
(cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) ? 0 : 1;
if (!use_actual_frame_probs) {
prune_obmc = cpi->ppi->temp_frame_probs.obmc_probs[update_type][bsize] <
cpi->sf.inter_sf.prune_obmc_prob_thresh;
}
#endif
if (use_actual_frame_probs) {
prune_obmc = cpi->ppi->frame_probs.obmc_probs[update_type][bsize] <
cpi->sf.inter_sf.prune_obmc_prob_thresh;
}
if (cpi->oxcf.motion_mode_cfg.enable_obmc && !prune_obmc) {
if (check_num_overlappable_neighbors(mbmi) &&
is_motion_variation_allowed_bsize(bsize)) {
int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1,
MAX_SB_SIZE >> 1 };
int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1,
MAX_SB_SIZE >> 1 };
int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
av1_build_prediction_by_above_preds(cm, xd, args->above_pred_buf,
dst_width1, dst_height1,
args->above_pred_stride);
av1_build_prediction_by_left_preds(cm, xd, args->left_pred_buf,
dst_width2, dst_height2,
args->left_pred_stride);
const int num_planes = av1_num_planes(cm);
av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row,
mi_col, 0, num_planes);
calc_target_weighted_pred(
cm, x, xd, args->above_pred_buf[0], args->above_pred_stride[0],
args->left_pred_buf[0], args->left_pred_stride[0]);
}
}
init_mode_skip_mask(mode_skip_mask, cpi, x, bsize);
// Set params for mode evaluation
set_mode_eval_params(cpi, x, MODE_EVAL);
x->comp_rd_stats_idx = 0;
for (int idx = 0; idx < REF_FRAMES; idx++) {
args->best_single_sse_in_refs[idx] = INT32_MAX;
}
}
static inline void init_single_inter_mode_search_state(
InterModeSearchState *search_state) {
for (int dir = 0; dir < 2; ++dir) {
for (int mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) {
for (int ref_frame = 0; ref_frame < FWD_REFS; ++ref_frame) {
SingleInterModeState *state;
state = &search_state->single_state[dir][mode][ref_frame];
state->ref_frame = NONE_FRAME;
state->rd = INT64_MAX;
state = &search_state->single_state_modelled[dir][mode][ref_frame];
state->ref_frame = NONE_FRAME;
state->rd = INT64_MAX;
search_state->single_rd_order[dir][mode][ref_frame] = NONE_FRAME;
}
}
}
for (int ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame) {
search_state->best_single_rd[ref_frame] = INT64_MAX;
search_state->best_single_mode[ref_frame] = PRED_MODE_INVALID;
}
av1_zero(search_state->single_state_cnt);
av1_zero(search_state->single_state_modelled_cnt);
}
static inline void init_inter_mode_search_state(
InterModeSearchState *search_state, const AV1_COMP *cpi,
const MACROBLOCK *x, BLOCK_SIZE bsize, int64_t best_rd_so_far) {
init_intra_mode_search_state(&search_state->intra_search_state);
av1_invalid_rd_stats(&search_state->best_y_rdcost);
search_state->best_rd = best_rd_so_far;
search_state->best_skip_rd[0] = INT64_MAX;
search_state->best_skip_rd[1] = INT64_MAX;
av1_zero(search_state->best_mbmode);
search_state->best_rate_y = INT_MAX;
search_state->best_rate_uv = INT_MAX;
search_state->best_mode_skippable = 0;
search_state->best_skip2 = 0;
search_state->best_mode_index = THR_INVALID;
const MACROBLOCKD *const xd = &x->e_mbd;
const MB_MODE_INFO *const mbmi = xd->mi[0];
const unsigned char segment_id = mbmi->segment_id;
search_state->num_available_refs = 0;
memset(search_state->dist_refs, -1, sizeof(search_state->dist_refs));
memset(search_state->dist_order_refs, -1,
sizeof(search_state->dist_order_refs));
for (int i = 0; i <= LAST_NEW_MV_INDEX; ++i)
search_state->mode_threshold[i] = 0;
const int *const rd_threshes = cpi->rd.threshes[segment_id][bsize];
for (int i = LAST_NEW_MV_INDEX + 1; i < SINGLE_REF_MODE_END; ++i)
search_state->mode_threshold[i] =
((int64_t)rd_threshes[i] * x->thresh_freq_fact[bsize][i]) >>
RD_THRESH_FAC_FRAC_BITS;
search_state->best_intra_rd = INT64_MAX;
search_state->best_pred_sse = UINT_MAX;
av1_zero(search_state->single_newmv);
av1_zero(search_state->single_newmv_rate);
av1_zero(search_state->single_newmv_valid);
for (int i = SINGLE_INTER_MODE_START; i < SINGLE_INTER_MODE_END; ++i) {
for (int j = 0; j < MAX_REF_MV_SEARCH; ++j) {
for (int ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame) {
search_state->modelled_rd[i][j][ref_frame] = INT64_MAX;
search_state->simple_rd[i][j][ref_frame] = INT64_MAX;
}
}
}
for (int i = 0; i < REFERENCE_MODES; ++i) {
search_state->best_pred_rd[i] = INT64_MAX;
}
if (cpi->common.current_frame.reference_mode != SINGLE_REFERENCE) {
for (int i = SINGLE_REF_MODE_END; i < THR_INTER_MODE_END; ++i)
search_state->mode_threshold[i] =
((int64_t)rd_threshes[i] * x->thresh_freq_fact[bsize][i]) >>
RD_THRESH_FAC_FRAC_BITS;
for (int i = COMP_INTER_MODE_START; i < COMP_INTER_MODE_END; ++i) {
for (int j = 0; j < MAX_REF_MV_SEARCH; ++j) {
for (int ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame) {
search_state->modelled_rd[i][j][ref_frame] = INT64_MAX;
search_state->simple_rd[i][j][ref_frame] = INT64_MAX;
}
}
}
init_single_inter_mode_search_state(search_state);
}
}
static bool mask_says_skip(const mode_skip_mask_t *mode_skip_mask,
const MV_REFERENCE_FRAME *ref_frame,
const PREDICTION_MODE this_mode) {
if (mode_skip_mask->pred_modes[ref_frame[0]] & (1 << this_mode)) {
return true;
}
return mode_skip_mask->ref_combo[ref_frame[0]][ref_frame[1] + 1];
}
static int inter_mode_compatible_skip(const AV1_COMP *cpi, const MACROBLOCK *x,
BLOCK_SIZE bsize,
PREDICTION_MODE curr_mode,
const MV_REFERENCE_FRAME *ref_frames) {
const int comp_pred = ref_frames[1] > INTRA_FRAME;
if (comp_pred) {
if (!is_comp_ref_allowed(bsize)) return 1;
if (!(cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frames[1]])) {
return 1;
}
const AV1_COMMON *const cm = &cpi->common;
if (frame_is_intra_only(cm)) return 1;
const CurrentFrame *const current_frame = &cm->current_frame;
if (current_frame->reference_mode == SINGLE_REFERENCE) return 1;
const struct segmentation *const seg = &cm->seg;
const unsigned char segment_id = x->e_mbd.mi[0]->segment_id;
// Do not allow compound prediction if the segment level reference frame
// feature is in use as in this case there can only be one reference.
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) return 1;
}
if (ref_frames[0] > INTRA_FRAME && ref_frames[1] == INTRA_FRAME) {
// Mode must be compatible
if (!is_interintra_allowed_bsize(bsize)) return 1;
if (!is_interintra_allowed_mode(curr_mode)) return 1;
}
return 0;
}
static int fetch_picked_ref_frames_mask(const MACROBLOCK *const x,
BLOCK_SIZE bsize, int mib_size) {
const int sb_size_mask = mib_size - 1;
const MACROBLOCKD *const xd = &x->e_mbd;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
const int mi_row_in_sb = mi_row & sb_size_mask;
const int mi_col_in_sb = mi_col & sb_size_mask;
const int mi_w = mi_size_wide[bsize];
const int mi_h = mi_size_high[bsize];
int picked_ref_frames_mask = 0;
for (int i = mi_row_in_sb; i < mi_row_in_sb + mi_h; ++i) {
for (int j = mi_col_in_sb; j < mi_col_in_sb + mi_w; ++j) {
picked_ref_frames_mask |= x->picked_ref_frames_mask[i * 32 + j];
}
}
return picked_ref_frames_mask;
}
// Check if reference frame pair of the current block matches with the given
// block.
static inline int match_ref_frame_pair(const MB_MODE_INFO *mbmi,
const MV_REFERENCE_FRAME *ref_frames) {
return ((ref_frames[0] == mbmi->ref_frame[0]) &&
(ref_frames[1] == mbmi->ref_frame[1]));
}
// Case 1: return 0, means don't skip this mode
// Case 2: return 1, means skip this mode completely
// Case 3: return 2, means skip compound only, but still try single motion modes
static int inter_mode_search_order_independent_skip(
const AV1_COMP *cpi, const MACROBLOCK *x, mode_skip_mask_t *mode_skip_mask,
InterModeSearchState *search_state, int skip_ref_frame_mask,
PREDICTION_MODE mode, const MV_REFERENCE_FRAME *ref_frame) {
if (mask_says_skip(mode_skip_mask, ref_frame, mode)) {
return 1;
}
const int ref_type = av1_ref_frame_type(ref_frame);
if (!cpi->sf.rt_sf.use_real_time_ref_set)
if (prune_ref_frame(cpi, x, ref_type)) return 1;
// This is only used in motion vector unit test.
if (cpi->oxcf.unit_test_cfg.motion_vector_unit_test &&
ref_frame[0] == INTRA_FRAME)
return 1;
const AV1_COMMON *const cm = &cpi->common;
if (skip_repeated_mv(cm, x, mode, ref_frame, search_state)) {
return 1;
}
// Reuse the prediction mode in cache
if (x->use_mb_mode_cache) {
const MB_MODE_INFO *cached_mi = x->mb_mode_cache;
const PREDICTION_MODE cached_mode = cached_mi->mode;
const MV_REFERENCE_FRAME *cached_frame = cached_mi->ref_frame;
const int cached_mode_is_single = cached_frame[1] <= INTRA_FRAME;
// If the cached mode is intra, then we just need to match the mode.
if (is_mode_intra(cached_mode) && mode != cached_mode) {
return 1;
}
// If the cached mode is single inter mode, then we match the mode and
// reference frame.
if (cached_mode_is_single) {
if (mode != cached_mode || ref_frame[0] != cached_frame[0]) {
return 1;
}
} else {
// If the cached mode is compound, then we need to consider several cases.
const int mode_is_single = ref_frame[1] <= INTRA_FRAME;
if (mode_is_single) {
// If the mode is single, we know the modes can't match. But we might
// still want to search it if compound mode depends on the current mode.
int skip_motion_mode_only = 0;
if (cached_mode == NEW_NEARMV || cached_mode == NEW_NEARESTMV) {
skip_motion_mode_only = (ref_frame[0] == cached_frame[0]);
} else if (cached_mode == NEAR_NEWMV || cached_mode == NEAREST_NEWMV) {
skip_motion_mode_only = (ref_frame[0] == cached_frame[1]);
} else if (cached_mode == NEW_NEWMV) {
skip_motion_mode_only = (ref_frame[0] == cached_frame[0] ||
ref_frame[0] == cached_frame[1]);
}
return 1 + skip_motion_mode_only;
} else {
// If both modes are compound, then everything must match.
if (mode != cached_mode || ref_frame[0] != cached_frame[0] ||
ref_frame[1] != cached_frame[1]) {
return 1;
}
}
}
}
const MB_MODE_INFO *const mbmi = x->e_mbd.mi[0];
// If no valid mode has been found so far in PARTITION_NONE when finding a
// valid partition is required, do not skip mode.
if (search_state->best_rd == INT64_MAX && mbmi->partition == PARTITION_NONE &&
x->must_find_valid_partition)
return 0;
const SPEED_FEATURES *const sf = &cpi->sf;
// Prune NEARMV and NEAR_NEARMV based on q index and neighbor's reference
// frames
if (sf->inter_sf.prune_nearmv_using_neighbors &&
(mode == NEAR_NEARMV || mode == NEARMV)) {
const MACROBLOCKD *const xd = &x->e_mbd;
if (search_state->best_rd != INT64_MAX && xd->left_available &&
xd->up_available) {
const int thresholds[PRUNE_NEARMV_MAX][3] = { { 1, 0, 0 },
{ 1, 1, 0 },
{ 2, 1, 0 } };
const int qindex_sub_range = x->qindex * 3 / QINDEX_RANGE;
assert(sf->inter_sf.prune_nearmv_using_neighbors <= PRUNE_NEARMV_MAX &&
qindex_sub_range < 3);
const int num_ref_frame_pair_match_thresh =
thresholds[sf->inter_sf.prune_nearmv_using_neighbors - 1]
[qindex_sub_range];
assert(num_ref_frame_pair_match_thresh <= 2 &&
num_ref_frame_pair_match_thresh >= 0);
int num_ref_frame_pair_match = 0;
num_ref_frame_pair_match = match_ref_frame_pair(xd->left_mbmi, ref_frame);
num_ref_frame_pair_match +=
match_ref_frame_pair(xd->above_mbmi, ref_frame);
// Pruning based on ref frame pair match with neighbors.
