1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853
|
/*
* Copyright (c) 2020, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "av1/common/cfl.h"
#include "av1/common/reconintra.h"
#include "av1/encoder/block.h"
#include "av1/encoder/hybrid_fwd_txfm.h"
#include "av1/common/idct.h"
#include "av1/encoder/model_rd.h"
#include "av1/encoder/random.h"
#include "av1/encoder/rdopt_utils.h"
#include "av1/encoder/sorting_network.h"
#include "av1/encoder/tx_prune_model_weights.h"
#include "av1/encoder/tx_search.h"
#include "av1/encoder/txb_rdopt.h"
#define PROB_THRESH_OFFSET_TX_TYPE 100
struct rdcost_block_args {
const AV1_COMP *cpi;
MACROBLOCK *x;
ENTROPY_CONTEXT t_above[MAX_MIB_SIZE];
ENTROPY_CONTEXT t_left[MAX_MIB_SIZE];
RD_STATS rd_stats;
int64_t current_rd;
int64_t best_rd;
int exit_early;
int incomplete_exit;
FAST_TX_SEARCH_MODE ftxs_mode;
int skip_trellis;
};
typedef struct {
int64_t rd;
int txb_entropy_ctx;
TX_TYPE tx_type;
} TxCandidateInfo;
// origin_threshold * 128 / 100
static const uint32_t skip_pred_threshold[3][BLOCK_SIZES_ALL] = {
{
64, 64, 64, 70, 60, 60, 68, 68, 68, 68, 68,
68, 68, 68, 68, 68, 64, 64, 70, 70, 68, 68,
},
{
88, 88, 88, 86, 87, 87, 68, 68, 68, 68, 68,
68, 68, 68, 68, 68, 88, 88, 86, 86, 68, 68,
},
{
90, 93, 93, 90, 93, 93, 74, 74, 74, 74, 74,
74, 74, 74, 74, 74, 90, 90, 90, 90, 74, 74,
},
};
// lookup table for predict_skip_txfm
// int max_tx_size = max_txsize_rect_lookup[bsize];
// if (tx_size_high[max_tx_size] > 16 || tx_size_wide[max_tx_size] > 16)
// max_tx_size = AOMMIN(max_txsize_lookup[bsize], TX_16X16);
static const TX_SIZE max_predict_sf_tx_size[BLOCK_SIZES_ALL] = {
TX_4X4, TX_4X8, TX_8X4, TX_8X8, TX_8X16, TX_16X8,
TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_16X16,
TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_4X16, TX_16X4,
TX_8X8, TX_8X8, TX_16X16, TX_16X16,
};
// look-up table for sqrt of number of pixels in a transform block
// rounded up to the nearest integer.
static const int sqrt_tx_pixels_2d[TX_SIZES_ALL] = { 4, 8, 16, 32, 32, 6, 6,
12, 12, 23, 23, 32, 32, 8,
8, 16, 16, 23, 23 };
static inline uint32_t get_block_residue_hash(MACROBLOCK *x, BLOCK_SIZE bsize) {
const int rows = block_size_high[bsize];
const int cols = block_size_wide[bsize];
const int16_t *diff = x->plane[0].src_diff;
const uint32_t hash =
av1_get_crc32c_value(&x->txfm_search_info.mb_rd_record->crc_calculator,
(uint8_t *)diff, 2 * rows * cols);
return (hash << 5) + bsize;
}
static inline int32_t find_mb_rd_info(const MB_RD_RECORD *const mb_rd_record,
const int64_t ref_best_rd,
const uint32_t hash) {
int32_t match_index = -1;
if (ref_best_rd != INT64_MAX) {
for (int i = 0; i < mb_rd_record->num; ++i) {
const int index = (mb_rd_record->index_start + i) % RD_RECORD_BUFFER_LEN;
// If there is a match in the mb_rd_record, fetch the RD decision and
// terminate early.
