1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include "aom_mem/aom_mem.h"
#include "av1/common/entropy.h"
#include "av1/common/pred_common.h"
#include "av1/common/scan.h"
#include "av1/common/seg_common.h"
#include "av1/encoder/cost.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/encodetxb.h"
#include "av1/encoder/rdopt.h"
#include "av1/encoder/tokenize.h"
static inline int av1_fast_palette_color_index_context_on_edge(
const uint8_t *color_map, int stride, int r, int c, int *color_idx) {
const bool has_left = (c - 1 >= 0);
const bool has_above = (r - 1 >= 0);
assert(r > 0 || c > 0);
assert(has_above ^ has_left);
assert(color_idx);
(void)has_left;
const uint8_t color_neighbor = has_above
? color_map[(r - 1) * stride + (c - 0)]
: color_map[(r - 0) * stride + (c - 1)];
// If the neighbor color has higher index than current color index, then we
// move up by 1.
const uint8_t current_color = *color_idx = color_map[r * stride + c];
if (color_neighbor > current_color) {
(*color_idx)++;
} else if (color_neighbor == current_color) {
*color_idx = 0;
}
// Get hash value of context.
// The non-diagonal neighbors get a weight of 2.
const uint8_t color_score = 2;
const uint8_t hash_multiplier = 1;
const uint8_t color_index_ctx_hash = color_score * hash_multiplier;
// Lookup context from hash.
const int color_index_ctx =
av1_palette_color_index_context_lookup[color_index_ctx_hash];
assert(color_index_ctx == 0);
(void)color_index_ctx;
return 0;
}
#define SWAP(i, j) \
do { \
const uint8_t tmp_score = score_rank[i]; \
const uint8_t tmp_color = color_rank[i]; \
score_rank[i] = score_rank[j]; \
color_rank[i] = color_rank[j]; \
score_rank[j] = tmp_score; \
color_rank[j] = tmp_color; \
} while (0)
#define INVALID_COLOR_IDX (UINT8_MAX)
// A faster version of av1_get_palette_color_index_context used by the encoder
// exploiting the fact that the encoder does not need to maintain a color order.
static inline int av1_fast_palette_color_index_context(const uint8_t *color_map,
int stride, int r, int c,
int *color_idx) {
assert(r > 0 || c > 0);
const bool has_above = (r - 1 >= 0);
const bool has_left = (c - 1 >= 0);
assert(has_above || has_left);
if (has_above ^ has_left) {
return av1_fast_palette_color_index_context_on_edge(color_map, stride, r, c,
color_idx);
}
// This goes in the order of left, top, and top-left. This has the advantage
// that unless anything here are not distinct or invalid, this will already
// be in sorted order. Furthermore, if either of the first two is
// invalid, we know the last one is also invalid.
uint8_t color_neighbors[NUM_PALETTE_NEIGHBORS];
color_neighbors[0] = color_map[(r - 0) * stride + (c - 1)];
color_neighbors[1] = color_map[(r - 1) * stride + (c - 0)];
color_neighbors[2] = color_map[(r - 1) * stride + (c - 1)];
// Aggregate duplicated values.
// Since our array is so small, using a couple if statements is faster
uint8_t scores[NUM_PALETTE_NEIGHBORS] = { 2, 2, 1 };
uint8_t num_invalid_colors = 0;
if (color_neighbors[0] == color_neighbors[1]) {
scores[0] += scores[1];
color_neighbors[1] = INVALID_COLOR_IDX;
num_invalid_colors += 1;
if (color_neighbors[0] == color_neighbors[2]) {
scores[0] += scores[2];
num_invalid_colors += 1;
}
} else if (color_neighbors[0] == color_neighbors[2]) {
scores[0] += scores[2];
num_invalid_colors += 1;
} else if (color_neighbors[1] == color_neighbors[2]) {
scores[1] += scores[2];
num_invalid_colors += 1;
}
const uint8_t num_valid_colors = NUM_PALETTE_NEIGHBORS - num_invalid_colors;
uint8_t *color_rank = color_neighbors;
uint8_t *score_rank = scores;
// Sort everything
if (num_valid_colors > 1) {
if (color_neighbors[1] == INVALID_COLOR_IDX) {
scores[1] = scores[2];
color_neighbors[1] = color_neighbors[2];
}
// We need to swap the first two elements if they have the same score but
// the color indices are not in the right order
if (score_rank[0] < score_rank[1] ||
(score_rank[0] == score_rank[1] && color_rank[0] > color_rank[1])) {
SWAP(0, 1);
}
if (num_valid_colors > 2) {
if (score_rank[0] < score_rank[2]) {
SWAP(0, 2);
}
if (score_rank[1] < score_rank[2]) {
SWAP(1, 2);
}
}
}
// If any of the neighbor colors has higher index than current color index,
// then we move up by 1 unless the current color is the same as one of the
// neighbors.