if (num_ref_frame_pair_match < num_ref_frame_pair_match_thresh) return 1;
}
}
int skip_motion_mode = 0;
if (mbmi->partition != PARTITION_NONE) {
int skip_ref = skip_ref_frame_mask & (1 << ref_type);
if (ref_type <= ALTREF_FRAME && skip_ref) {
// Since the compound ref modes depends on the motion estimation result of
// two single ref modes (best mv of single ref modes as the start point),
// if current single ref mode is marked skip, we need to check if it will
// be used in compound ref modes.
if (is_ref_frame_used_by_compound_ref(ref_type, skip_ref_frame_mask)) {
// Found a not skipped compound ref mode which contains current
// single ref. So this single ref can't be skipped completely
// Just skip its motion mode search, still try its simple
// transition mode.
skip_motion_mode = 1;
skip_ref = 0;
}
}
// If we are reusing the prediction from cache, and the current frame is
// required by the cache, then we cannot prune it.
if (is_ref_frame_used_in_cache(ref_type, x->mb_mode_cache)) {
skip_ref = 0;
// If the cache only needs the current reference type for compound
// prediction, then we can skip motion mode search.
skip_motion_mode = (ref_type <= ALTREF_FRAME &&
x->mb_mode_cache->ref_frame[1] > INTRA_FRAME);
}
if (skip_ref) return 1;
}
if (ref_frame[0] == INTRA_FRAME) {
if (mode != DC_PRED) {
// Disable intra modes other than DC_PRED for blocks with low variance
// Threshold for intra skipping based on source variance
// TODO(debargha): Specialize the threshold for super block sizes
const unsigned int skip_intra_var_thresh = 64;
if ((sf->rt_sf.mode_search_skip_flags & FLAG_SKIP_INTRA_LOWVAR) &&
x->source_variance < skip_intra_var_thresh)
return 1;
}
}
if (skip_motion_mode) return 2;
return 0;
}
static inline void init_mbmi(MB_MODE_INFO *mbmi, PREDICTION_MODE curr_mode,
const MV_REFERENCE_FRAME *ref_frames,
const AV1_COMMON *cm) {
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
mbmi->ref_mv_idx = 0;
mbmi->mode = curr_mode;
mbmi->uv_mode = UV_DC_PRED;
mbmi->ref_frame[0] = ref_frames[0];
mbmi->ref_frame[1] = ref_frames[1];
pmi->palette_size[0] = 0;
pmi->palette_size[1] = 0;
mbmi->filter_intra_mode_info.use_filter_intra = 0;
mbmi->mv[0].as_int = mbmi->mv[1].as_int = 0;
mbmi->motion_mode = SIMPLE_TRANSLATION;
mbmi->interintra_mode = (INTERINTRA_MODE)(II_DC_PRED - 1);
set_default_interp_filters(mbmi, cm->features.interp_filter);
}
static inline void collect_single_states(MACROBLOCK *x,
InterModeSearchState *search_state,
const MB_MODE_INFO *const mbmi) {
int i, j;
const MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame[0];
const PREDICTION_MODE this_mode = mbmi->mode;
const int dir = ref_frame <= GOLDEN_FRAME ? 0 : 1;
const int mode_offset = INTER_OFFSET(this_mode);
const int ref_set = get_drl_refmv_count(x, mbmi->ref_frame, this_mode);
// Simple rd
int64_t simple_rd = search_state->simple_rd[this_mode][0][ref_frame];
for (int ref_mv_idx = 1; ref_mv_idx < ref_set; ++ref_mv_idx) {
const int64_t rd =
search_state->simple_rd[this_mode][ref_mv_idx][ref_frame];
if (rd < simple_rd) simple_rd = rd;
}
// Insertion sort of single_state
const SingleInterModeState this_state_s = { simple_rd, ref_frame, 1 };
SingleInterModeState *state_s = search_state->single_state[dir][mode_offset];
i = search_state->single_state_cnt[dir][mode_offset];
for (j = i; j > 0 && state_s[j - 1].rd > this_state_s.rd; --j)
state_s[j] = state_s[j - 1];
state_s[j] = this_state_s;
search_state->single_state_cnt[dir][mode_offset]++;
// Modelled rd
int64_t modelled_rd = search_state->modelled_rd[this_mode][0][ref_frame];
for (int ref_mv_idx = 1; ref_mv_idx < ref_set; ++ref_mv_idx) {
const int64_t rd =
search_state->modelled_rd[this_mode][ref_mv_idx][ref_frame];
if (rd < modelled_rd) modelled_rd = rd;
}
// Insertion sort of single_state_modelled
const SingleInterModeState this_state_m = { modelled_rd, ref_frame, 1 };
SingleInterModeState *state_m =
search_state->single_state_modelled[dir][mode_offset];
i = search_state->single_state_modelled_cnt[dir][mode_offset];
for (j = i; j > 0 && state_m[j - 1].rd > this_state_m.rd; --j)
state_m[j] = state_m[j - 1];
state_m[j] = this_state_m;
search_state->single_state_modelled_cnt[dir][mode_offset]++;
}
static inline void analyze_single_states(const AV1_COMP *cpi,
InterModeSearchState *search_state) {
const int prune_level = cpi->sf.inter_sf.prune_comp_search_by_single_result;
assert(prune_level >= 1);
int i, j, dir, mode;
for (dir = 0; dir < 2; ++dir) {
int64_t best_rd;
SingleInterModeState(*state)[FWD_REFS];
const int prune_factor = prune_level >= 2 ? 6 : 5;
// Use the best rd of GLOBALMV or NEWMV to prune the unlikely
// reference frames for all the modes (NEARESTMV and NEARMV may not
// have same motion vectors). Always keep the best of each mode
// because it might form the best possible combination with other mode.
state = search_state->single_state[dir];
best_rd = AOMMIN(state[INTER_OFFSET(NEWMV)][0].rd,
state[INTER_OFFSET(GLOBALMV)][0].rd);
for (mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) {
for (i = 1; i < search_state->single_state_cnt[dir][mode]; ++i) {
if (state[mode][i].rd != INT64_MAX &&
(state[mode][i].rd >> 3) * prune_factor > best_rd) {
state[mode][i].valid = 0;
}
}
}
state = search_state->single_state_modelled[dir];
best_rd = AOMMIN(state[INTER_OFFSET(NEWMV)][0].rd,
state[INTER_OFFSET(GLOBALMV)][0].rd);
for (mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) {
for (i = 1; i < search_state->single_state_modelled_cnt[dir][mode]; ++i) {
if (state[mode][i].rd != INT64_MAX &&
(state[mode][i].rd >> 3) * prune_factor > best_rd) {
state[mode][i].valid = 0;
}
}
}
}
// Ordering by simple rd first, then by modelled rd
for (dir = 0; dir < 2; ++dir) {
for (mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) {
const int state_cnt_s = search_state->single_state_cnt[dir][mode];
const int state_cnt_m =
search_state->single_state_modelled_cnt[dir][mode];
SingleInterModeState *state_s = search_state->single_state[dir][mode];
SingleInterModeState *state_m =
search_state->single_state_modelled[dir][mode];
int count = 0;
const int max_candidates = AOMMAX(state_cnt_s, state_cnt_m);
for (i = 0; i < state_cnt_s; ++i) {
if (state_s[i].rd == INT64_MAX) break;
if (state_s[i].valid) {
search_state->single_rd_order[dir][mode][count++] =
state_s[i].ref_frame;
}
}
if (count >= max_candidates) continue;
for (i = 0; i < state_cnt_m && count < max_candidates; ++i) {
if (state_m[i].rd == INT64_MAX) break;
if (!state_m[i].valid) continue;
const int ref_frame = state_m[i].ref_frame;
int match = 0;
// Check if existing already
for (j = 0; j < count; ++j) {
if (search_state->single_rd_order[dir][mode][j] == ref_frame) {
match = 1;
break;
}
}
if (match) continue;
// Check if this ref_frame is removed in simple rd
int valid = 1;
for (j = 0; j < state_cnt_s; ++j) {
if (ref_frame == state_s[j].ref_frame) {
valid = state_s[j].valid;
break;
}
}
if (valid) {
search_state->single_rd_order[dir][mode][count++] = ref_frame;
}
}
}
}
}
static int compound_skip_get_candidates(
const AV1_COMP *cpi, const InterModeSearchState *search_state,
const int dir, const PREDICTION_MODE mode) {
const int mode_offset = INTER_OFFSET(mode);
const SingleInterModeState *state =
search_state->single_state[dir][mode_offset];
const SingleInterModeState *state_modelled =
search_state->single_state_modelled[dir][mode_offset];
int max_candidates = 0;
for (int i = 0; i < FWD_REFS; ++i) {
if (search_state->single_rd_order[dir][mode_offset][i] == NONE_FRAME) break;
max_candidates++;
}
int candidates = max_candidates;
if (cpi->sf.inter_sf.prune_comp_search_by_single_result >= 2) {
candidates = AOMMIN(2, max_candidates);
}
if (cpi->sf.inter_sf.prune_comp_search_by_single_result >= 3) {
if (state[0].rd != INT64_MAX && state_modelled[0].rd != INT64_MAX &&
state[0].ref_frame == state_modelled[0].ref_frame)
candidates = 1;
if (mode == NEARMV || mode == GLOBALMV) candidates = 1;
}
if (cpi->sf.inter_sf.prune_comp_search_by_single_result >= 4) {
// Limit the number of candidates to 1 in each direction for compound
// prediction
candidates = AOMMIN(1, candidates);
}
return candidates;
}
static int compound_skip_by_single_states(
const AV1_COMP *cpi, const InterModeSearchState *search_state,
const PREDICTION_MODE this_mode, const MV_REFERENCE_FRAME ref_frame,
const MV_REFERENCE_FRAME second_ref_frame, const MACROBLOCK *x) {
const MV_REFERENCE_FRAME refs[2] = { ref_frame, second_ref_frame };
const int mode[2] = { compound_ref0_mode(this_mode),
compound_ref1_mode(this_mode) };
const int mode_offset[2] = { INTER_OFFSET(mode[0]), INTER_OFFSET(mode[1]) };
const int mode_dir[2] = { refs[0] <= GOLDEN_FRAME ? 0 : 1,
refs[1] <= GOLDEN_FRAME ? 0 : 1 };
int ref_searched[2] = { 0, 0 };
int ref_mv_match[2] = { 1, 1 };
int i, j;
for (i = 0; i < 2; ++i) {
const SingleInterModeState *state =
search_state->single_state[mode_dir[i]][mode_offset[i]];
const int state_cnt =
search_state->single_state_cnt[mode_dir[i]][mode_offset[i]];
for (j = 0; j < state_cnt; ++j) {
if (state[j].ref_frame == refs[i]) {
ref_searched[i] = 1;
break;
}
}
}
const int ref_set = get_drl_refmv_count(x, refs, this_mode);
for (i = 0; i < 2; ++i) {
if (!ref_searched[i] || (mode[i] != NEARESTMV && mode[i] != NEARMV)) {
continue;
}
const MV_REFERENCE_FRAME single_refs[2] = { refs[i], NONE_FRAME };
for (int ref_mv_idx = 0; ref_mv_idx < ref_set; ref_mv_idx++) {
int_mv single_mv;
int_mv comp_mv;
get_this_mv(&single_mv, mode[i], 0, ref_mv_idx, 0, single_refs,
&x->mbmi_ext);
get_this_mv(&comp_mv, this_mode, i, ref_mv_idx, 0, refs, &x->mbmi_ext);
if (single_mv.as_int != comp_mv.as_int) {
ref_mv_match[i] = 0;
break;
}
}
}
for (i = 0; i < 2; ++i) {
if (!ref_searched[i] || !ref_mv_match[i]) continue;
const int candidates =
compound_skip_get_candidates(cpi, search_state, mode_dir[i], mode[i]);
const MV_REFERENCE_FRAME *ref_order =
search_state->single_rd_order[mode_dir[i]][mode_offset[i]];
int match = 0;
for (j = 0; j < candidates; ++j) {
if (refs[i] == ref_order[j]) {
match = 1;
break;
}
}
if (!match) return 1;
}
return 0;
}
// Check if ref frames of current block matches with given block.
static inline void match_ref_frame(const MB_MODE_INFO *const mbmi,
const MV_REFERENCE_FRAME *ref_frames,
int *const is_ref_match) {
if (is_inter_block(mbmi)) {
is_ref_match[0] |= ref_frames[0] == mbmi->ref_frame[0];
is_ref_match[1] |= ref_frames[1] == mbmi->ref_frame[0];
if (has_second_ref(mbmi)) {
is_ref_match[0] |= ref_frames[0] == mbmi->ref_frame[1];
is_ref_match[1] |= ref_frames[1] == mbmi->ref_frame[1];
}
}
}
// Prune compound mode using ref frames of neighbor blocks.
static inline int compound_skip_using_neighbor_refs(
MACROBLOCKD *const xd, const PREDICTION_MODE this_mode,
const MV_REFERENCE_FRAME *ref_frames, int prune_ext_comp_using_neighbors) {
// Exclude non-extended compound modes from pruning
if (this_mode == NEAREST_NEARESTMV || this_mode == NEAR_NEARMV ||
this_mode == NEW_NEWMV || this_mode == GLOBAL_GLOBALMV)
return 0;
if (prune_ext_comp_using_neighbors >= 3) return 1;
int is_ref_match[2] = { 0 }; // 0 - match for forward refs
// 1 - match for backward refs
// Check if ref frames of this block matches with left neighbor.
if (xd->left_available)
match_ref_frame(xd->left_mbmi, ref_frames, is_ref_match);
// Check if ref frames of this block matches with above neighbor.
if (xd->up_available)
match_ref_frame(xd->above_mbmi, ref_frames, is_ref_match);
// Combine ref frame match with neighbors in forward and backward refs.
const int track_ref_match = is_ref_match[0] + is_ref_match[1];
// Pruning based on ref frame match with neighbors.
if (track_ref_match >= prune_ext_comp_using_neighbors) return 0;
return 1;
}
// Update best single mode for the given reference frame based on simple rd.
static inline void update_best_single_mode(InterModeSearchState *search_state,
const PREDICTION_MODE this_mode,
const MV_REFERENCE_FRAME ref_frame,
int64_t this_rd) {
if (this_rd < search_state->best_single_rd[ref_frame]) {
search_state->best_single_rd[ref_frame] = this_rd;
search_state->best_single_mode[ref_frame] = this_mode;
}
}
// Prune compound mode using best single mode for the same reference.
static inline int skip_compound_using_best_single_mode_ref(
const PREDICTION_MODE this_mode, const MV_REFERENCE_FRAME *ref_frames,
const PREDICTION_MODE *best_single_mode,
int prune_comp_using_best_single_mode_ref) {
// Exclude non-extended compound modes from pruning
if (this_mode == NEAREST_NEARESTMV || this_mode == NEAR_NEARMV ||
this_mode == NEW_NEWMV || this_mode == GLOBAL_GLOBALMV)
return 0;
assert(this_mode >= NEAREST_NEWMV && this_mode <= NEW_NEARMV);
const PREDICTION_MODE comp_mode_ref0 = compound_ref0_mode(this_mode);
// Get ref frame direction corresponding to NEWMV
// 0 - NEWMV corresponding to forward direction
// 1 - NEWMV corresponding to backward direction
const int newmv_dir = comp_mode_ref0 != NEWMV;
// Avoid pruning the compound mode when ref frame corresponding to NEWMV
// have NEWMV as single mode winner.