if (mb_rd_record->mb_rd_info[index].hash_value == hash) {
match_index = index;
break;
}
}
}
return match_index;
}
static inline void fetch_mb_rd_info(int n4, const MB_RD_INFO *const mb_rd_info,
RD_STATS *const rd_stats,
MACROBLOCK *const x) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
mbmi->tx_size = mb_rd_info->tx_size;
memcpy(x->txfm_search_info.blk_skip, mb_rd_info->blk_skip,
sizeof(mb_rd_info->blk_skip[0]) * n4);
av1_copy(mbmi->inter_tx_size, mb_rd_info->inter_tx_size);
av1_copy_array(xd->tx_type_map, mb_rd_info->tx_type_map, n4);
*rd_stats = mb_rd_info->rd_stats;
}
int64_t av1_pixel_diff_dist(const MACROBLOCK *x, int plane, int blk_row,
int blk_col, const BLOCK_SIZE plane_bsize,
const BLOCK_SIZE tx_bsize,
unsigned int *block_mse_q8) {
int visible_rows, visible_cols;
const MACROBLOCKD *xd = &x->e_mbd;
get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize, NULL,
NULL, &visible_cols, &visible_rows);
const int diff_stride = block_size_wide[plane_bsize];
const int16_t *diff = x->plane[plane].src_diff;
diff += ((blk_row * diff_stride + blk_col) << MI_SIZE_LOG2);
uint64_t sse =
aom_sum_squares_2d_i16(diff, diff_stride, visible_cols, visible_rows);
if (block_mse_q8 != NULL) {
if (visible_cols > 0 && visible_rows > 0)
*block_mse_q8 =
(unsigned int)((256 * sse) / (visible_cols * visible_rows));
else
*block_mse_q8 = UINT_MAX;
}
return sse;
}
// Computes the residual block's SSE and mean on all visible 4x4s in the
// transform block
static inline int64_t pixel_diff_stats(
MACROBLOCK *x, int plane, int blk_row, int blk_col,
const BLOCK_SIZE plane_bsize, const BLOCK_SIZE tx_bsize,
unsigned int *block_mse_q8, int64_t *per_px_mean, uint64_t *block_var) {
int visible_rows, visible_cols;
const MACROBLOCKD *xd = &x->e_mbd;
get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize, NULL,
NULL, &visible_cols, &visible_rows);
const int diff_stride = block_size_wide[plane_bsize];
const int16_t *diff = x->plane[plane].src_diff;
diff += ((blk_row * diff_stride + blk_col) << MI_SIZE_LOG2);
uint64_t sse = 0;
int sum = 0;
sse = aom_sum_sse_2d_i16(diff, diff_stride, visible_cols, visible_rows, &sum);
if (visible_cols > 0 && visible_rows > 0) {
double norm_factor = 1.0 / (visible_cols * visible_rows);
int sign_sum = sum > 0 ? 1 : -1;
// Conversion to transform domain
*per_px_mean = (int64_t)(norm_factor * abs(sum)) << 7;
*per_px_mean = sign_sum * (*per_px_mean);
*block_mse_q8 = (unsigned int)(norm_factor * (256 * sse));
*block_var = (uint64_t)(sse - (uint64_t)(norm_factor * sum * sum));
} else {
*block_mse_q8 = UINT_MAX;
}
return sse;
}
// Uses simple features on top of DCT coefficients to quickly predict
// whether optimal RD decision is to skip encoding the residual.
// The sse value is stored in dist.
static int predict_skip_txfm(MACROBLOCK *x, BLOCK_SIZE bsize, int64_t *dist,
int reduced_tx_set) {
const TxfmSearchParams *txfm_params = &x->txfm_search_params;
const int bw = block_size_wide[bsize];
const int bh = block_size_high[bsize];
const MACROBLOCKD *xd = &x->e_mbd;
const int16_t dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd);
*dist = av1_pixel_diff_dist(x, 0, 0, 0, bsize, bsize, NULL);
const int64_t mse = *dist / bw / bh;
// Normalized quantizer takes the transform upscaling factor (8 for tx size
// smaller than 32) into account.
const int16_t normalized_dc_q = dc_q >> 3;
const int64_t mse_thresh = (int64_t)normalized_dc_q * normalized_dc_q / 8;
// For faster early skip decision, use dist to compare against threshold so
// that quality risk is less for the skip=1 decision. Otherwise, use mse
// since the fwd_txfm coeff checks will take care of quality
// TODO(any): Use dist to return 0 when skip_txfm_level is 1
int64_t pred_err = (txfm_params->skip_txfm_level >= 2) ? *dist : mse;
// Predict not to skip when error is larger than threshold.
