1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
|
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "av1/common/av1_common_int.h"
#include "av1/encoder/sparse_linear_solver.h"
#include "config/aom_config.h"
#include "aom_mem/aom_mem.h"
#include "av1/common/alloccommon.h"
#if CONFIG_OPTICAL_FLOW_API
/*
* Input:
* rows: array of row positions
* cols: array of column positions
* values: array of element values
* num_elem: total number of elements in the matrix
* num_rows: number of rows in the matrix
* num_cols: number of columns in the matrix
*
* Output:
* sm: pointer to the sparse matrix to be initialized
*
* Return: 0 - success
* -1 - failed
*/
int av1_init_sparse_mtx(const int *rows, const int *cols, const double *values,
int num_elem, int num_rows, int num_cols,
SPARSE_MTX *sm) {
sm->n_elem = num_elem;
sm->n_rows = num_rows;
sm->n_cols = num_cols;
if (num_elem == 0) {
sm->row_pos = NULL;
sm->col_pos = NULL;
sm->value = NULL;
return 0;
}
sm->row_pos = aom_calloc(num_elem, sizeof(*sm->row_pos));
sm->col_pos = aom_calloc(num_elem, sizeof(*sm->col_pos));
sm->value = aom_calloc(num_elem, sizeof(*sm->value));
if (!sm->row_pos || !sm->col_pos || !sm->value) {
av1_free_sparse_mtx_elems(sm);
return -1;
}
memcpy(sm->row_pos, rows, num_elem * sizeof(*sm->row_pos));
memcpy(sm->col_pos, cols, num_elem * sizeof(*sm->col_pos));
memcpy(sm->value, values, num_elem * sizeof(*sm->value));
return 0;
}
/*
* Combines two sparse matrices (allocating new space).
*
* Input:
* sm1, sm2: matrices to be combined
* row_offset1, row_offset2: row offset of each matrix in the new matrix
* col_offset1, col_offset2: column offset of each matrix in the new matrix
* new_n_rows, new_n_cols: number of rows and columns in the new matrix
*
* Output:
* sm: the combined matrix
*
* Return: 0 - success
* -1 - failed
*/
int av1_init_combine_sparse_mtx(const SPARSE_MTX *sm1, const SPARSE_MTX *sm2,
SPARSE_MTX *sm, int row_offset1,
int col_offset1, int row_offset2,
int col_offset2, int new_n_rows,
int new_n_cols) {
sm->n_elem = sm1->n_elem + sm2->n_elem;
sm->n_cols = new_n_cols;
sm->n_rows = new_n_rows;
if (sm->n_elem == 0) {
sm->row_pos = NULL;
sm->col_pos = NULL;
sm->value = NULL;
return 0;
}
sm->row_pos = aom_calloc(sm->n_elem, sizeof(*sm->row_pos));
sm->col_pos = aom_calloc(sm->n_elem, sizeof(*sm->col_pos));
sm->value = aom_calloc(sm->n_elem, sizeof(*sm->value));
if (!sm->row_pos || !sm->col_pos || !sm->value) {
av1_free_sparse_mtx_elems(sm);
return -1;
}
for (int i = 0; i < sm1->n_elem; i++) {
sm->row_pos[i] = sm1->row_pos[i] + row_offset1;
sm->col_pos[i] = sm1->col_pos[i] + col_offset1;
}
memcpy(sm->value, sm1->value, sm1->n_elem * sizeof(*sm1->value));
int n_elem1 = sm1->n_elem;
for (int i = 0; i < sm2->n_elem; i++) {
sm->row_pos[n_elem1 + i] = sm2->row_pos[i] + row_offset2;
sm->col_pos[n_elem1 + i] = sm2->col_pos[i] + col_offset2;
}
memcpy(sm->value + n_elem1, sm2->value, sm2->n_elem * sizeof(*sm2->value));
return 0;
}
void av1_free_sparse_mtx_elems(SPARSE_MTX *sm) {
sm->n_cols = 0;
sm->n_rows = 0;
if (sm->n_elem != 0) {
aom_free(sm->row_pos);
aom_free(sm->col_pos);
aom_free(sm->value);
}
sm->n_elem = 0;
}
/*
* Calculate matrix and vector multiplication: A*b
*
* Input:
* sm: matrix A
* srcv: the vector b to be multiplied to
* dstl: the length of vectors
*
* Output:
* dstv: pointer to the resulting vector
*/
void av1_mtx_vect_multi_right(const SPARSE_MTX *sm, const double *srcv,
double *dstv, int dstl) {
memset(dstv, 0, sizeof(*dstv) * dstl);
for (int i = 0; i < sm->n_elem; i++) {
dstv[sm->row_pos[i]] += srcv[sm->col_pos[i]] * sm->value[i];