// Example: For an extended-compound mode,
// {mode, {fwd_frame, bwd_frame}} = {NEAR_NEWMV, {LAST_FRAME, ALTREF_FRAME}}
// - Ref frame corresponding to NEWMV is ALTREF_FRAME
// - Avoid pruning this mode, if best single mode corresponding to ref frame
// ALTREF_FRAME is NEWMV
const PREDICTION_MODE single_mode = best_single_mode[ref_frames[newmv_dir]];
if (single_mode == NEWMV) return 0;
// Avoid pruning the compound mode when best single mode is not available
if (prune_comp_using_best_single_mode_ref == 1)
if (single_mode == MB_MODE_COUNT) return 0;
return 1;
}
static int compare_int64(const void *a, const void *b) {
int64_t a64 = *((int64_t *)a);
int64_t b64 = *((int64_t *)b);
if (a64 < b64) {
return -1;
} else if (a64 == b64) {
return 0;
} else {
return 1;
}
}
static inline void update_search_state(
InterModeSearchState *search_state, RD_STATS *best_rd_stats_dst,
PICK_MODE_CONTEXT *ctx, const RD_STATS *new_best_rd_stats,
const RD_STATS *new_best_rd_stats_y, const RD_STATS *new_best_rd_stats_uv,
THR_MODES new_best_mode, const MACROBLOCK *x, int txfm_search_done) {
const MACROBLOCKD *xd = &x->e_mbd;
const MB_MODE_INFO *mbmi = xd->mi[0];
const int skip_ctx = av1_get_skip_txfm_context(xd);
const int skip_txfm =
mbmi->skip_txfm && !is_mode_intra(av1_mode_defs[new_best_mode].mode);
const TxfmSearchInfo *txfm_info = &x->txfm_search_info;
search_state->best_rd = new_best_rd_stats->rdcost;
search_state->best_mode_index = new_best_mode;
*best_rd_stats_dst = *new_best_rd_stats;
search_state->best_mbmode = *mbmi;
search_state->best_skip2 = skip_txfm;
search_state->best_mode_skippable = new_best_rd_stats->skip_txfm;
// When !txfm_search_done, new_best_rd_stats won't provide correct rate_y and
// rate_uv because av1_txfm_search process is replaced by rd estimation.
// Therefore, we should avoid updating best_rate_y and best_rate_uv here.
// These two values will be updated when av1_txfm_search is called.
if (txfm_search_done) {
search_state->best_rate_y =
new_best_rd_stats_y->rate +
x->mode_costs.skip_txfm_cost[skip_ctx]
[new_best_rd_stats->skip_txfm || skip_txfm];
search_state->best_rate_uv = new_best_rd_stats_uv->rate;
}
search_state->best_y_rdcost = *new_best_rd_stats_y;
memcpy(ctx->blk_skip, txfm_info->blk_skip,
sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk);
av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
}
// Find the best RD for a reference frame (among single reference modes)
// and store +10% of it in the 0-th element in ref_frame_rd.
static inline void find_top_ref(int64_t ref_frame_rd[REF_FRAMES]) {
assert(ref_frame_rd[0] == INT64_MAX);
int64_t ref_copy[REF_FRAMES - 1];
memcpy(ref_copy, ref_frame_rd + 1,
sizeof(ref_frame_rd[0]) * (REF_FRAMES - 1));
qsort(ref_copy, REF_FRAMES - 1, sizeof(int64_t), compare_int64);
int64_t cutoff = ref_copy[0];
// The cut-off is within 10% of the best.
if (cutoff != INT64_MAX) {
assert(cutoff < INT64_MAX / 200);
cutoff = (110 * cutoff) / 100;
}
ref_frame_rd[0] = cutoff;
}
// Check if either frame is within the cutoff.
static inline bool in_single_ref_cutoff(int64_t ref_frame_rd[REF_FRAMES],
MV_REFERENCE_FRAME frame1,
MV_REFERENCE_FRAME frame2) {
assert(frame2 > 0);
return ref_frame_rd[frame1] <= ref_frame_rd[0] ||
ref_frame_rd[frame2] <= ref_frame_rd[0];
}
static inline void evaluate_motion_mode_for_winner_candidates(
const AV1_COMP *const cpi, MACROBLOCK *const x, RD_STATS *const rd_cost,
HandleInterModeArgs *const args, TileDataEnc *const tile_data,
PICK_MODE_CONTEXT *const ctx,
struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE],
const motion_mode_best_st_candidate *const best_motion_mode_cands,
int do_tx_search, const BLOCK_SIZE bsize, int64_t *const best_est_rd,
InterModeSearchState *const search_state, int64_t *yrd) {
const AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
InterModesInfo *const inter_modes_info = x->inter_modes_info;
const int num_best_cand = best_motion_mode_cands->num_motion_mode_cand;
for (int cand = 0; cand < num_best_cand; cand++) {
RD_STATS rd_stats;
RD_STATS rd_stats_y;
RD_STATS rd_stats_uv;
av1_init_rd_stats(&rd_stats);
av1_init_rd_stats(&rd_stats_y);
av1_init_rd_stats(&rd_stats_uv);
int rate_mv;
rate_mv = best_motion_mode_cands->motion_mode_cand[cand].rate_mv;
args->skip_motion_mode =
best_motion_mode_cands->motion_mode_cand[cand].skip_motion_mode;
*mbmi = best_motion_mode_cands->motion_mode_cand[cand].mbmi;
rd_stats.rate =
best_motion_mode_cands->motion_mode_cand[cand].rate2_nocoeff;
// Continue if the best candidate is compound.
if (!is_inter_singleref_mode(mbmi->mode)) continue;
x->txfm_search_info.skip_txfm = 0;
struct macroblockd_plane *pd = xd->plane;
const BUFFER_SET orig_dst = {
{ pd[0].dst.buf, pd[1].dst.buf, pd[2].dst.buf },
{ pd[0].dst.stride, pd[1].dst.stride, pd[2].dst.stride },
};
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
// Initialize motion mode to simple translation
// Calculation of switchable rate depends on it.
mbmi->motion_mode = 0;
const int is_comp_pred = mbmi->ref_frame[1] > INTRA_FRAME;
for (int i = 0; i < num_planes; i++) {
xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i];
if (is_comp_pred) xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i];
}
int64_t skip_rd[2] = { search_state->best_skip_rd[0],
search_state->best_skip_rd[1] };
int64_t this_yrd = INT64_MAX;
int64_t ret_value = motion_mode_rd(
cpi, tile_data, x, bsize, &rd_stats, &rd_stats_y, &rd_stats_uv, args,
search_state->best_rd, skip_rd, &rate_mv, &orig_dst, best_est_rd,
do_tx_search, inter_modes_info, 1, &this_yrd);
if (ret_value != INT64_MAX) {
rd_stats.rdcost = RDCOST(x->rdmult, rd_stats.rate, rd_stats.dist);
const THR_MODES mode_enum = get_prediction_mode_idx(
mbmi->mode, mbmi->ref_frame[0], mbmi->ref_frame[1]);
// Collect mode stats for multiwinner mode processing
store_winner_mode_stats(
&cpi->common, x, mbmi, &rd_stats, &rd_stats_y, &rd_stats_uv,
mode_enum, NULL, bsize, rd_stats.rdcost,
cpi->sf.winner_mode_sf.multi_winner_mode_type, do_tx_search);
int64_t best_scaled_rd = search_state->best_rd;
int64_t this_scaled_rd = rd_stats.rdcost;
if (search_state->best_mode_index != THR_INVALID)
increase_warp_mode_rd(&search_state->best_mbmode, mbmi, &best_scaled_rd,
&this_scaled_rd,
cpi->sf.inter_sf.bias_warp_mode_rd_scale_pct);
if (this_scaled_rd < best_scaled_rd) {
*yrd = this_yrd;
update_search_state(search_state, rd_cost, ctx, &rd_stats, &rd_stats_y,
&rd_stats_uv, mode_enum, x, do_tx_search);
if (do_tx_search) search_state->best_skip_rd[0] = skip_rd[0];
}
}
}
}
/*!\cond */
// Arguments for speed feature pruning of inter mode search
typedef struct {
int *skip_motion_mode;
mode_skip_mask_t *mode_skip_mask;
InterModeSearchState *search_state;
int skip_ref_frame_mask;
int reach_first_comp_mode;
int mode_thresh_mul_fact;
int num_single_modes_processed;
int prune_cpd_using_sr_stats_ready;
} InterModeSFArgs;
/*!\endcond */
static int skip_inter_mode(AV1_COMP *cpi, MACROBLOCK *x, const BLOCK_SIZE bsize,
int64_t *ref_frame_rd, int midx,
InterModeSFArgs *args, int is_low_temp_var) {
const SPEED_FEATURES *const sf = &cpi->sf;
MACROBLOCKD *const xd = &x->e_mbd;
// Get the actual prediction mode we are trying in this iteration
const THR_MODES mode_enum = av1_default_mode_order[midx];
const MODE_DEFINITION *mode_def = &av1_mode_defs[mode_enum];
const PREDICTION_MODE this_mode = mode_def->mode;
const MV_REFERENCE_FRAME *ref_frames = mode_def->ref_frame;
const MV_REFERENCE_FRAME ref_frame = ref_frames[0];
const MV_REFERENCE_FRAME second_ref_frame = ref_frames[1];
const int comp_pred = second_ref_frame > INTRA_FRAME;
if (ref_frame == INTRA_FRAME) return 1;
const FRAME_UPDATE_TYPE update_type =
get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
if (sf->inter_sf.skip_arf_compound && update_type == ARF_UPDATE &&
comp_pred) {
return 1;
}
// This is for real time encoding.
if (is_low_temp_var && !comp_pred && ref_frame != LAST_FRAME &&
this_mode != NEARESTMV)
return 1;
// Check if this mode should be skipped because it is incompatible with the
// current frame
if (inter_mode_compatible_skip(cpi, x, bsize, this_mode, ref_frames))
return 1;
const int ret = inter_mode_search_order_independent_skip(
cpi, x, args->mode_skip_mask, args->search_state,
args->skip_ref_frame_mask, this_mode, mode_def->ref_frame);
if (ret == 1) return 1;
*(args->skip_motion_mode) = (ret == 2);
// We've reached the first compound prediction mode, get stats from the
// single reference predictors to help with pruning.
// Disable this pruning logic if interpolation filter search was skipped for
// single prediction modes as it can result in aggressive pruning of compound
// prediction modes due to the absence of modelled_rd populated by
// av1_interpolation_filter_search().