if (pred_err > mse_thresh) return 0;
// Return as skip otherwise for aggressive early skip
else if (txfm_params->skip_txfm_level >= 2)
return 1;
const int max_tx_size = max_predict_sf_tx_size[bsize];
const int tx_h = tx_size_high[max_tx_size];
const int tx_w = tx_size_wide[max_tx_size];
DECLARE_ALIGNED(32, tran_low_t, coefs[32 * 32]);
TxfmParam param;
param.tx_type = DCT_DCT;
param.tx_size = max_tx_size;
param.bd = xd->bd;
param.is_hbd = is_cur_buf_hbd(xd);
param.lossless = 0;
param.tx_set_type = av1_get_ext_tx_set_type(
param.tx_size, is_inter_block(xd->mi[0]), reduced_tx_set);
const int bd_idx = (xd->bd == 8) ? 0 : ((xd->bd == 10) ? 1 : 2);
const uint32_t max_qcoef_thresh = skip_pred_threshold[bd_idx][bsize];
const int16_t *src_diff = x->plane[0].src_diff;
const int n_coeff = tx_w * tx_h;
const int16_t ac_q = av1_ac_quant_QTX(x->qindex, 0, xd->bd);
const uint32_t dc_thresh = max_qcoef_thresh * dc_q;
const uint32_t ac_thresh = max_qcoef_thresh * ac_q;
for (int row = 0; row < bh; row += tx_h) {
for (int col = 0; col < bw; col += tx_w) {
av1_fwd_txfm(src_diff + col, coefs, bw, ¶m);
// Operating on TX domain, not pixels; we want the QTX quantizers
const uint32_t dc_coef = (((uint32_t)abs(coefs[0])) << 7);
if (dc_coef >= dc_thresh) return 0;
for (int i = 1; i < n_coeff; ++i) {
const uint32_t ac_coef = (((uint32_t)abs(coefs[i])) << 7);
if (ac_coef >= ac_thresh) return 0;
}
}
src_diff += tx_h * bw;
}
return 1;
}
// Used to set proper context for early termination with skip = 1.
static inline void set_skip_txfm(MACROBLOCK *x, RD_STATS *rd_stats,
BLOCK_SIZE bsize, int64_t dist) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
const int n4 = bsize_to_num_blk(bsize);
const TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
memset(xd->tx_type_map, DCT_DCT, sizeof(xd->tx_type_map[0]) * n4);
memset(mbmi->inter_tx_size, tx_size, sizeof(mbmi->inter_tx_size));
mbmi->tx_size = tx_size;
for (int i = 0; i < n4; ++i)
set_blk_skip(x->txfm_search_info.blk_skip, 0, i, 1);
rd_stats->skip_txfm = 1;
if (is_cur_buf_hbd(xd)) dist = ROUND_POWER_OF_TWO(dist, (xd->bd - 8) * 2);
rd_stats->dist = rd_stats->sse = (dist << 4);
// Though decision is to make the block as skip based on luma stats,
// it is possible that block becomes non skip after chroma rd. In addition
// intermediate non skip costs calculated by caller function will be
// incorrect, if rate is set as zero (i.e., if zero_blk_rate is not
// accounted). Hence intermediate rate is populated to code the luma tx blks
// as skip, the caller function based on final rd decision (i.e., skip vs
// non-skip) sets the final rate accordingly. Here the rate populated
// corresponds to coding all the tx blocks with zero_blk_rate (based on max tx
// size possible) in the current block. Eg: For 128*128 block, rate would be
// 4 * zero_blk_rate where zero_blk_rate corresponds to coding of one 64x64 tx
// block as 'all zeros'
ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE];
ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE];
av1_get_entropy_contexts(bsize, &xd->plane[0], ctxa, ctxl);
ENTROPY_CONTEXT *ta = ctxa;
ENTROPY_CONTEXT *tl = ctxl;
const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
TXB_CTX txb_ctx;
get_txb_ctx(bsize, tx_size, 0, ta, tl, &txb_ctx);
const int zero_blk_rate = x->coeff_costs.coeff_costs[txs_ctx][PLANE_TYPE_Y]
.txb_skip_cost[txb_ctx.txb_skip_ctx][1];
rd_stats->rate = zero_blk_rate *
(block_size_wide[bsize] >> tx_size_wide_log2[tx_size]) *
(block_size_high[bsize] >> tx_size_high_log2[tx_size]);
}
static inline void save_mb_rd_info(int n4, uint32_t hash,