}
}
/*
* Calculate matrix and vector multiplication: b*A
*
* Input:
* sm: matrix A
* srcv: the vector b to be multiplied to
* dstl: the length of vectors
*
* Output:
* dstv: pointer to the resulting vector
*/
void av1_mtx_vect_multi_left(const SPARSE_MTX *sm, const double *srcv,
double *dstv, int dstl) {
memset(dstv, 0, sizeof(*dstv) * dstl);
for (int i = 0; i < sm->n_elem; i++) {
dstv[sm->col_pos[i]] += srcv[sm->row_pos[i]] * sm->value[i];
}
}
/*
* Calculate inner product of two vectors
*
* Input:
* src1, scr2: the vectors to be multiplied
* src1l: length of the vectors
*
* Output:
* the inner product
*/
double av1_vect_vect_multi(const double *src1, int src1l, const double *src2) {
double result = 0;
for (int i = 0; i < src1l; i++) {
result += src1[i] * src2[i];
}
return result;
}
/*
* Multiply each element in the matrix sm with a constant c
*/
void av1_constant_multiply_sparse_matrix(SPARSE_MTX *sm, double c) {
for (int i = 0; i < sm->n_elem; i++) {
sm->value[i] *= c;
}
}
static inline void free_solver_local_buf(double *buf1, double *buf2,
double *buf3, double *buf4,
double *buf5, double *buf6,
double *buf7) {
aom_free(buf1);
aom_free(buf2);
aom_free(buf3);
aom_free(buf4);
aom_free(buf5);
aom_free(buf6);
aom_free(buf7);
}
/*
* Solve for Ax = b
* no requirement on A
*
* Input:
* A: the sparse matrix
* b: the vector b
* bl: length of b
* x: the vector x
*
* Output:
* x: pointer to the solution vector
*
* Return: 0 - success
* -1 - failed
*/
int av1_bi_conjugate_gradient_sparse(const SPARSE_MTX *A, const double *b,
int bl, double *x) {
double *r = NULL, *r_hat = NULL, *p = NULL, *p_hat = NULL, *Ap = NULL,
*p_hatA = NULL, *x_hat = NULL;
double alpha, beta, rtr, r_norm_2;
double denormtemp;
// initialize
r = aom_calloc(bl, sizeof(*r));
r_hat = aom_calloc(bl, sizeof(*r_hat));
p = aom_calloc(bl, sizeof(*p));
p_hat = aom_calloc(bl, sizeof(*p_hat));
Ap = aom_calloc(bl, sizeof(*Ap));
p_hatA = aom_calloc(bl, sizeof(*p_hatA));
x_hat = aom_calloc(bl, sizeof(*x_hat));
if (!r || !r_hat || !p || !p_hat || !Ap || !p_hatA || !x_hat) {
free_solver_local_buf(r, r_hat, p, p_hat, Ap, p_hatA, x_hat);
return -1;
}
int i;
for (i = 0; i < bl; i++) {
r[i] = b[i];
r_hat[i] = b[i];
p[i] = r[i];
p_hat[i] = r_hat[i];
x[i] = 0;
x_hat[i] = 0;
}
r_norm_2 = av1_vect_vect_multi(r_hat, bl, r);
for (int k = 0; k < MAX_CG_SP_ITER; k++) {
rtr = r_norm_2;
av1_mtx_vect_multi_right(A, p, Ap, bl);
av1_mtx_vect_multi_left(A, p_hat, p_hatA, bl);
denormtemp = av1_vect_vect_multi(p_hat, bl, Ap);
if (denormtemp < 1e-10) break;
alpha = rtr / denormtemp;
r_norm_2 = 0;
for (i = 0; i < bl; i++) {
x[i] += alpha * p[i];
x_hat[i] += alpha * p_hat[i];
r[i] -= alpha * Ap[i];
r_hat[i] -= alpha * p_hatA[i];
r_norm_2 += r_hat[i] * r[i];
}
if (sqrt(r_norm_2) < 1e-2) {
break;
}
if (rtr < 1e-10) break;
beta = r_norm_2 / rtr;
for (i = 0; i < bl; i++) {
p[i] = r[i] + beta * p[i];
p_hat[i] = r_hat[i] + beta * p_hat[i];
}
}
// free
free_solver_local_buf(r, r_hat, p, p_hat, Ap, p_hatA, x_hat);
return 0;
}
/*
* Solve for Ax = b when A is symmetric and positive definite
*
* Input:
* A: the sparse matrix
* b: the vector b
* bl: length of b
* x: the vector x
*
* Output:
* x: pointer to the solution vector
*
* Return: 0 - success
* -1 - failed
*/
int av1_conjugate_gradient_sparse(const SPARSE_MTX *A, const double *b, int bl,
double *x) {
double *r = NULL, *p = NULL, *Ap = NULL;
double alpha, beta, rtr, r_norm_2;
double denormtemp;
// initialize
r = aom_calloc(bl, sizeof(*r));
p = aom_calloc(bl, sizeof(*p));
Ap = aom_calloc(bl, sizeof(*Ap));