// TODO(Remya): Check the impact of the sf
// 'prune_comp_search_by_single_result' if compound prediction modes are
// enabled in future for REALTIME encode.
if (!sf->interp_sf.skip_interp_filter_search &&
sf->inter_sf.prune_comp_search_by_single_result > 0 && comp_pred &&
args->reach_first_comp_mode == 0) {
analyze_single_states(cpi, args->search_state);
args->reach_first_comp_mode = 1;
}
// Prune aggressively when best mode is skippable.
int mul_fact = args->search_state->best_mode_skippable
? args->mode_thresh_mul_fact
: (1 << MODE_THRESH_QBITS);
int64_t mode_threshold =
(args->search_state->mode_threshold[mode_enum] * mul_fact) >>
MODE_THRESH_QBITS;
if (args->search_state->best_rd < mode_threshold) return 1;
// Skip this compound mode based on the RD results from the single prediction
// modes
if (!sf->interp_sf.skip_interp_filter_search &&
sf->inter_sf.prune_comp_search_by_single_result > 0 && comp_pred) {
if (compound_skip_by_single_states(cpi, args->search_state, this_mode,
ref_frame, second_ref_frame, x))
return 1;
}
if (sf->inter_sf.prune_compound_using_single_ref && comp_pred) {
// After we done with single reference modes, find the 2nd best RD
// for a reference frame. Only search compound modes that have a reference
// frame at least as good as the 2nd best.
if (!args->prune_cpd_using_sr_stats_ready &&
args->num_single_modes_processed == NUM_SINGLE_REF_MODES) {
find_top_ref(ref_frame_rd);
args->prune_cpd_using_sr_stats_ready = 1;
}
if (args->prune_cpd_using_sr_stats_ready &&
!in_single_ref_cutoff(ref_frame_rd, ref_frame, second_ref_frame))
return 1;
}
// Skip NEW_NEARMV and NEAR_NEWMV extended compound modes
if (sf->inter_sf.skip_ext_comp_nearmv_mode &&
(this_mode == NEW_NEARMV || this_mode == NEAR_NEWMV)) {
return 1;
}
if (sf->inter_sf.prune_ext_comp_using_neighbors && comp_pred) {
if (compound_skip_using_neighbor_refs(
xd, this_mode, ref_frames,
sf->inter_sf.prune_ext_comp_using_neighbors))
return 1;
}
if (sf->inter_sf.prune_comp_using_best_single_mode_ref && comp_pred) {
if (skip_compound_using_best_single_mode_ref(
this_mode, ref_frames, args->search_state->best_single_mode,
sf->inter_sf.prune_comp_using_best_single_mode_ref))
return 1;
}
if (sf->inter_sf.prune_nearest_near_mv_using_refmv_weight && !comp_pred) {
const int8_t ref_frame_type = av1_ref_frame_type(ref_frames);
if (skip_nearest_near_mv_using_refmv_weight(
x, this_mode, ref_frame_type,
args->search_state->best_mbmode.mode)) {
// Ensure the mode is pruned only when the current block has obtained a
// valid inter mode.
assert(is_inter_mode(args->search_state->best_mbmode.mode));
return 1;
}
}
if (sf->rt_sf.prune_inter_modes_with_golden_ref &&
ref_frame == GOLDEN_FRAME && !comp_pred) {
const int subgop_size = AOMMIN(cpi->ppi->gf_group.size, FIXED_GF_INTERVAL);
if (cpi->rc.frames_since_golden > (subgop_size >> 2) &&
args->search_state->best_mbmode.ref_frame[0] != GOLDEN_FRAME) {
if ((bsize > BLOCK_16X16 && this_mode == NEWMV) || this_mode == NEARMV)
return 1;
}
}
return 0;
}
static void record_best_compound(REFERENCE_MODE reference_mode,
RD_STATS *rd_stats, int comp_pred, int rdmult,
InterModeSearchState *search_state,
int compmode_cost) {
int64_t single_rd, hybrid_rd, single_rate, hybrid_rate;
if (reference_mode == REFERENCE_MODE_SELECT) {
single_rate = rd_stats->rate - compmode_cost;
hybrid_rate = rd_stats->rate;
} else {
single_rate = rd_stats->rate;
hybrid_rate = rd_stats->rate + compmode_cost;
}
single_rd = RDCOST(rdmult, single_rate, rd_stats->dist);
hybrid_rd = RDCOST(rdmult, hybrid_rate, rd_stats->dist);
if (!comp_pred) {
if (single_rd < search_state->best_pred_rd[SINGLE_REFERENCE])
search_state->best_pred_rd[SINGLE_REFERENCE] = single_rd;
} else {
if (single_rd < search_state->best_pred_rd[COMPOUND_REFERENCE])
search_state->best_pred_rd[COMPOUND_REFERENCE] = single_rd;
}
if (hybrid_rd < search_state->best_pred_rd[REFERENCE_MODE_SELECT])
search_state->best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd;
}
// Does a transform search over a list of the best inter mode candidates.
// This is called if the original mode search computed an RD estimate
// for the transform search rather than doing a full search.
static void tx_search_best_inter_candidates(
AV1_COMP *cpi, TileDataEnc *tile_data, MACROBLOCK *x,
int64_t best_rd_so_far, BLOCK_SIZE bsize,
struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE], int mi_row, int mi_col,
InterModeSearchState *search_state, RD_STATS *rd_cost,
PICK_MODE_CONTEXT *ctx, int64_t *yrd) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
const ModeCosts *mode_costs = &x->mode_costs;
const int num_planes = av1_num_planes(cm);
const int skip_ctx = av1_get_skip_txfm_context(xd);
MB_MODE_INFO *const mbmi = xd->mi[0];
InterModesInfo *inter_modes_info = x->inter_modes_info;
inter_modes_info_sort(inter_modes_info, inter_modes_info->rd_idx_pair_arr);
search_state->best_rd = best_rd_so_far;
search_state->best_mode_index = THR_INVALID;
// Initialize best mode stats for winner mode processing
x->winner_mode_count = 0;
store_winner_mode_stats(&cpi->common, x, mbmi, NULL, NULL, NULL, THR_INVALID,
NULL, bsize, best_rd_so_far,
cpi->sf.winner_mode_sf.multi_winner_mode_type, 0);
inter_modes_info->num =
inter_modes_info->num < cpi->sf.rt_sf.num_inter_modes_for_tx_search
? inter_modes_info->num
: cpi->sf.rt_sf.num_inter_modes_for_tx_search;
const int64_t top_est_rd =
inter_modes_info->num > 0
? inter_modes_info
->est_rd_arr[inter_modes_info->rd_idx_pair_arr[0].idx]
: INT64_MAX;
*yrd = INT64_MAX;
int64_t best_rd_in_this_partition = INT64_MAX;
int num_inter_mode_cands = inter_modes_info->num;
int newmv_mode_evaled = 0;
int max_allowed_cands = INT_MAX;
if (cpi->sf.inter_sf.limit_inter_mode_cands) {
// The bound on the no. of inter mode candidates, beyond which the
// candidates are limited if a newmv mode got evaluated, is set as
// max_allowed_cands + 1.
const int num_allowed_cands[5] = { INT_MAX, 10, 9, 6, 2 };
assert(cpi->sf.inter_sf.limit_inter_mode_cands <= 4);
max_allowed_cands =
num_allowed_cands[cpi->sf.inter_sf.limit_inter_mode_cands];
}
int num_mode_thresh = INT_MAX;
if (cpi->sf.inter_sf.limit_txfm_eval_per_mode) {
// Bound the no. of transform searches per prediction mode beyond a
// threshold.
const int num_mode_thresh_ary[4] = { INT_MAX, 4, 3, 0 };
assert(cpi->sf.inter_sf.limit_txfm_eval_per_mode <= 3);
num_mode_thresh =
num_mode_thresh_ary[cpi->sf.inter_sf.limit_txfm_eval_per_mode];
}
int num_tx_cands = 0;
int num_tx_search_modes[INTER_MODE_END - INTER_MODE_START] = { 0 };
// Iterate over best inter mode candidates and perform tx search
for (int j = 0; j < num_inter_mode_cands; ++j) {
const int data_idx = inter_modes_info->rd_idx_pair_arr[j].idx;
*mbmi = inter_modes_info->mbmi_arr[data_idx];
const PREDICTION_MODE prediction_mode = mbmi->mode;
int64_t curr_est_rd = inter_modes_info->est_rd_arr[data_idx];
if (curr_est_rd * 0.80 > top_est_rd) break;
if (num_tx_cands > num_mode_thresh) {
if ((prediction_mode != NEARESTMV &&
num_tx_search_modes[prediction_mode - INTER_MODE_START] >= 1) ||
(prediction_mode == NEARESTMV &&
num_tx_search_modes[prediction_mode - INTER_MODE_START] >= 2))
continue;
}
txfm_info->skip_txfm = 0;
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
// Select prediction reference frames.
const int is_comp_pred = mbmi->ref_frame[1] > INTRA_FRAME;
for (int i = 0; i < num_planes; i++) {
xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i];
if (is_comp_pred) xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i];
}
bool is_predictor_built = false;
// Initialize RD stats
RD_STATS rd_stats;
RD_STATS rd_stats_y;
RD_STATS rd_stats_uv;
const int mode_rate = inter_modes_info->mode_rate_arr[data_idx];
int64_t skip_rd = INT64_MAX;
const int txfm_rd_gate_level = get_txfm_rd_gate_level(
cm->seq_params->enable_masked_compound,
cpi->sf.inter_sf.txfm_rd_gate_level, bsize, TX_SEARCH_DEFAULT,
/*eval_motion_mode=*/0);
if (txfm_rd_gate_level) {
// Check if the mode is good enough based on skip RD
int64_t curr_sse = inter_modes_info->sse_arr[data_idx];
skip_rd = RDCOST(x->rdmult, mode_rate, curr_sse);
int eval_txfm = check_txfm_eval(x, bsize, search_state->best_skip_rd[0],
skip_rd, txfm_rd_gate_level, 0);
if (!eval_txfm) continue;
}
// Build the prediction for this mode
if (!is_predictor_built) {
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0,
av1_num_planes(cm) - 1);
}
if (mbmi->motion_mode == OBMC_CAUSAL) {
av1_build_obmc_inter_predictors_sb(cm, xd);
}
num_tx_cands++;
if (have_newmv_in_inter_mode(prediction_mode)) newmv_mode_evaled = 1;
num_tx_search_modes[prediction_mode - INTER_MODE_START]++;
int64_t this_yrd = INT64_MAX;
// Do the transform search
if (!av1_txfm_search(cpi, x, bsize, &rd_stats, &rd_stats_y, &rd_stats_uv,
mode_rate, search_state->best_rd)) {
continue;
} else {
const int y_rate =
rd_stats.skip_txfm
? mode_costs->skip_txfm_cost[skip_ctx][1]
: (rd_stats_y.rate + mode_costs->skip_txfm_cost[skip_ctx][0]);
this_yrd = RDCOST(x->rdmult, y_rate + mode_rate, rd_stats_y.dist);
if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) {
inter_mode_data_push(
tile_data, mbmi->bsize, rd_stats.sse, rd_stats.dist,
rd_stats_y.rate + rd_stats_uv.rate +
mode_costs->skip_txfm_cost[skip_ctx][mbmi->skip_txfm]);
}
}
rd_stats.rdcost = RDCOST(x->rdmult, rd_stats.rate, rd_stats.dist);
const THR_MODES mode_enum = get_prediction_mode_idx(
prediction_mode, mbmi->ref_frame[0], mbmi->ref_frame[1]);
// Collect mode stats for multiwinner mode processing
const int txfm_search_done = 1;
store_winner_mode_stats(
&cpi->common, x, mbmi, &rd_stats, &rd_stats_y, &rd_stats_uv, mode_enum,
NULL, bsize, rd_stats.rdcost,
cpi->sf.winner_mode_sf.multi_winner_mode_type, txfm_search_done);
int64_t best_scaled_rd = search_state->best_rd;
int64_t this_scaled_rd = rd_stats.rdcost;
increase_warp_mode_rd(&search_state->best_mbmode, mbmi, &best_scaled_rd,
&this_scaled_rd,
cpi->sf.inter_sf.bias_warp_mode_rd_scale_pct);
if (this_scaled_rd < best_rd_in_this_partition) {
best_rd_in_this_partition = rd_stats.rdcost;
*yrd = this_yrd;
}
if (this_scaled_rd < best_scaled_rd) {
update_search_state(search_state, rd_cost, ctx, &rd_stats, &rd_stats_y,
&rd_stats_uv, mode_enum, x, txfm_search_done);
search_state->best_skip_rd[0] = skip_rd;
// Limit the total number of modes to be evaluated if the first is valid
// and transform skip or compound
if (cpi->sf.inter_sf.inter_mode_txfm_breakout) {
if (!j && (search_state->best_mbmode.skip_txfm || rd_stats.skip_txfm)) {
// Evaluate more candidates at high quantizers where occurrence of
// transform skip is high.
const int max_cands_cap[5] = { 2, 3, 5, 7, 9 };
const int qindex_band = (5 * x->qindex) >> QINDEX_BITS;
num_inter_mode_cands =
AOMMIN(max_cands_cap[qindex_band], inter_modes_info->num);
} else if (!j && has_second_ref(&search_state->best_mbmode)) {
const int aggr = cpi->sf.inter_sf.inter_mode_txfm_breakout - 1;
// Evaluate more candidates at low quantizers where occurrence of
// single reference mode is high.
const int max_cands_cap_cmp[2][4] = { { 10, 7, 5, 4 },
{ 10, 7, 5, 3 } };
const int qindex_band_cmp = (4 * x->qindex) >> QINDEX_BITS;
num_inter_mode_cands = AOMMIN(
max_cands_cap_cmp[aggr][qindex_band_cmp], inter_modes_info->num);
}
}
}
// If the number of candidates evaluated exceeds max_allowed_cands, break if
// a newmv mode was evaluated already.
if ((num_tx_cands > max_allowed_cands) && newmv_mode_evaled) break;
}
}
// Indicates number of winner simple translation modes to be used
static const unsigned int num_winner_motion_modes[3] = { 0, 10, 3 };
// Adds a motion mode to the candidate list for motion_mode_for_winner_cand
// speed feature. This list consists of modes that have only searched
// SIMPLE_TRANSLATION. The final list will be used to search other motion
// modes after the initial RD search.