const MACROBLOCK *const x,
const RD_STATS *const rd_stats,
MB_RD_RECORD *mb_rd_record) {
int index;
if (mb_rd_record->num < RD_RECORD_BUFFER_LEN) {
index =
(mb_rd_record->index_start + mb_rd_record->num) % RD_RECORD_BUFFER_LEN;
++mb_rd_record->num;
} else {
index = mb_rd_record->index_start;
mb_rd_record->index_start =
(mb_rd_record->index_start + 1) % RD_RECORD_BUFFER_LEN;
}
MB_RD_INFO *const mb_rd_info = &mb_rd_record->mb_rd_info[index];
const MACROBLOCKD *const xd = &x->e_mbd;
const MB_MODE_INFO *const mbmi = xd->mi[0];
mb_rd_info->hash_value = hash;
mb_rd_info->tx_size = mbmi->tx_size;
memcpy(mb_rd_info->blk_skip, x->txfm_search_info.blk_skip,
sizeof(mb_rd_info->blk_skip[0]) * n4);
av1_copy(mb_rd_info->inter_tx_size, mbmi->inter_tx_size);
av1_copy_array(mb_rd_info->tx_type_map, xd->tx_type_map, n4);
mb_rd_info->rd_stats = *rd_stats;
}
static int get_search_init_depth(int mi_width, int mi_height, int is_inter,
const SPEED_FEATURES *sf,
int tx_size_search_method) {
if (tx_size_search_method == USE_LARGESTALL) return MAX_VARTX_DEPTH;
if (sf->tx_sf.tx_size_search_lgr_block) {
if (mi_width > mi_size_wide[BLOCK_64X64] ||
mi_height > mi_size_high[BLOCK_64X64])
return MAX_VARTX_DEPTH;
}
if (is_inter) {
return (mi_height != mi_width)
? sf->tx_sf.inter_tx_size_search_init_depth_rect
: sf->tx_sf.inter_tx_size_search_init_depth_sqr;
} else {
return (mi_height != mi_width)
? sf->tx_sf.intra_tx_size_search_init_depth_rect
: sf->tx_sf.intra_tx_size_search_init_depth_sqr;
}
}
static inline void select_tx_block(
const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block,
TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta,
ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left,
RD_STATS *rd_stats, int64_t prev_level_rd, int64_t ref_best_rd,
int *is_cost_valid, FAST_TX_SEARCH_MODE ftxs_mode);
// NOTE: CONFIG_COLLECT_RD_STATS has 3 possible values
// 0: Do not collect any RD stats
// 1: Collect RD stats for transform units
// 2: Collect RD stats for partition units
#if CONFIG_COLLECT_RD_STATS
static inline void get_energy_distribution_fine(
const AV1_COMP *cpi, BLOCK_SIZE bsize, const uint8_t *src, int src_stride,
const uint8_t *dst, int dst_stride, int need_4th, double *hordist,
double *verdist) {
const int bw = block_size_wide[bsize];
const int bh = block_size_high[bsize];
unsigned int esq[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
if (bsize < BLOCK_16X16 || (bsize >= BLOCK_4X16 && bsize <= BLOCK_32X8)) {
// Special cases: calculate 'esq' values manually, as we don't have 'vf'
// functions for the 16 (very small) sub-blocks of this block.
const int w_shift = (bw == 4) ? 0 : (bw == 8) ? 1 : (bw == 16) ? 2 : 3;
const int h_shift = (bh == 4) ? 0 : (bh == 8) ? 1 : (bh == 16) ? 2 : 3;
assert(bw <= 32);
assert(bh <= 32);
assert(((bw - 1) >> w_shift) + (((bh - 1) >> h_shift) << 2) == 15);
if (cpi->common.seq_params->use_highbitdepth) {
const uint16_t *src16 = CONVERT_TO_SHORTPTR(src);
const uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst);
for (int i = 0; i < bh; ++i)
for (int j = 0; j < bw; ++j) {
const int index = (j >> w_shift) + ((i >> h_shift) << 2);
esq[index] +=
(src16[j + i * src_stride] - dst16[j + i * dst_stride]) *
(src16[j + i * src_stride] - dst16[j + i * dst_stride]);
}
} else {
for (int i = 0; i < bh; ++i)
for (int j = 0; j < bw; ++j) {
const int index = (j >> w_shift) + ((i >> h_shift) << 2);
esq[index] += (src[j + i * src_stride] - dst[j + i * dst_stride]) *
(src[j + i * src_stride] - dst[j + i * dst_stride]);
}
}
} else { // Calculate 'esq' values using 'vf' functions on the 16 sub-blocks.