const uint8_t current_color = *color_idx = color_map[r * stride + c];
for (int idx = 0; idx < num_valid_colors; idx++) {
if (color_rank[idx] > current_color) {
(*color_idx)++;
} else if (color_rank[idx] == current_color) {
*color_idx = idx;
break;
}
}
// Get hash value of context.
uint8_t color_index_ctx_hash = 0;
static const uint8_t hash_multipliers[NUM_PALETTE_NEIGHBORS] = { 1, 2, 2 };
for (int idx = 0; idx < num_valid_colors; ++idx) {
color_index_ctx_hash += score_rank[idx] * hash_multipliers[idx];
}
assert(color_index_ctx_hash > 0);
assert(color_index_ctx_hash <= MAX_COLOR_CONTEXT_HASH);
// Lookup context from hash.
const int color_index_ctx = 9 - color_index_ctx_hash;
assert(color_index_ctx ==
av1_palette_color_index_context_lookup[color_index_ctx_hash]);
assert(color_index_ctx >= 0);
assert(color_index_ctx < PALETTE_COLOR_INDEX_CONTEXTS);
return color_index_ctx;
}
#undef INVALID_COLOR_IDX
#undef SWAP
static int cost_and_tokenize_map(Av1ColorMapParam *param, TokenExtra **t,
int plane, int calc_rate, int allow_update_cdf,
FRAME_COUNTS *counts) {
const uint8_t *const color_map = param->color_map;
MapCdf map_cdf = param->map_cdf;
ColorCost color_cost = param->color_cost;
const int plane_block_width = param->plane_width;
const int rows = param->rows;
const int cols = param->cols;
const int n = param->n_colors;
const int palette_size_idx = n - PALETTE_MIN_SIZE;
int this_rate = 0;
(void)plane;
(void)counts;
for (int k = 1; k < rows + cols - 1; ++k) {
for (int j = AOMMIN(k, cols - 1); j >= AOMMAX(0, k - rows + 1); --j) {
int i = k - j;
int color_new_idx;
const int color_ctx = av1_fast_palette_color_index_context(
color_map, plane_block_width, i, j, &color_new_idx);
assert(color_new_idx >= 0 && color_new_idx < n);
if (calc_rate) {
this_rate += color_cost[palette_size_idx][color_ctx][color_new_idx];
} else {
(*t)->token = color_new_idx;
(*t)->color_ctx = color_ctx;
++(*t);
if (allow_update_cdf)
update_cdf(map_cdf[palette_size_idx][color_ctx], color_new_idx, n);
#if CONFIG_ENTROPY_STATS
if (plane) {
++counts->palette_uv_color_index[palette_size_idx][color_ctx]
[color_new_idx];
} else {
++counts->palette_y_color_index[palette_size_idx][color_ctx]
[color_new_idx];
}
#endif
}
}
}
if (calc_rate) return this_rate;
return 0;
}
static void get_palette_params(const MACROBLOCK *const x, int plane,
BLOCK_SIZE bsize, Av1ColorMapParam *params) {
const MACROBLOCKD *const xd = &x->e_mbd;
const MB_MODE_INFO *const mbmi = xd->mi[0];
const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
params->color_map = xd->plane[plane].color_index_map;
params->map_cdf = plane ? xd->tile_ctx->palette_uv_color_index_cdf
: xd->tile_ctx->palette_y_color_index_cdf;
params->color_cost = plane ? x->mode_costs.palette_uv_color_cost
: x->mode_costs.palette_y_color_cost;
params->n_colors = pmi->palette_size[plane];
av1_get_block_dimensions(bsize, plane, xd, ¶ms->plane_width, NULL,
¶ms->rows, ¶ms->cols);
}
// TODO(any): Remove this function
static void get_color_map_params(const MACROBLOCK *const x, int plane,
BLOCK_SIZE bsize, TX_SIZE tx_size,
COLOR_MAP_TYPE type,
Av1ColorMapParam *params) {
(void)tx_size;
memset(params, 0, sizeof(*params));
switch (type) {
case PALETTE_MAP: get_palette_params(x, plane, bsize, params); break;
default: assert(0 && "Invalid color map type"); return;
}
}
int av1_cost_color_map(const MACROBLOCK *const x, int plane, BLOCK_SIZE bsize,
TX_SIZE tx_size, COLOR_MAP_TYPE type) {
assert(plane == 0 || plane == 1);
Av1ColorMapParam color_map_params;
get_color_map_params(x, plane, bsize, tx_size, type, &color_map_params);
return cost_and_tokenize_map(&color_map_params, NULL, plane, 1, 0, NULL);
}
void av1_tokenize_color_map(const MACROBLOCK *const x, int plane,
TokenExtra **t, BLOCK_SIZE bsize, TX_SIZE tx_size,
COLOR_MAP_TYPE type, int allow_update_cdf,
FRAME_COUNTS *counts) {
assert(plane == 0 || plane == 1);
Av1ColorMapParam color_map_params;
get_color_map_params(x, plane, bsize, tx_size, type, &color_map_params);
// The first color index does not use context or entropy.