static void handle_winner_cand(
MB_MODE_INFO *const mbmi,
motion_mode_best_st_candidate *best_motion_mode_cands,
int max_winner_motion_mode_cand, int64_t this_rd,
motion_mode_candidate *motion_mode_cand, int skip_motion_mode) {
// Number of current motion mode candidates in list
const int num_motion_mode_cand = best_motion_mode_cands->num_motion_mode_cand;
int valid_motion_mode_cand_loc = num_motion_mode_cand;
// find the best location to insert new motion mode candidate
for (int j = 0; j < num_motion_mode_cand; j++) {
if (this_rd < best_motion_mode_cands->motion_mode_cand[j].rd_cost) {
valid_motion_mode_cand_loc = j;
break;
}
}
// Insert motion mode if location is found
if (valid_motion_mode_cand_loc < max_winner_motion_mode_cand) {
if (num_motion_mode_cand > 0 &&
valid_motion_mode_cand_loc < max_winner_motion_mode_cand - 1)
memmove(
&best_motion_mode_cands
->motion_mode_cand[valid_motion_mode_cand_loc + 1],
&best_motion_mode_cands->motion_mode_cand[valid_motion_mode_cand_loc],
(AOMMIN(num_motion_mode_cand, max_winner_motion_mode_cand - 1) -
valid_motion_mode_cand_loc) *
sizeof(best_motion_mode_cands->motion_mode_cand[0]));
motion_mode_cand->mbmi = *mbmi;
motion_mode_cand->rd_cost = this_rd;
motion_mode_cand->skip_motion_mode = skip_motion_mode;
best_motion_mode_cands->motion_mode_cand[valid_motion_mode_cand_loc] =
*motion_mode_cand;
best_motion_mode_cands->num_motion_mode_cand =
AOMMIN(max_winner_motion_mode_cand,
best_motion_mode_cands->num_motion_mode_cand + 1);
}
}
/*!\brief Search intra modes in interframes
*
* \ingroup intra_mode_search
*
* This function searches for the best intra mode when the current frame is an
* interframe. This function however does *not* handle luma palette mode.
* Palette mode is currently handled by \ref av1_search_palette_mode.
*
* This function will first iterate through the luma mode candidates to find the
* best luma intra mode. Once the best luma mode it's found, it will then search
* for the best chroma mode. Because palette mode is currently not handled by
* here, a cache of uv mode is stored in
* InterModeSearchState::intra_search_state so it can be reused later by \ref
* av1_search_palette_mode.
*
* \param[in,out] search_state Struct keep track of the prediction mode
* search state in interframe.
*
* \param[in] cpi Top-level encoder structure.
* \param[in,out] x Pointer to struct holding all the data for
* the current prediction block.
* \param[out] rd_cost Stores the best rd_cost among all the
* prediction modes searched.
* \param[in] bsize Current block size.
* \param[in,out] ctx Structure to hold the number of 4x4 blks to
* copy the tx_type and txfm_skip arrays.
* for only the Y plane.
* \param[in] sf_args Stores the list of intra mode candidates
* to be searched.
* \param[in] intra_ref_frame_cost The entropy cost for signaling that the
* current ref frame is an intra frame.
* \param[in] yrd_threshold The rdcost threshold for luma intra mode to
* terminate chroma intra mode search.
*
* \remark If a new best mode is found, search_state and rd_costs are updated
* correspondingly. While x is also modified, it is only used as a temporary
* buffer, and the final decisions are stored in search_state.
*/
static inline void search_intra_modes_in_interframe(
InterModeSearchState *search_state, const AV1_COMP *cpi, MACROBLOCK *x,
RD_STATS *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
const InterModeSFArgs *sf_args, unsigned int intra_ref_frame_cost,
int64_t yrd_threshold) {
const AV1_COMMON *const cm = &cpi->common;
const SPEED_FEATURES *const sf = &cpi->sf;
const IntraModeCfg *const intra_mode_cfg = &cpi->oxcf.intra_mode_cfg;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
IntraModeSearchState *intra_search_state = &search_state->intra_search_state;
int is_best_y_mode_intra = 0;
RD_STATS best_intra_rd_stats_y;
int64_t best_rd_y = INT64_MAX;
int best_mode_cost_y = -1;
MB_MODE_INFO best_mbmi = *xd->mi[0];
THR_MODES best_mode_enum = THR_INVALID;
uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
const int num_4x4 = bsize_to_num_blk(bsize);
// Performs luma search
int64_t best_model_rd = INT64_MAX;
int64_t top_intra_model_rd[TOP_INTRA_MODEL_COUNT];
for (int i = 0; i < TOP_INTRA_MODEL_COUNT; i++) {
top_intra_model_rd[i] = INT64_MAX;
}
if (cpi->oxcf.algo_cfg.sharpness) {
int bh = mi_size_high[bsize];
int bw = mi_size_wide[bsize];
if (bh > 4 || bw > 4) return;
}
for (int mode_idx = 0; mode_idx < LUMA_MODE_COUNT; ++mode_idx) {
if (sf->intra_sf.skip_intra_in_interframe &&
search_state->intra_search_state.skip_intra_modes)
break;
set_y_mode_and_delta_angle(
mode_idx, mbmi, sf->intra_sf.prune_luma_odd_delta_angles_in_intra);
assert(mbmi->mode < INTRA_MODE_END);
// Use intra_y_mode_mask speed feature to skip intra mode evaluation.
if (sf_args->mode_skip_mask->pred_modes[INTRA_FRAME] & (1 << mbmi->mode))
continue;
const THR_MODES mode_enum =
get_prediction_mode_idx(mbmi->mode, INTRA_FRAME, NONE_FRAME);
if ((!intra_mode_cfg->enable_smooth_intra ||
cpi->sf.intra_sf.disable_smooth_intra) &&
(mbmi->mode == SMOOTH_PRED || mbmi->mode == SMOOTH_H_PRED ||
mbmi->mode == SMOOTH_V_PRED))
continue;
if (!intra_mode_cfg->enable_paeth_intra && mbmi->mode == PAETH_PRED)
continue;
if (av1_is_directional_mode(mbmi->mode) &&
!(av1_use_angle_delta(bsize) && intra_mode_cfg->enable_angle_delta) &&
mbmi->angle_delta[PLANE_TYPE_Y] != 0)
continue;
const PREDICTION_MODE this_mode = mbmi->mode;
assert(av1_mode_defs[mode_enum].ref_frame[0] == INTRA_FRAME);
assert(av1_mode_defs[mode_enum].ref_frame[1] == NONE_FRAME);
init_mbmi(mbmi, this_mode, av1_mode_defs[mode_enum].ref_frame, cm);
x->txfm_search_info.skip_txfm = 0;
if (this_mode != DC_PRED) {
// Only search the oblique modes if the best so far is
// one of the neighboring directional modes
if ((sf->rt_sf.mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) &&
(this_mode >= D45_PRED && this_mode <= PAETH_PRED)) {
if (search_state->best_mode_index != THR_INVALID &&
search_state->best_mbmode.ref_frame[0] > INTRA_FRAME)
continue;
}
if (sf->rt_sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
if (conditional_skipintra(
this_mode, search_state->intra_search_state.best_intra_mode))
continue;
}
}
RD_STATS intra_rd_stats_y;
int mode_cost_y;
int64_t intra_rd_y = INT64_MAX;
const int is_luma_result_valid = av1_handle_intra_y_mode(
intra_search_state, cpi, x, bsize, intra_ref_frame_cost, ctx,
&intra_rd_stats_y, search_state->best_rd, &mode_cost_y, &intra_rd_y,
&best_model_rd, top_intra_model_rd);
if (intra_rd_y < INT64_MAX) {
adjust_cost(cpi, x, &intra_rd_y);
}
if (is_luma_result_valid && intra_rd_y < yrd_threshold) {
is_best_y_mode_intra = 1;
if (intra_rd_y < best_rd_y) {
best_intra_rd_stats_y = intra_rd_stats_y;
best_mode_cost_y = mode_cost_y;
best_rd_y = intra_rd_y;
best_mbmi = *mbmi;
best_mode_enum = mode_enum;
memcpy(best_blk_skip, x->txfm_search_info.blk_skip,
sizeof(best_blk_skip[0]) * num_4x4);
av1_copy_array(best_tx_type_map, xd->tx_type_map, num_4x4);
}
}
}
if (!is_best_y_mode_intra) {
return;
}
assert(best_rd_y < INT64_MAX);
// Restores the best luma mode
*mbmi = best_mbmi;
memcpy(x->txfm_search_info.blk_skip, best_blk_skip,
sizeof(best_blk_skip[0]) * num_4x4);
av1_copy_array(xd->tx_type_map, best_tx_type_map, num_4x4);
// Performs chroma search
RD_STATS intra_rd_stats, intra_rd_stats_uv;
av1_init_rd_stats(&intra_rd_stats);
av1_init_rd_stats(&intra_rd_stats_uv);
const int num_planes = av1_num_planes(cm);
if (num_planes > 1) {
const int intra_uv_mode_valid = av1_search_intra_uv_modes_in_interframe(
intra_search_state, cpi, x, bsize, &intra_rd_stats,
&best_intra_rd_stats_y, &intra_rd_stats_uv, search_state->best_rd);
if (!intra_uv_mode_valid) {
return;
}
}
// Merge the luma and chroma rd stats
assert(best_mode_cost_y >= 0);
intra_rd_stats.rate = best_intra_rd_stats_y.rate + best_mode_cost_y;
if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(bsize)) {
// av1_pick_uniform_tx_size_type_yrd above includes the cost of the tx_size
// in the tokenonly rate, but for intra blocks, tx_size is always coded
// (prediction granularity), so we account for it in the full rate,
// not the tokenonly rate.
best_intra_rd_stats_y.rate -= tx_size_cost(x, bsize, mbmi->tx_size);
}
const ModeCosts *mode_costs = &x->mode_costs;
const PREDICTION_MODE mode = mbmi->mode;
if (num_planes > 1 && xd->is_chroma_ref) {
const int uv_mode_cost =
mode_costs->intra_uv_mode_cost[is_cfl_allowed(xd)][mode][mbmi->uv_mode];
intra_rd_stats.rate +=
intra_rd_stats_uv.rate +
intra_mode_info_cost_uv(cpi, x, mbmi, bsize, uv_mode_cost);
}
// Intra block is always coded as non-skip
intra_rd_stats.skip_txfm = 0;
intra_rd_stats.dist = best_intra_rd_stats_y.dist + intra_rd_stats_uv.dist;
// Add in the cost of the no skip flag.
const int skip_ctx = av1_get_skip_txfm_context(xd);
intra_rd_stats.rate += mode_costs->skip_txfm_cost[skip_ctx][0];
// Calculate the final RD estimate for this mode.
const int64_t this_rd =
RDCOST(x->rdmult, intra_rd_stats.rate, intra_rd_stats.dist);
// Keep record of best intra rd
if (this_rd < search_state->best_intra_rd) {
search_state->best_intra_rd = this_rd;
intra_search_state->best_intra_mode = mode;
}
for (int i = 0; i < REFERENCE_MODES; ++i) {
search_state->best_pred_rd[i] =
AOMMIN(search_state->best_pred_rd[i], this_rd);
}
intra_rd_stats.rdcost = this_rd;
adjust_rdcost(cpi, x, &intra_rd_stats);
// Collect mode stats for multiwinner mode processing
const int txfm_search_done = 1;
store_winner_mode_stats(
&cpi->common, x, mbmi, &intra_rd_stats, &best_intra_rd_stats_y,
&intra_rd_stats_uv, best_mode_enum, NULL, bsize, intra_rd_stats.rdcost,
cpi->sf.winner_mode_sf.multi_winner_mode_type, txfm_search_done);
if (intra_rd_stats.rdcost < search_state->best_rd) {
update_search_state(search_state, rd_cost, ctx, &intra_rd_stats,
&best_intra_rd_stats_y, &intra_rd_stats_uv,
best_mode_enum, x, txfm_search_done);
}
}
#if !CONFIG_REALTIME_ONLY
// Prepare inter_cost and intra_cost from TPL stats, which are used as ML
// features in intra mode pruning.
static inline void calculate_cost_from_tpl_data(const AV1_COMP *cpi,
MACROBLOCK *x, BLOCK_SIZE bsize,
int mi_row, int mi_col,
int64_t *inter_cost,
int64_t *intra_cost) {
const AV1_COMMON *const cm = &cpi->common;
// Only consider full SB.
const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
const int tpl_bsize_1d = cpi->ppi->tpl_data.tpl_bsize_1d;
const int len = (block_size_wide[sb_size] / tpl_bsize_1d) *
(block_size_high[sb_size] / tpl_bsize_1d);
SuperBlockEnc *sb_enc = &x->sb_enc;
if (sb_enc->tpl_data_count == len) {
const BLOCK_SIZE tpl_bsize = convert_length_to_bsize(tpl_bsize_1d);
const int tpl_stride = sb_enc->tpl_stride;
const int tplw = mi_size_wide[tpl_bsize];
const int tplh = mi_size_high[tpl_bsize];
const int nw = mi_size_wide[bsize] / tplw;
const int nh = mi_size_high[bsize] / tplh;
if (nw >= 1 && nh >= 1) {
const int of_h = mi_row % mi_size_high[sb_size];
const int of_w = mi_col % mi_size_wide[sb_size];
const int start = of_h / tplh * tpl_stride + of_w / tplw;
for (int k = 0; k < nh; k++) {
for (int l = 0; l < nw; l++) {
*inter_cost += sb_enc->tpl_inter_cost[start + k * tpl_stride + l];
*intra_cost += sb_enc->tpl_intra_cost[start + k * tpl_stride + l];
}
}
*inter_cost /= nw * nh;
*intra_cost /= nw * nh;
}
}
}
#endif // !CONFIG_REALTIME_ONLY
// When the speed feature skip_intra_in_interframe > 0, enable ML model to prune
// intra mode search.