const int f_index =
(bsize < BLOCK_SIZES) ? bsize - BLOCK_16X16 : bsize - BLOCK_8X16;
assert(f_index >= 0 && f_index < BLOCK_SIZES_ALL);
const BLOCK_SIZE subsize = (BLOCK_SIZE)f_index;
assert(block_size_wide[bsize] == 4 * block_size_wide[subsize]);
assert(block_size_high[bsize] == 4 * block_size_high[subsize]);
cpi->ppi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[0]);
cpi->ppi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4,
dst_stride, &esq[1]);
cpi->ppi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2,
dst_stride, &esq[2]);
cpi->ppi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
dst_stride, &esq[3]);
src += bh / 4 * src_stride;
dst += bh / 4 * dst_stride;
cpi->ppi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[4]);
cpi->ppi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4,
dst_stride, &esq[5]);
cpi->ppi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2,
dst_stride, &esq[6]);
cpi->ppi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
dst_stride, &esq[7]);
src += bh / 4 * src_stride;
dst += bh / 4 * dst_stride;
cpi->ppi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[8]);
cpi->ppi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4,
dst_stride, &esq[9]);
cpi->ppi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2,
dst_stride, &esq[10]);
cpi->ppi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
dst_stride, &esq[11]);
src += bh / 4 * src_stride;
dst += bh / 4 * dst_stride;
cpi->ppi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[12]);
cpi->ppi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4,
dst_stride, &esq[13]);
cpi->ppi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2,
dst_stride, &esq[14]);
cpi->ppi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
dst_stride, &esq[15]);
}
double total = (double)esq[0] + esq[1] + esq[2] + esq[3] + esq[4] + esq[5] +
esq[6] + esq[7] + esq[8] + esq[9] + esq[10] + esq[11] +
esq[12] + esq[13] + esq[14] + esq[15];
if (total > 0) {
const double e_recip = 1.0 / total;
hordist[0] = ((double)esq[0] + esq[4] + esq[8] + esq[12]) * e_recip;
hordist[1] = ((double)esq[1] + esq[5] + esq[9] + esq[13]) * e_recip;
hordist[2] = ((double)esq[2] + esq[6] + esq[10] + esq[14]) * e_recip;
if (need_4th) {
hordist[3] = ((double)esq[3] + esq[7] + esq[11] + esq[15]) * e_recip;
}
verdist[0] = ((double)esq[0] + esq[1] + esq[2] + esq[3]) * e_recip;
verdist[1] = ((double)esq[4] + esq[5] + esq[6] + esq[7]) * e_recip;
verdist[2] = ((double)esq[8] + esq[9] + esq[10] + esq[11]) * e_recip;
if (need_4th) {
verdist[3] = ((double)esq[12] + esq[13] + esq[14] + esq[15]) * e_recip;
}
} else {
hordist[0] = verdist[0] = 0.25;
hordist[1] = verdist[1] = 0.25;
hordist[2] = verdist[2] = 0.25;
if (need_4th) {
hordist[3] = verdist[3] = 0.25;
}
}
}
static double get_sse_norm(const int16_t *diff, int stride, int w, int h) {
double sum = 0.0;
for (int j = 0; j < h; ++j) {
for (int i = 0; i < w; ++i) {
const int err = diff[j * stride + i];
sum += err * err;
}
}
assert(w > 0 && h > 0);
return sum / (w * h);
}
static double get_sad_norm(const int16_t *diff, int stride, int w, int h) {
double sum = 0.0;
for (int j = 0; j < h; ++j) {
for (int i = 0; i < w; ++i) {
sum += abs(diff[j * stride + i]);
}
}
assert(w > 0 && h > 0);
return sum / (w * h);
}
static inline void get_2x2_normalized_sses_and_sads(
const AV1_COMP *const cpi, BLOCK_SIZE tx_bsize, const uint8_t *const src,
int src_stride, const uint8_t *const dst, int dst_stride,
const int16_t *const src_diff, int diff_stride, double *const sse_norm_arr,
double *const sad_norm_arr) {
const BLOCK_SIZE tx_bsize_half =
get_partition_subsize(tx_bsize, PARTITION_SPLIT);
if (tx_bsize_half == BLOCK_INVALID) { // manually calculate stats
const int half_width = block_size_wide[tx_bsize] / 2;
const int half_height = block_size_high[tx_bsize] / 2;
for (int row = 0; row < 2; ++row) {
for (int col = 0; col < 2; ++col) {
const int16_t *const this_src_diff =
src_diff + row * half_height * diff_stride + col * half_width;
if (sse_norm_arr) {
sse_norm_arr[row * 2 + col] =
get_sse_norm(this_src_diff, diff_stride, half_width, half_height);
}
if (sad_norm_arr) {
sad_norm_arr[row * 2 + col] =
get_sad_norm(this_src_diff, diff_stride, half_width, half_height);
}
}
}
} else { // use function pointers to calculate stats
const int half_width = block_size_wide[tx_bsize_half];
const int half_height = block_size_high[tx_bsize_half];
const int num_samples_half = half_width * half_height;
for (int row = 0; row < 2; ++row) {
for (int col = 0; col < 2; ++col) {
const uint8_t *const this_src =
src + row * half_height * src_stride + col * half_width;
const uint8_t *const this_dst =
dst + row * half_height * dst_stride + col * half_width;
if (sse_norm_arr) {
unsigned int this_sse;
cpi->ppi->fn_ptr[tx_bsize_half].vf(this_src, src_stride, this_dst,
dst_stride, &this_sse);
sse_norm_arr[row * 2 + col] = (double)this_sse / num_samples_half;
}
if (sad_norm_arr) {
const unsigned int this_sad = cpi->ppi->fn_ptr[tx_bsize_half].sdf(
this_src, src_stride, this_dst, dst_stride);
sad_norm_arr[row * 2 + col] = (double)this_sad / num_samples_half;
}
}
}
}
}
#if CONFIG_COLLECT_RD_STATS == 1
static double get_mean(const int16_t *diff, int stride, int w, int h) {
double sum = 0.0;
for (int j = 0; j < h; ++j) {
for (int i = 0; i < w; ++i) {
sum += diff[j * stride + i];
}
}
assert(w > 0 && h > 0);
return sum / (w * h);
}
static inline void PrintTransformUnitStats(
const AV1_COMP *const cpi, MACROBLOCK *x, const RD_STATS *const rd_stats,
int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
TX_TYPE tx_type, int64_t rd) {
if (rd_stats->rate == INT_MAX || rd_stats->dist == INT64_MAX) return;
// Generate small sample to restrict output size.