(*t)->token = color_map_params.color_map[0];
(*t)->color_ctx = -1;
++(*t);
cost_and_tokenize_map(&color_map_params, t, plane, 0, allow_update_cdf,
counts);
}
static void tokenize_vartx(ThreadData *td, TX_SIZE tx_size,
BLOCK_SIZE plane_bsize, int blk_row, int blk_col,
int block, int plane, void *arg) {
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
const TX_SIZE plane_tx_size =
plane ? av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
pd->subsampling_y)
: mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
blk_col)];
if (tx_size == plane_tx_size || plane) {
plane_bsize =
get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y);
struct tokenize_b_args *args = arg;
if (args->allow_update_cdf)
av1_update_and_record_txb_context(plane, block, blk_row, blk_col,
plane_bsize, tx_size, arg);
else
av1_record_txb_context(plane, block, blk_row, blk_col, plane_bsize,
tx_size, arg);
} else {
// Half the block size in transform block unit.
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
const int step = bsw * bsh;
const int row_end =
AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row);
const int col_end =
AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col);
assert(bsw > 0 && bsh > 0);
for (int row = 0; row < row_end; row += bsh) {
const int offsetr = blk_row + row;
for (int col = 0; col < col_end; col += bsw) {
const int offsetc = blk_col + col;
tokenize_vartx(td, sub_txs, plane_bsize, offsetr, offsetc, block, plane,
arg);
block += step;
}
}
}
}
void av1_tokenize_sb_vartx(const AV1_COMP *cpi, ThreadData *td,
RUN_TYPE dry_run, BLOCK_SIZE bsize, int *rate,
uint8_t allow_update_cdf) {
assert(bsize < BLOCK_SIZES_ALL);
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols)
return;
const int num_planes = av1_num_planes(cm);
MB_MODE_INFO *const mbmi = xd->mi[0];
struct tokenize_b_args arg = { cpi, td, 0, allow_update_cdf, dry_run };
if (mbmi->skip_txfm) {
av1_reset_entropy_context(xd, bsize, num_planes);
return;
}
for (int plane = 0; plane < num_planes; ++plane) {
if (plane && !xd->is_chroma_ref) break;
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y);
assert(plane_bsize < BLOCK_SIZES_ALL);
const int mi_width = mi_size_wide[plane_bsize];
const int mi_height = mi_size_high[plane_bsize];
const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane);
const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size];
const int bw = mi_size_wide[txb_size];
const int bh = mi_size_high[txb_size];
int block = 0;
const int step =
tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
const BLOCK_SIZE max_unit_bsize =
get_plane_block_size(BLOCK_64X64, ss_x, ss_y);
int mu_blocks_wide = mi_size_wide[max_unit_bsize];
int mu_blocks_high = mi_size_high[max_unit_bsize];
mu_blocks_wide = AOMMIN(mi_width, mu_blocks_wide);
mu_blocks_high = AOMMIN(mi_height, mu_blocks_high);
for (int idy = 0; idy < mi_height; idy += mu_blocks_high) {
for (int idx = 0; idx < mi_width; idx += mu_blocks_wide) {
const int unit_height = AOMMIN(mu_blocks_high + idy, mi_height);
const int unit_width = AOMMIN(mu_blocks_wide + idx, mi_width);
for (int blk_row = idy; blk_row < unit_height; blk_row += bh) {
for (int blk_col = idx; blk_col < unit_width; blk_col += bw) {
tokenize_vartx(td, max_tx_size, plane_bsize, blk_row, blk_col,
block, plane, &arg);
block += step;
}
}
}
}
}
if (rate) *rate += arg.this_rate;
}
|