static inline void skip_intra_modes_in_interframe(
AV1_COMMON *const cm, struct macroblock *x, BLOCK_SIZE bsize,
InterModeSearchState *search_state, const SPEED_FEATURES *const sf,
int64_t inter_cost, int64_t intra_cost) {
MACROBLOCKD *const xd = &x->e_mbd;
const int comp_pred = search_state->best_mbmode.ref_frame[1] > INTRA_FRAME;
if (sf->rt_sf.prune_intra_mode_based_on_mv_range &&
bsize > sf->part_sf.max_intra_bsize && !comp_pred) {
const MV best_mv = search_state->best_mbmode.mv[0].as_mv;
const int mv_thresh = 16 << sf->rt_sf.prune_intra_mode_based_on_mv_range;
if (abs(best_mv.row) < mv_thresh && abs(best_mv.col) < mv_thresh &&
x->source_variance > 128) {
search_state->intra_search_state.skip_intra_modes = 1;
return;
}
}
const unsigned int src_var_thresh_intra_skip = 1;
const int skip_intra_in_interframe = sf->intra_sf.skip_intra_in_interframe;
if (!(skip_intra_in_interframe &&
(x->source_variance > src_var_thresh_intra_skip)))
return;
// Prune intra search based on best inter mode being transfrom skip.
if ((skip_intra_in_interframe >= 2) && search_state->best_mbmode.skip_txfm) {
const int qindex_thresh[2] = { 200, MAXQ };
const int ind = (skip_intra_in_interframe >= 3) ? 1 : 0;
if (!have_newmv_in_inter_mode(search_state->best_mbmode.mode) &&
(x->qindex <= qindex_thresh[ind])) {
search_state->intra_search_state.skip_intra_modes = 1;
return;
} else if ((skip_intra_in_interframe >= 4) &&
(inter_cost < 0 || intra_cost < 0)) {
search_state->intra_search_state.skip_intra_modes = 1;
return;
}
}
// Use ML model to prune intra search.
if (inter_cost >= 0 && intra_cost >= 0) {
const NN_CONFIG *nn_config = (AOMMIN(cm->width, cm->height) <= 480)
? &av1_intrap_nn_config
: &av1_intrap_hd_nn_config;
float nn_features[6];
float scores[2] = { 0.0f };
nn_features[0] = (float)search_state->best_mbmode.skip_txfm;
nn_features[1] = (float)mi_size_wide_log2[bsize];
nn_features[2] = (float)mi_size_high_log2[bsize];
nn_features[3] = (float)intra_cost;
nn_features[4] = (float)inter_cost;
const int ac_q = av1_ac_quant_QTX(x->qindex, 0, xd->bd);
const int ac_q_max = av1_ac_quant_QTX(255, 0, xd->bd);
nn_features[5] = (float)(ac_q_max / ac_q);
av1_nn_predict(nn_features, nn_config, 1, scores);
// For two parameters, the max prob returned from av1_nn_softmax equals
// 1.0 / (1.0 + e^(-|diff_score|)). Here use scores directly to avoid the
// calling of av1_nn_softmax.
const float thresh[5] = { 1.4f, 1.4f, 1.4f, 1.4f, 1.4f };
assert(skip_intra_in_interframe <= 5);
if (scores[1] > scores[0] + thresh[skip_intra_in_interframe - 1]) {
search_state->intra_search_state.skip_intra_modes = 1;
}
}
}
static inline bool skip_interp_filter_search(const AV1_COMP *cpi,
int is_single_pred) {
const MODE encoding_mode = cpi->oxcf.mode;
if (encoding_mode == REALTIME) {
return (cpi->common.current_frame.reference_mode == SINGLE_REFERENCE &&
(cpi->sf.interp_sf.skip_interp_filter_search ||
cpi->sf.winner_mode_sf.winner_mode_ifs));
} else if (encoding_mode == GOOD) {
// Skip interpolation filter search for single prediction modes.
return (cpi->sf.interp_sf.skip_interp_filter_search && is_single_pred);
}
return false;
}
static inline int get_block_temp_var(const AV1_COMP *cpi, const MACROBLOCK *x,
BLOCK_SIZE bsize) {
const AV1_COMMON *const cm = &cpi->common;
const SPEED_FEATURES *const sf = &cpi->sf;
if (sf->part_sf.partition_search_type != VAR_BASED_PARTITION ||
!sf->rt_sf.short_circuit_low_temp_var ||
!sf->rt_sf.prune_inter_modes_using_temp_var) {
return 0;
}
const int mi_row = x->e_mbd.mi_row;
const int mi_col = x->e_mbd.mi_col;
int is_low_temp_var = 0;
if (cm->seq_params->sb_size == BLOCK_64X64)
is_low_temp_var = av1_get_force_skip_low_temp_var_small_sb(
&x->part_search_info.variance_low[0], mi_row, mi_col, bsize);
else
is_low_temp_var = av1_get_force_skip_low_temp_var(
&x->part_search_info.variance_low[0], mi_row, mi_col, bsize);
return is_low_temp_var;
}
// TODO(chiyotsai@google.com): See the todo for av1_rd_pick_intra_mode_sb.
void av1_rd_pick_inter_mode(struct AV1_COMP *cpi, struct TileDataEnc *tile_data,
struct macroblock *x, struct RD_STATS *rd_cost,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
int64_t best_rd_so_far) {
AV1_COMMON *const cm = &cpi->common;
const FeatureFlags *const features = &cm->features;
const int num_planes = av1_num_planes(cm);
const SPEED_FEATURES *const sf = &cpi->sf;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
int i;
const ModeCosts *mode_costs = &x->mode_costs;
const int *comp_inter_cost =
mode_costs->comp_inter_cost[av1_get_reference_mode_context(xd)];
InterModeSearchState search_state;
init_inter_mode_search_state(&search_state, cpi, x, bsize, best_rd_so_far);
INTERINTRA_MODE interintra_modes[REF_FRAMES] = {
INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES,
INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES
};
HandleInterModeArgs args = { { NULL },
{ MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE },
{ NULL },
{ MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1,
MAX_SB_SIZE >> 1 },
NULL,
NULL,
NULL,
search_state.modelled_rd,
INT_MAX,
INT_MAX,
search_state.simple_rd,
0,
false,
interintra_modes,
{ { { 0 }, { { 0 } }, { 0 }, 0, 0, 0, 0 } },
{ { 0, 0 } },
{ 0 },
0,
0,
-1,
-1,
-1,
{ 0 },
{ 0 },
UINT_MAX };
// Currently, is_low_temp_var is used in real time encoding.
const int is_low_temp_var = get_block_temp_var(cpi, x, bsize);
for (i = 0; i < MODE_CTX_REF_FRAMES; ++i) args.cmp_mode[i] = -1;
// Indicates the appropriate number of simple translation winner modes for
// exhaustive motion mode evaluation
const int max_winner_motion_mode_cand =
num_winner_motion_modes[sf->winner_mode_sf.motion_mode_for_winner_cand];
assert(max_winner_motion_mode_cand <= MAX_WINNER_MOTION_MODES);
motion_mode_candidate motion_mode_cand;
motion_mode_best_st_candidate best_motion_mode_cands;
// Initializing the number of motion mode candidates to zero.
best_motion_mode_cands.num_motion_mode_cand = 0;
for (i = 0; i < MAX_WINNER_MOTION_MODES; ++i)
best_motion_mode_cands.motion_mode_cand[i].rd_cost = INT64_MAX;
for (i = 0; i < REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX;
av1_invalid_rd_stats(rd_cost);
for (i = 0; i < REF_FRAMES; ++i) {
x->warp_sample_info[i].num = -1;
}
// Ref frames that are selected by square partition blocks.
int picked_ref_frames_mask = 0;
if (sf->inter_sf.prune_ref_frame_for_rect_partitions &&
mbmi->partition != PARTITION_NONE) {
// prune_ref_frame_for_rect_partitions = 1 implies prune only extended
// partition blocks. prune_ref_frame_for_rect_partitions >=2
// implies prune for vert, horiz and extended partition blocks.
if ((mbmi->partition != PARTITION_VERT &&
mbmi->partition != PARTITION_HORZ) ||
sf->inter_sf.prune_ref_frame_for_rect_partitions >= 2) {
picked_ref_frames_mask =
fetch_picked_ref_frames_mask(x, bsize, cm->seq_params->mib_size);
}
}
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, set_params_rd_pick_inter_mode_time);
#endif
// Skip ref frames that never selected by square blocks.
const int skip_ref_frame_mask =
picked_ref_frames_mask ? ~picked_ref_frames_mask : 0;
mode_skip_mask_t mode_skip_mask;
unsigned int ref_costs_single[REF_FRAMES];
unsigned int ref_costs_comp[REF_FRAMES][REF_FRAMES];
struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE];
// init params, set frame modes, speed features
set_params_rd_pick_inter_mode(cpi, x, &args, bsize, &mode_skip_mask,
skip_ref_frame_mask, ref_costs_single,
ref_costs_comp, yv12_mb);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, set_params_rd_pick_inter_mode_time);
#endif
int64_t best_est_rd = INT64_MAX;
const InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize];
// If do_tx_search is 0, only estimated RD should be computed.
// If do_tx_search is 1, all modes have TX search performed.
const int do_tx_search =
!((sf->inter_sf.inter_mode_rd_model_estimation == 1 && md->ready) ||
(sf->inter_sf.inter_mode_rd_model_estimation == 2 &&
num_pels_log2_lookup[bsize] > 8));
InterModesInfo *inter_modes_info = x->inter_modes_info;
inter_modes_info->num = 0;
// Temporary buffers used by handle_inter_mode().
uint8_t *const tmp_buf = get_buf_by_bd(xd, x->tmp_pred_bufs[0]);
// The best RD found for the reference frame, among single reference modes.
// Note that the 0-th element will contain a cut-off that is later used
// to determine if we should skip a compound mode.
int64_t ref_frame_rd[REF_FRAMES] = { INT64_MAX, INT64_MAX, INT64_MAX,
INT64_MAX, INT64_MAX, INT64_MAX,
INT64_MAX, INT64_MAX };
// Prepared stats used later to check if we could skip intra mode eval.
int64_t inter_cost = -1;
int64_t intra_cost = -1;
// Need to tweak the threshold for hdres speed 0 & 1.
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
// Obtain the relevant tpl stats for pruning inter modes
PruneInfoFromTpl inter_cost_info_from_tpl;
#if !CONFIG_REALTIME_ONLY
if (sf->inter_sf.prune_inter_modes_based_on_tpl) {
// x->tpl_keep_ref_frame[id] = 1 => no pruning in
// prune_ref_by_selective_ref_frame()
// x->tpl_keep_ref_frame[id] = 0 => ref frame can be pruned in
// prune_ref_by_selective_ref_frame()
// Populating valid_refs[idx] = 1 ensures that
// 'inter_cost_info_from_tpl.best_inter_cost' does not correspond to a
// pruned ref frame.
int valid_refs[INTER_REFS_PER_FRAME];
for (MV_REFERENCE_FRAME frame = LAST_FRAME; frame < REF_FRAMES; frame++) {
const MV_REFERENCE_FRAME refs[2] = { frame, NONE_FRAME };
valid_refs[frame - 1] =
x->tpl_keep_ref_frame[frame] ||
!prune_ref_by_selective_ref_frame(
cpi, x, refs, cm->cur_frame->ref_display_order_hint);
}
av1_zero(inter_cost_info_from_tpl);
get_block_level_tpl_stats(cpi, bsize, mi_row, mi_col, valid_refs,
&inter_cost_info_from_tpl);
}
const int do_pruning =
(AOMMIN(cm->width, cm->height) > 480 && cpi->speed <= 1) ? 0 : 1;
if (do_pruning && sf->intra_sf.skip_intra_in_interframe &&
cpi->oxcf.algo_cfg.enable_tpl_model)
calculate_cost_from_tpl_data(cpi, x, bsize, mi_row, mi_col, &inter_cost,
&intra_cost);
#endif // !CONFIG_REALTIME_ONLY
// Initialize best mode stats for winner mode processing.
const int max_winner_mode_count =
winner_mode_count_allowed[sf->winner_mode_sf.multi_winner_mode_type];
zero_winner_mode_stats(bsize, max_winner_mode_count, x->winner_mode_stats);
x->winner_mode_count = 0;
store_winner_mode_stats(&cpi->common, x, mbmi, NULL, NULL, NULL, THR_INVALID,
NULL, bsize, best_rd_so_far,
sf->winner_mode_sf.multi_winner_mode_type, 0);
int mode_thresh_mul_fact = (1 << MODE_THRESH_QBITS);
if (sf->inter_sf.prune_inter_modes_if_skippable) {
// Higher multiplication factor values for lower quantizers.
mode_thresh_mul_fact = mode_threshold_mul_factor[x->qindex];
}
// Initialize arguments for mode loop speed features
InterModeSFArgs sf_args = { &args.skip_motion_mode,
&mode_skip_mask,
&search_state,
skip_ref_frame_mask,
0,
mode_thresh_mul_fact,
0,
0 };
int64_t best_inter_yrd = INT64_MAX;
// This is the main loop of this function. It loops over all possible inter
// modes and calls handle_inter_mode() to compute the RD for each.