static unsigned int seed = 21743;
if (lcg_rand16(&seed) % 256 > 0) return;
const char output_file[] = "tu_stats.txt";
FILE *fout = fopen(output_file, "a");
if (!fout) return;
const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size];
const MACROBLOCKD *const xd = &x->e_mbd;
const int plane = 0;
struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int txw = tx_size_wide[tx_size];
const int txh = tx_size_high[tx_size];
const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3;
const int q_step = p->dequant_QTX[1] >> dequant_shift;
const int num_samples = txw * txh;
const double rate_norm = (double)rd_stats->rate / num_samples;
const double dist_norm = (double)rd_stats->dist / num_samples;
fprintf(fout, "%g %g", rate_norm, dist_norm);
const int src_stride = p->src.stride;
const uint8_t *const src =
&p->src.buf[(blk_row * src_stride + blk_col) << MI_SIZE_LOG2];
const int dst_stride = pd->dst.stride;
const uint8_t *const dst =
&pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
unsigned int sse;
cpi->ppi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &sse);
const double sse_norm = (double)sse / num_samples;
const unsigned int sad =
cpi->ppi->fn_ptr[tx_bsize].sdf(src, src_stride, dst, dst_stride);
const double sad_norm = (double)sad / num_samples;
fprintf(fout, " %g %g", sse_norm, sad_norm);
const int diff_stride = block_size_wide[plane_bsize];
const int16_t *const src_diff =
&p->src_diff[(blk_row * diff_stride + blk_col) << MI_SIZE_LOG2];
double sse_norm_arr[4], sad_norm_arr[4];
get_2x2_normalized_sses_and_sads(cpi, tx_bsize, src, src_stride, dst,
dst_stride, src_diff, diff_stride,
sse_norm_arr, sad_norm_arr);
for (int i = 0; i < 4; ++i) {
fprintf(fout, " %g", sse_norm_arr[i]);
}
for (int i = 0; i < 4; ++i) {
fprintf(fout, " %g", sad_norm_arr[i]);
}
const TX_TYPE_1D tx_type_1d_row = htx_tab[tx_type];
const TX_TYPE_1D tx_type_1d_col = vtx_tab[tx_type];
fprintf(fout, " %d %d %d %d %d", q_step, tx_size_wide[tx_size],
tx_size_high[tx_size], tx_type_1d_row, tx_type_1d_col);
int model_rate;
int64_t model_dist;
model_rd_sse_fn[MODELRD_CURVFIT](cpi, x, tx_bsize, plane, sse, num_samples,
&model_rate, &model_dist);
const double model_rate_norm = (double)model_rate / num_samples;
const double model_dist_norm = (double)model_dist / num_samples;
fprintf(fout, " %g %g", model_rate_norm, model_dist_norm);
const double mean = get_mean(src_diff, diff_stride, txw, txh);
float hor_corr, vert_corr;
av1_get_horver_correlation_full(src_diff, diff_stride, txw, txh, &hor_corr,
&vert_corr);
fprintf(fout, " %g %g %g", mean, hor_corr, vert_corr);
double hdist[4] = { 0 }, vdist[4] = { 0 };
get_energy_distribution_fine(cpi, tx_bsize, src, src_stride, dst, dst_stride,
1, hdist, vdist);
fprintf(fout, " %g %g %g %g %g %g %g %g", hdist[0], hdist[1], hdist[2],
hdist[3], vdist[0], vdist[1], vdist[2], vdist[3]);
fprintf(fout, " %d %" PRId64, x->rdmult, rd);
fprintf(fout, "\n");
fclose(fout);
}
#endif // CONFIG_COLLECT_RD_STATS == 1
#if CONFIG_COLLECT_RD_STATS >= 2
static int64_t get_sse(const AV1_COMP *cpi, const MACROBLOCK *x) {
const AV1_COMMON *cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
const MACROBLOCKD *xd = &x->e_mbd;
const MB_MODE_INFO *mbmi = xd->mi[0];
int64_t total_sse = 0;
for (int plane = 0; plane < num_planes; ++plane) {
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
const BLOCK_SIZE bs =
get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y);
unsigned int sse;
if (plane) continue;
cpi->ppi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf,
pd->dst.stride, &sse);
total_sse += sse;
}
total_sse <<= 4;
return total_sse;
}
static int get_est_rate_dist(const TileDataEnc *tile_data, BLOCK_SIZE bsize,
int64_t sse, int *est_residue_cost,
int64_t *est_dist) {
const InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize];
if (md->ready) {
if (sse < md->dist_mean) {
*est_residue_cost = 0;
*est_dist = sse;
} else {
*est_dist = (int64_t)round(md->dist_mean);
const double est_ld = md->a * sse + md->b;
// Clamp estimated rate cost by INT_MAX / 2.