if (!r || !p || !Ap) {
free_solver_local_buf(r, p, Ap, NULL, NULL, NULL, NULL);
return -1;
}
int i;
for (i = 0; i < bl; i++) {
r[i] = b[i];
p[i] = r[i];
x[i] = 0;
}
r_norm_2 = av1_vect_vect_multi(r, bl, r);
int k;
for (k = 0; k < MAX_CG_SP_ITER; k++) {
rtr = r_norm_2;
av1_mtx_vect_multi_right(A, p, Ap, bl);
denormtemp = av1_vect_vect_multi(p, bl, Ap);
if (denormtemp < 1e-10) break;
alpha = rtr / denormtemp;
r_norm_2 = 0;
for (i = 0; i < bl; i++) {
x[i] += alpha * p[i];
r[i] -= alpha * Ap[i];
r_norm_2 += r[i] * r[i];
}
if (r_norm_2 < 1e-8 * bl) break;
if (rtr < 1e-10) break;
beta = r_norm_2 / rtr;
for (i = 0; i < bl; i++) {
p[i] = r[i] + beta * p[i];
}
}
// free
free_solver_local_buf(r, p, Ap, NULL, NULL, NULL, NULL);
return 0;
}
/*
* Solve for Ax = b using Jacobi method
*
* Input:
* A: the sparse matrix
* b: the vector b
* bl: length of b
* x: the vector x
*
* Output:
* x: pointer to the solution vector
*
* Return: 0 - success
* -1 - failed
*/
int av1_jacobi_sparse(const SPARSE_MTX *A, const double *b, int bl, double *x) {
double *diags = NULL, *Rx = NULL, *x_last = NULL, *x_cur = NULL,
*tempx = NULL;
double resi2;
diags = aom_calloc(bl, sizeof(*diags));
Rx = aom_calloc(bl, sizeof(*Rx));
x_last = aom_calloc(bl, sizeof(*x_last));
x_cur = aom_calloc(bl, sizeof(*x_cur));
if (!diags || !Rx || !x_last || !x_cur) {
free_solver_local_buf(diags, Rx, x_last, x_cur, NULL, NULL, NULL);
return -1;
}
int i;
memset(x_last, 0, sizeof(*x_last) * bl);
// get the diagonals of A
memset(diags, 0, sizeof(*diags) * bl);
for (int c = 0; c < A->n_elem; c++) {
if (A->row_pos[c] != A->col_pos[c]) continue;
diags[A->row_pos[c]] = A->value[c];
}
int k;
for (k = 0; k < MAX_CG_SP_ITER; k++) {
// R = A - diag(diags)
// get R*x_last
memset(Rx, 0, sizeof(*Rx) * bl);
for (int c = 0; c < A->n_elem; c++) {
if (A->row_pos[c] == A->col_pos[c]) continue;
Rx[A->row_pos[c]] += x_last[A->col_pos[c]] * A->value[c];
}
resi2 = 0;
for (i = 0; i < bl; i++) {
x_cur[i] = (b[i] - Rx[i]) / diags[i];
resi2 += (x_last[i] - x_cur[i]) * (x_last[i] - x_cur[i]);
}
if (resi2 <= 1e-10 * bl) break;
// swap last & cur buffer ptrs
tempx = x_last;
x_last = x_cur;
x_cur = tempx;
}
printf("\n numiter: %d\n", k);
for (i = 0; i < bl; i++) {
x[i] = x_cur[i];
}
free_solver_local_buf(diags, Rx, x_last, x_cur, NULL, NULL, NULL);
return 0;
}
/*
* Solve for Ax = b using Steepest descent method
*
* Input:
* A: the sparse matrix
* b: the vector b
* bl: length of b
* x: the vector x
*
* Output:
* x: pointer to the solution vector
*
* Return: 0 - success
* -1 - failed
*/
int av1_steepest_descent_sparse(const SPARSE_MTX *A, const double *b, int bl,
double *x) {
double *d = NULL, *Ad = NULL, *Ax = NULL;
double resi2, resi2_last, dAd, temp;
d = aom_calloc(bl, sizeof(*d));
Ax = aom_calloc(bl, sizeof(*Ax));
Ad = aom_calloc(bl, sizeof(*Ad));
if (!d || !Ax || !Ad) {
free_solver_local_buf(d, Ax, Ad, NULL, NULL, NULL, NULL);
return -1;
}
int i;
// initialize with 0s
resi2 = 0;
for (i = 0; i < bl; i++) {
x[i] = 0;
d[i] = b[i];
resi2 += d[i] * d[i] / bl;
}
int k;
for (k = 0; k < MAX_CG_SP_ITER; k++) {
// get A*x_last
av1_mtx_vect_multi_right(A, d, Ad, bl);
dAd = resi2 * bl / av1_vect_vect_multi(d, bl, Ad);
for (i = 0; i < bl; i++) {
temp = dAd * d[i];
x[i] = x[i] + temp;
}
av1_mtx_vect_multi_right(A, x, Ax, bl);
resi2_last = resi2;
resi2 = 0;
for (i = 0; i < bl; i++) {
d[i] = b[i] - Ax[i];
resi2 += d[i] * d[i] / bl;
}
if (resi2 <= 1e-8) break;
if (resi2_last - resi2 < 1e-8) {
break;
}
}
free_solver_local_buf(d, Ax, Ad, NULL, NULL, NULL, NULL);
return 0;
}
#endif // CONFIG_OPTICAL_FLOW_API
|