// Here midx is just an iterator index that should not be used by itself
// except to keep track of the number of modes searched. It should be used
// with av1_default_mode_order to get the enum that defines the mode, which
// can be used with av1_mode_defs to get the prediction mode and the ref
// frames.
// TODO(yunqing, any): Setting mode_start and mode_end outside for-loop brings
// good speedup for real time case. If we decide to use compound mode in real
// time, maybe we can modify av1_default_mode_order table.
THR_MODES mode_start = THR_INTER_MODE_START;
THR_MODES mode_end = THR_INTER_MODE_END;
const CurrentFrame *const current_frame = &cm->current_frame;
if (current_frame->reference_mode == SINGLE_REFERENCE) {
mode_start = SINGLE_REF_MODE_START;
mode_end = SINGLE_REF_MODE_END;
}
for (THR_MODES midx = mode_start; midx < mode_end; ++midx) {
// Get the actual prediction mode we are trying in this iteration
const THR_MODES mode_enum = av1_default_mode_order[midx];
const MODE_DEFINITION *mode_def = &av1_mode_defs[mode_enum];
const PREDICTION_MODE this_mode = mode_def->mode;
const MV_REFERENCE_FRAME *ref_frames = mode_def->ref_frame;
const MV_REFERENCE_FRAME ref_frame = ref_frames[0];
const MV_REFERENCE_FRAME second_ref_frame = ref_frames[1];
const int is_single_pred =
ref_frame > INTRA_FRAME && second_ref_frame == NONE_FRAME;
const int comp_pred = second_ref_frame > INTRA_FRAME;
init_mbmi(mbmi, this_mode, ref_frames, cm);
txfm_info->skip_txfm = 0;
sf_args.num_single_modes_processed += is_single_pred;
set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, skip_inter_mode_time);
#endif
// Apply speed features to decide if this inter mode can be skipped
const int is_skip_inter_mode = skip_inter_mode(
cpi, x, bsize, ref_frame_rd, midx, &sf_args, is_low_temp_var);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, skip_inter_mode_time);
#endif
if (is_skip_inter_mode) continue;
// Select prediction reference frames.
for (i = 0; i < num_planes; i++) {
xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i];
}
mbmi->angle_delta[PLANE_TYPE_Y] = 0;
mbmi->angle_delta[PLANE_TYPE_UV] = 0;
mbmi->filter_intra_mode_info.use_filter_intra = 0;
mbmi->ref_mv_idx = 0;
const int64_t ref_best_rd = search_state.best_rd;
RD_STATS rd_stats, rd_stats_y, rd_stats_uv;
av1_init_rd_stats(&rd_stats);
const int ref_frame_cost = comp_pred
? ref_costs_comp[ref_frame][second_ref_frame]
: ref_costs_single[ref_frame];
const int compmode_cost =
is_comp_ref_allowed(mbmi->bsize) ? comp_inter_cost[comp_pred] : 0;
const int real_compmode_cost =
cm->current_frame.reference_mode == REFERENCE_MODE_SELECT
? compmode_cost
: 0;
// Point to variables that are maintained between loop iterations
args.single_newmv = search_state.single_newmv;
args.single_newmv_rate = search_state.single_newmv_rate;
args.single_newmv_valid = search_state.single_newmv_valid;
args.single_comp_cost = real_compmode_cost;
args.ref_frame_cost = ref_frame_cost;
args.best_pred_sse = search_state.best_pred_sse;
args.skip_ifs = skip_interp_filter_search(cpi, is_single_pred);
int64_t skip_rd[2] = { search_state.best_skip_rd[0],
search_state.best_skip_rd[1] };
int64_t this_yrd = INT64_MAX;
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, handle_inter_mode_time);
#endif
int64_t this_rd = handle_inter_mode(
cpi, tile_data, x, bsize, &rd_stats, &rd_stats_y, &rd_stats_uv, &args,
ref_best_rd, tmp_buf, &x->comp_rd_buffer, &best_est_rd, do_tx_search,
inter_modes_info, &motion_mode_cand, skip_rd, &inter_cost_info_from_tpl,
&this_yrd);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, handle_inter_mode_time);
#endif
if (current_frame->reference_mode != SINGLE_REFERENCE) {
if (!args.skip_ifs &&
sf->inter_sf.prune_comp_search_by_single_result > 0 &&
is_inter_singleref_mode(this_mode)) {
collect_single_states(x, &search_state, mbmi);
}
if (sf->inter_sf.prune_comp_using_best_single_mode_ref > 0 &&
is_inter_singleref_mode(this_mode))
update_best_single_mode(&search_state, this_mode, ref_frame, this_rd);
}
if (this_rd == INT64_MAX) continue;
if (mbmi->skip_txfm) {
rd_stats_y.rate = 0;
rd_stats_uv.rate = 0;
}
if (sf->inter_sf.prune_compound_using_single_ref && is_single_pred &&
this_rd < ref_frame_rd[ref_frame]) {
ref_frame_rd[ref_frame] = this_rd;
}
adjust_cost(cpi, x, &this_rd);
adjust_rdcost(cpi, x, &rd_stats);
// Did this mode help, i.e., is it the new best mode
if (this_rd < search_state.best_rd) {
assert(IMPLIES(comp_pred,
cm->current_frame.reference_mode != SINGLE_REFERENCE));
search_state.best_pred_sse = x->pred_sse[ref_frame];
best_inter_yrd = this_yrd;
update_search_state(&search_state, rd_cost, ctx, &rd_stats, &rd_stats_y,
&rd_stats_uv, mode_enum, x, do_tx_search);
if (do_tx_search) search_state.best_skip_rd[0] = skip_rd[0];
// skip_rd[0] is the best total rd for a skip mode so far.
// skip_rd[1] is the best total rd for a skip mode so far in luma.
// When do_tx_search = 1, both skip_rd[0] and skip_rd[1] are updated.
// When do_tx_search = 0, skip_rd[1] is updated.
search_state.best_skip_rd[1] = skip_rd[1];
}
if (sf->winner_mode_sf.motion_mode_for_winner_cand) {
// Add this mode to motion mode candidate list for motion mode search
// if using motion_mode_for_winner_cand speed feature
handle_winner_cand(mbmi, &best_motion_mode_cands,
max_winner_motion_mode_cand, this_rd,
&motion_mode_cand, args.skip_motion_mode);
}
/* keep record of best compound/single-only prediction */
record_best_compound(cm->current_frame.reference_mode, &rd_stats, comp_pred,
x->rdmult, &search_state, compmode_cost);
}
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, evaluate_motion_mode_for_winner_candidates_time);
#endif
if (sf->winner_mode_sf.motion_mode_for_winner_cand) {
// For the single ref winner candidates, evaluate other motion modes (non
// simple translation).
evaluate_motion_mode_for_winner_candidates(
cpi, x, rd_cost, &args, tile_data, ctx, yv12_mb,
&best_motion_mode_cands, do_tx_search, bsize, &best_est_rd,
&search_state, &best_inter_yrd);
}
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, evaluate_motion_mode_for_winner_candidates_time);
#endif
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, do_tx_search_time);
#endif
if (do_tx_search != 1) {
// A full tx search has not yet been done, do tx search for
// top mode candidates
tx_search_best_inter_candidates(cpi, tile_data, x, best_rd_so_far, bsize,
yv12_mb, mi_row, mi_col, &search_state,
rd_cost, ctx, &best_inter_yrd);
}
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, do_tx_search_time);
#endif
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, handle_intra_mode_time);
#endif
// Gate intra mode evaluation if best of inter is skip except when source
// variance is extremely low and also based on max intra bsize.
skip_intra_modes_in_interframe(cm, x, bsize, &search_state, sf, inter_cost,
intra_cost);
const unsigned int intra_ref_frame_cost = ref_costs_single[INTRA_FRAME];
search_intra_modes_in_interframe(&search_state, cpi, x, rd_cost, bsize, ctx,
&sf_args, intra_ref_frame_cost,
best_inter_yrd);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, handle_intra_mode_time);
#endif
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, refine_winner_mode_tx_time);
#endif
int winner_mode_count =
sf->winner_mode_sf.multi_winner_mode_type ? x->winner_mode_count : 1;
// In effect only when fast tx search speed features are enabled.
refine_winner_mode_tx(
cpi, x, rd_cost, bsize, ctx, &search_state.best_mode_index,
&search_state.best_mbmode, yv12_mb, search_state.best_rate_y,
search_state.best_rate_uv, &search_state.best_skip2, winner_mode_count);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, refine_winner_mode_tx_time);
#endif
// Initialize default mode evaluation params
set_mode_eval_params(cpi, x, DEFAULT_EVAL);
// Only try palette mode when the best mode so far is an intra mode.
const int try_palette =
cpi->oxcf.tool_cfg.enable_palette &&
av1_allow_palette(features->allow_screen_content_tools, mbmi->bsize) &&
!is_inter_mode(search_state.best_mbmode.mode) && rd_cost->rate != INT_MAX;
RD_STATS this_rd_cost;
int this_skippable = 0;
if (try_palette) {
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, av1_search_palette_mode_time);
#endif
this_skippable = av1_search_palette_mode(
&search_state.intra_search_state, cpi, x, bsize, intra_ref_frame_cost,
ctx, &this_rd_cost, search_state.best_rd);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, av1_search_palette_mode_time);
#endif
if (this_rd_cost.rdcost < search_state.best_rd) {
search_state.best_mode_index = THR_DC;
mbmi->mv[0].as_int = 0;
rd_cost->rate = this_rd_cost.rate;
rd_cost->dist = this_rd_cost.dist;
rd_cost->rdcost = this_rd_cost.rdcost;
search_state.best_rd = rd_cost->rdcost;
search_state.best_mbmode = *mbmi;
search_state.best_skip2 = 0;
search_state.best_mode_skippable = this_skippable;
memcpy(ctx->blk_skip, txfm_info->blk_skip,
sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk);
av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
}
}
search_state.best_mbmode.skip_mode = 0;
if (cm->current_frame.skip_mode_info.skip_mode_flag &&
cpi->oxcf.algo_cfg.sharpness != 3 && is_comp_ref_allowed(bsize)) {
const struct segmentation *const seg = &cm->seg;
unsigned char segment_id = mbmi->segment_id;
if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
rd_pick_skip_mode(rd_cost, &search_state, cpi, x, bsize, yv12_mb);
}
}
// Make sure that the ref_mv_idx is only nonzero when we're
// using a mode which can support ref_mv_idx
if (search_state.best_mbmode.ref_mv_idx != 0 &&
!(search_state.best_mbmode.mode == NEWMV ||
search_state.best_mbmode.mode == NEW_NEWMV ||
have_nearmv_in_inter_mode(search_state.best_mbmode.mode))) {
search_state.best_mbmode.ref_mv_idx = 0;
}
if (search_state.best_mode_index == THR_INVALID ||
search_state.best_rd >= best_rd_so_far) {
rd_cost->rate = INT_MAX;
rd_cost->rdcost = INT64_MAX;
return;
}
const InterpFilter interp_filter = features->interp_filter;
assert((interp_filter == SWITCHABLE) ||
(interp_filter ==
search_state.best_mbmode.interp_filters.as_filters.y_filter) ||
!is_inter_block(&search_state.best_mbmode));
assert((interp_filter == SWITCHABLE) ||
(interp_filter ==
search_state.best_mbmode.interp_filters.as_filters.x_filter) ||
!is_inter_block(&search_state.best_mbmode));
if (!cpi->rc.is_src_frame_alt_ref && sf->inter_sf.adaptive_rd_thresh) {
av1_update_rd_thresh_fact(
cm, x->thresh_freq_fact, sf->inter_sf.adaptive_rd_thresh, bsize,
search_state.best_mode_index, mode_start, mode_end, THR_DC, MAX_MODES);
}
// macroblock modes
*mbmi = search_state.best_mbmode;
txfm_info->skip_txfm |= search_state.best_skip2;
// Note: this section is needed since the mode may have been forced to
// GLOBALMV by the all-zero mode handling of ref-mv.