// TODO(angiebird@google.com): find better solution than clamping.
if (fabs(est_ld) < 1e-2) {
*est_residue_cost = INT_MAX / 2;
} else {
double est_residue_cost_dbl = ((sse - md->dist_mean) / est_ld);
if (est_residue_cost_dbl < 0) {
*est_residue_cost = 0;
} else {
*est_residue_cost =
(int)AOMMIN((int64_t)round(est_residue_cost_dbl), INT_MAX / 2);
}
}
if (*est_residue_cost <= 0) {
*est_residue_cost = 0;
*est_dist = sse;
}
}
return 1;
}
return 0;
}
static double get_highbd_diff_mean(const uint8_t *src8, int src_stride,
const uint8_t *dst8, int dst_stride, int w,
int h) {
const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
const uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
double sum = 0.0;
for (int j = 0; j < h; ++j) {
for (int i = 0; i < w; ++i) {
const int diff = src[j * src_stride + i] - dst[j * dst_stride + i];
sum += diff;
}
}
assert(w > 0 && h > 0);
return sum / (w * h);
}
static double get_diff_mean(const uint8_t *src, int src_stride,
const uint8_t *dst, int dst_stride, int w, int h) {
double sum = 0.0;
for (int j = 0; j < h; ++j) {
for (int i = 0; i < w; ++i) {
const int diff = src[j * src_stride + i] - dst[j * dst_stride + i];
sum += diff;
}
}
assert(w > 0 && h > 0);
return sum / (w * h);
}
static inline void PrintPredictionUnitStats(const AV1_COMP *const cpi,
const TileDataEnc *tile_data,
MACROBLOCK *x,
const RD_STATS *const rd_stats,
BLOCK_SIZE plane_bsize) {
if (rd_stats->rate == INT_MAX || rd_stats->dist == INT64_MAX) return;
if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1 &&
(tile_data == NULL ||
!tile_data->inter_mode_rd_models[plane_bsize].ready))
return;
(void)tile_data;
// Generate small sample to restrict output size.
static unsigned int seed = 95014;
if ((lcg_rand16(&seed) % (1 << (14 - num_pels_log2_lookup[plane_bsize]))) !=
1)
return;
const char output_file[] = "pu_stats.txt";
FILE *fout = fopen(output_file, "a");
if (!fout) return;
MACROBLOCKD *const xd = &x->e_mbd;
const int plane = 0;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *pd = &xd->plane[plane];
const int diff_stride = block_size_wide[plane_bsize];
int bw, bh;
get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL, &bw,
&bh);
const int num_samples = bw * bh;
const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3;
const int q_step = p->dequant_QTX[1] >> dequant_shift;
const int shift = (xd->bd - 8);
const double rate_norm = (double)rd_stats->rate / num_samples;
const double dist_norm = (double)rd_stats->dist / num_samples;
const double rdcost_norm =
(double)RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) / num_samples;
fprintf(fout, "%g %g %g", rate_norm, dist_norm, rdcost_norm);
const int src_stride = p->src.stride;
const uint8_t *const src = p->src.buf;
const int dst_stride = pd->dst.stride;
const uint8_t *const dst = pd->dst.buf;
const int16_t *const src_diff = p->src_diff;
int64_t sse = calculate_sse(xd, p, pd, bw, bh);
const double sse_norm = (double)sse / num_samples;
const unsigned int sad =
cpi->ppi->fn_ptr[plane_bsize].sdf(src, src_stride, dst, dst_stride);
const double sad_norm =
(double)sad / (1 << num_pels_log2_lookup[plane_bsize]);
fprintf(fout, " %g %g", sse_norm, sad_norm);
double sse_norm_arr[4], sad_norm_arr[4];
get_2x2_normalized_sses_and_sads(cpi, plane_bsize, src, src_stride, dst,
dst_stride, src_diff, diff_stride,
sse_norm_arr, sad_norm_arr);
if (shift) {
for (int k = 0; k < 4; ++k) sse_norm_arr[k] /= (1 << (2 * shift));
for (int k = 0; k < 4; ++k) sad_norm_arr[k] /= (1 << shift);
}
for (int i = 0; i < 4; ++i) {
fprintf(fout, " %g", sse_norm_arr[i]);