if (mbmi->mode == GLOBALMV || mbmi->mode == GLOBAL_GLOBALMV) {
// Correct the interp filters for GLOBALMV
if (is_nontrans_global_motion(xd, xd->mi[0])) {
int_interpfilters filters =
av1_broadcast_interp_filter(av1_unswitchable_filter(interp_filter));
assert(mbmi->interp_filters.as_int == filters.as_int);
(void)filters;
}
}
txfm_info->skip_txfm |= search_state.best_mode_skippable;
assert(search_state.best_mode_index != THR_INVALID);
#if CONFIG_INTERNAL_STATS
store_coding_context(x, ctx, search_state.best_mode_index,
search_state.best_mode_skippable);
#else
store_coding_context(x, ctx, search_state.best_mode_skippable);
#endif // CONFIG_INTERNAL_STATS
if (mbmi->palette_mode_info.palette_size[1] > 0) {
assert(try_palette);
av1_restore_uv_color_map(cpi, x);
}
}
void av1_rd_pick_inter_mode_sb_seg_skip(const AV1_COMP *cpi,
TileDataEnc *tile_data, MACROBLOCK *x,
int mi_row, int mi_col,
RD_STATS *rd_cost, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx,
int64_t best_rd_so_far) {
const AV1_COMMON *const cm = &cpi->common;
const FeatureFlags *const features = &cm->features;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
unsigned char segment_id = mbmi->segment_id;
const int comp_pred = 0;
int i;
unsigned int ref_costs_single[REF_FRAMES];
unsigned int ref_costs_comp[REF_FRAMES][REF_FRAMES];
const ModeCosts *mode_costs = &x->mode_costs;
const int *comp_inter_cost =
mode_costs->comp_inter_cost[av1_get_reference_mode_context(xd)];
InterpFilter best_filter = SWITCHABLE;
int64_t this_rd = INT64_MAX;
int rate2 = 0;
const int64_t distortion2 = 0;
(void)mi_row;
(void)mi_col;
(void)tile_data;
av1_collect_neighbors_ref_counts(xd);
estimate_ref_frame_costs(cm, xd, mode_costs, segment_id, ref_costs_single,
ref_costs_comp);
for (i = 0; i < REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX;
for (i = LAST_FRAME; i < REF_FRAMES; ++i) x->pred_mv_sad[i] = INT_MAX;
rd_cost->rate = INT_MAX;
assert(segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP));
mbmi->palette_mode_info.palette_size[0] = 0;
mbmi->palette_mode_info.palette_size[1] = 0;
mbmi->filter_intra_mode_info.use_filter_intra = 0;
mbmi->mode = GLOBALMV;
mbmi->motion_mode = SIMPLE_TRANSLATION;
mbmi->uv_mode = UV_DC_PRED;
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME))
mbmi->ref_frame[0] = get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME);
else
mbmi->ref_frame[0] = LAST_FRAME;
mbmi->ref_frame[1] = NONE_FRAME;
mbmi->mv[0].as_int =
gm_get_motion_vector(&cm->global_motion[mbmi->ref_frame[0]],
features->allow_high_precision_mv, bsize, mi_col,
mi_row, features->cur_frame_force_integer_mv)
.as_int;
mbmi->tx_size = max_txsize_lookup[bsize];
x->txfm_search_info.skip_txfm = 1;
mbmi->ref_mv_idx = 0;
mbmi->motion_mode = SIMPLE_TRANSLATION;
av1_count_overlappable_neighbors(cm, xd);
if (is_motion_variation_allowed_bsize(bsize) && !has_second_ref(mbmi)) {
int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE];
mbmi->num_proj_ref = av1_findSamples(cm, xd, pts, pts_inref);
// Select the samples according to motion vector difference
if (mbmi->num_proj_ref > 1) {
mbmi->num_proj_ref = av1_selectSamples(&mbmi->mv[0].as_mv, pts, pts_inref,
mbmi->num_proj_ref, bsize);
}
}
const InterpFilter interp_filter = features->interp_filter;
set_default_interp_filters(mbmi, interp_filter);
if (interp_filter != SWITCHABLE) {
best_filter = interp_filter;
} else {
best_filter = EIGHTTAP_REGULAR;
if (av1_is_interp_needed(xd)) {
int rs;
int best_rs = INT_MAX;
for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
mbmi->interp_filters = av1_broadcast_interp_filter(i);
rs = av1_get_switchable_rate(x, xd, interp_filter,
cm->seq_params->enable_dual_filter);
if (rs < best_rs) {
best_rs = rs;
best_filter = mbmi->interp_filters.as_filters.y_filter;
}
}
}
}
// Set the appropriate filter
mbmi->interp_filters = av1_broadcast_interp_filter(best_filter);
rate2 += av1_get_switchable_rate(x, xd, interp_filter,
cm->seq_params->enable_dual_filter);
if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT)
rate2 += comp_inter_cost[comp_pred];
// Estimate the reference frame signaling cost and add it
// to the rolling cost variable.
rate2 += ref_costs_single[LAST_FRAME];
this_rd = RDCOST(x->rdmult, rate2, distortion2);
rd_cost->rate = rate2;
rd_cost->dist = distortion2;
rd_cost->rdcost = this_rd;
if (this_rd >= best_rd_so_far) {
rd_cost->rate = INT_MAX;
rd_cost->rdcost = INT64_MAX;
return;
}
assert((interp_filter == SWITCHABLE) ||
(interp_filter == mbmi->interp_filters.as_filters.y_filter));
if (cpi->sf.inter_sf.adaptive_rd_thresh) {
av1_update_rd_thresh_fact(cm, x->thresh_freq_fact,
cpi->sf.inter_sf.adaptive_rd_thresh, bsize,
THR_GLOBALMV, THR_INTER_MODE_START,
THR_INTER_MODE_END, THR_DC, MAX_MODES);
}
#if CONFIG_INTERNAL_STATS
store_coding_context(x, ctx, THR_GLOBALMV, 0);
#else
store_coding_context(x, ctx, 0);
#endif // CONFIG_INTERNAL_STATS
}
/*!\cond */
struct calc_target_weighted_pred_ctxt {
const OBMCBuffer *obmc_buffer;
const uint8_t *tmp;
int tmp_stride;
int overlap;
};
/*!\endcond */
static inline void calc_target_weighted_pred_above(
MACROBLOCKD *xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size,
int dir, MB_MODE_INFO *nb_mi, void *fun_ctxt, const int num_planes) {
(void)nb_mi;
(void)num_planes;
(void)rel_mi_row;
(void)dir;
struct calc_target_weighted_pred_ctxt *ctxt =
(struct calc_target_weighted_pred_ctxt *)fun_ctxt;
const int bw = xd->width << MI_SIZE_LOG2;
const uint8_t *const mask1d = av1_get_obmc_mask(ctxt->overlap);
int32_t *wsrc = ctxt->obmc_buffer->wsrc + (rel_mi_col * MI_SIZE);
int32_t *mask = ctxt->obmc_buffer->mask + (rel_mi_col * MI_SIZE);
const uint8_t *tmp = ctxt->tmp + rel_mi_col * MI_SIZE;
const int is_hbd = is_cur_buf_hbd(xd);
if (!is_hbd) {
for (int row = 0; row < ctxt->overlap; ++row) {
const uint8_t m0 = mask1d[row];
const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
for (int col = 0; col < op_mi_size * MI_SIZE; ++col) {
wsrc[col] = m1 * tmp[col];
mask[col] = m0;
}
wsrc += bw;
mask += bw;
tmp += ctxt->tmp_stride;
}
} else {
const uint16_t *tmp16 = CONVERT_TO_SHORTPTR(tmp);
for (int row = 0; row < ctxt->overlap; ++row) {
const uint8_t m0 = mask1d[row];
const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
for (int col = 0; col < op_mi_size * MI_SIZE; ++col) {
wsrc[col] = m1 * tmp16[col];
mask[col] = m0;
}
wsrc += bw;
mask += bw;
tmp16 += ctxt->tmp_stride;
}
}
}
static inline void calc_target_weighted_pred_left(
MACROBLOCKD *xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size,
int dir, MB_MODE_INFO *nb_mi, void *fun_ctxt, const int num_planes) {
(void)nb_mi;
(void)num_planes;
(void)rel_mi_col;
(void)dir;
struct calc_target_weighted_pred_ctxt *ctxt =
(struct calc_target_weighted_pred_ctxt *)fun_ctxt;
const int bw = xd->width << MI_SIZE_LOG2;
const uint8_t *const mask1d = av1_get_obmc_mask(ctxt->overlap);
int32_t *wsrc = ctxt->obmc_buffer->wsrc + (rel_mi_row * MI_SIZE * bw);
int32_t *mask = ctxt->obmc_buffer->mask + (rel_mi_row * MI_SIZE * bw);
const uint8_t *tmp = ctxt->tmp + (rel_mi_row * MI_SIZE * ctxt->tmp_stride);
const int is_hbd = is_cur_buf_hbd(xd);
if (!is_hbd) {
for (int row = 0; row < op_mi_size * MI_SIZE; ++row) {
for (int col = 0; col < ctxt->overlap; ++col) {
const uint8_t m0 = mask1d[col];
const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
wsrc[col] = (wsrc[col] >> AOM_BLEND_A64_ROUND_BITS) * m0 +
(tmp[col] << AOM_BLEND_A64_ROUND_BITS) * m1;
mask[col] = (mask[col] >> AOM_BLEND_A64_ROUND_BITS) * m0;
}
wsrc += bw;
mask += bw;
tmp += ctxt->tmp_stride;
}
} else {
const uint16_t *tmp16 = CONVERT_TO_SHORTPTR(tmp);
for (int row = 0; row < op_mi_size * MI_SIZE; ++row) {
for (int col = 0; col < ctxt->overlap; ++col) {
const uint8_t m0 = mask1d[col];
const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
wsrc[col] = (wsrc[col] >> AOM_BLEND_A64_ROUND_BITS) * m0 +
(tmp16[col] << AOM_BLEND_A64_ROUND_BITS) * m1;
mask[col] = (mask[col] >> AOM_BLEND_A64_ROUND_BITS) * m0;
}
wsrc += bw;
mask += bw;
tmp16 += ctxt->tmp_stride;
}
}
}
// This function has a structure similar to av1_build_obmc_inter_prediction
//
// The OBMC predictor is computed as:
//
// PObmc(x,y) =
// AOM_BLEND_A64(Mh(x),
// AOM_BLEND_A64(Mv(y), P(x,y), PAbove(x,y)),
// PLeft(x, y))
//
// Scaling up by AOM_BLEND_A64_MAX_ALPHA ** 2 and omitting the intermediate
// rounding, this can be written as:
//
// AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA * Pobmc(x,y) =
// Mh(x) * Mv(y) * P(x,y) +
// Mh(x) * Cv(y) * Pabove(x,y) +
// AOM_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y)
//
// Where :
//
// Cv(y) = AOM_BLEND_A64_MAX_ALPHA - Mv(y)
// Ch(y) = AOM_BLEND_A64_MAX_ALPHA - Mh(y)
//
// This function computes 'wsrc' and 'mask' as:
//
// wsrc(x, y) =
// AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA * src(x, y) -
// Mh(x) * Cv(y) * Pabove(x,y) +
// AOM_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y)
//
// mask(x, y) = Mh(x) * Mv(y)
//
// These can then be used to efficiently approximate the error for any
// predictor P in the context of the provided neighbouring predictors by
// computing:
//
// error(x, y) =
// wsrc(x, y) - mask(x, y) * P(x, y) / (AOM_BLEND_A64_MAX_ALPHA ** 2)
//
static inline void calc_target_weighted_pred(
const AV1_COMMON *cm, const MACROBLOCK *x, const MACROBLOCKD *xd,
const uint8_t *above, int above_stride, const uint8_t *left,
int left_stride) {
const BLOCK_SIZE bsize = xd->mi[0]->bsize;
const int bw = xd->width << MI_SIZE_LOG2;
const int bh = xd->height << MI_SIZE_LOG2;
const OBMCBuffer *obmc_buffer = &x->obmc_buffer;
int32_t *mask_buf = obmc_buffer->mask;
int32_t *wsrc_buf = obmc_buffer->wsrc;
const int is_hbd = is_cur_buf_hbd(xd);
const int src_scale = AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA;
// plane 0 should not be sub-sampled
assert(xd->plane[0].subsampling_x == 0);
assert(xd->plane[0].subsampling_y == 0);
av1_zero_array(wsrc_buf, bw * bh);
for (int i = 0; i < bw * bh; ++i) mask_buf[i] = AOM_BLEND_A64_MAX_ALPHA;
// handle above row
if (xd->up_available) {
const int overlap =
AOMMIN(block_size_high[bsize], block_size_high[BLOCK_64X64]) >> 1;
struct calc_target_weighted_pred_ctxt ctxt = { obmc_buffer, above,
above_stride, overlap };
foreach_overlappable_nb_above(cm, (MACROBLOCKD *)xd,
max_neighbor_obmc[mi_size_wide_log2[bsize]],
calc_target_weighted_pred_above, &ctxt);
}
for (int i = 0; i < bw * bh; ++i) {
wsrc_buf[i] *= AOM_BLEND_A64_MAX_ALPHA;
mask_buf[i] *= AOM_BLEND_A64_MAX_ALPHA;
}
// handle left column
if (xd->left_available) {
const int overlap =
AOMMIN(block_size_wide[bsize], block_size_wide[BLOCK_64X64]) >> 1;
struct calc_target_weighted_pred_ctxt ctxt = { obmc_buffer, left,
left_stride, overlap };
foreach_overlappable_nb_left(cm, (MACROBLOCKD *)xd,
max_neighbor_obmc[mi_size_high_log2[bsize]],
calc_target_weighted_pred_left, &ctxt);
}
if (!is_hbd) {
const uint8_t *src = x->plane[0].src.buf;
for (int row = 0; row < bh; ++row) {
for (int col = 0; col < bw; ++col) {
wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col];
}
wsrc_buf += bw;
src += x->plane[0].src.stride;
}
} else {
const uint16_t *src = CONVERT_TO_SHORTPTR(x->plane[0].src.buf);
for (int row = 0; row < bh; ++row) {
for (int col = 0; col < bw; ++col) {
wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col];
}
wsrc_buf += bw;
src += x->plane[0].src.stride;
}
}
}
|