}
for (int i = 0; i < 4; ++i) {
fprintf(fout, " %g", sad_norm_arr[i]);
}
fprintf(fout, " %d %d %d %d", q_step, x->rdmult, bw, bh);
int model_rate;
int64_t model_dist;
model_rd_sse_fn[MODELRD_CURVFIT](cpi, x, plane_bsize, plane, sse, num_samples,
&model_rate, &model_dist);
const double model_rdcost_norm =
(double)RDCOST(x->rdmult, model_rate, model_dist) / num_samples;
const double model_rate_norm = (double)model_rate / num_samples;
const double model_dist_norm = (double)model_dist / num_samples;
fprintf(fout, " %g %g %g", model_rate_norm, model_dist_norm,
model_rdcost_norm);
double mean;
if (is_cur_buf_hbd(xd)) {
mean = get_highbd_diff_mean(p->src.buf, p->src.stride, pd->dst.buf,
pd->dst.stride, bw, bh);
} else {
mean = get_diff_mean(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride,
bw, bh);
}
mean /= (1 << shift);
float hor_corr, vert_corr;
av1_get_horver_correlation_full(src_diff, diff_stride, bw, bh, &hor_corr,
&vert_corr);
fprintf(fout, " %g %g %g", mean, hor_corr, vert_corr);
double hdist[4] = { 0 }, vdist[4] = { 0 };
get_energy_distribution_fine(cpi, plane_bsize, src, src_stride, dst,
dst_stride, 1, hdist, vdist);
fprintf(fout, " %g %g %g %g %g %g %g %g", hdist[0], hdist[1], hdist[2],
hdist[3], vdist[0], vdist[1], vdist[2], vdist[3]);
if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) {
assert(tile_data->inter_mode_rd_models[plane_bsize].ready);
const int64_t overall_sse = get_sse(cpi, x);
int est_residue_cost = 0;
int64_t est_dist = 0;
get_est_rate_dist(tile_data, plane_bsize, overall_sse, &est_residue_cost,
&est_dist);
const double est_residue_cost_norm = (double)est_residue_cost / num_samples;
const double est_dist_norm = (double)est_dist / num_samples;
const double est_rdcost_norm =
(double)RDCOST(x->rdmult, est_residue_cost, est_dist) / num_samples;
fprintf(fout, " %g %g %g", est_residue_cost_norm, est_dist_norm,
est_rdcost_norm);
}
fprintf(fout, "\n");
fclose(fout);
}
#endif // CONFIG_COLLECT_RD_STATS >= 2
#endif // CONFIG_COLLECT_RD_STATS
static inline void inverse_transform_block_facade(MACROBLOCK *const x,
int plane, int block,
int blk_row, int blk_col,
int eob, int reduced_tx_set) {
if (!eob) return;
struct macroblock_plane *const p = &x->plane[plane];
MACROBLOCKD *const xd = &x->e_mbd;
tran_low_t *dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
const PLANE_TYPE plane_type = get_plane_type(plane);
const TX_SIZE tx_size = av1_get_tx_size(plane, xd);
const TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col,
tx_size, reduced_tx_set);
struct macroblockd_plane *const pd = &xd->plane[plane];
const int dst_stride = pd->dst.stride;
uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst,
dst_stride, eob, reduced_tx_set);
}
static inline void recon_intra(const AV1_COMP *cpi, MACROBLOCK *x, int plane,
int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
const TXB_CTX *const txb_ctx, int skip_trellis,
TX_TYPE best_tx_type, int do_quant,
int *rate_cost, uint16_t best_eob) {
const AV1_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
const int is_inter = is_inter_block(mbmi);
if (!is_inter && best_eob &&
(blk_row + tx_size_high_unit[tx_size] < mi_size_high[plane_bsize] ||
blk_col + tx_size_wide_unit[tx_size] < mi_size_wide[plane_bsize])) {
// if the quantized coefficients are stored in the dqcoeff buffer, we don't
// need to do transform and quantization again.
if (do_quant) {
TxfmParam txfm_param_intra;
QUANT_PARAM quant_param_intra;
av1_setup_xform(cm, x, tx_size, best_tx_type, &txfm_param_intra);
av1_setup_quant(tx_size, !skip_trellis,
skip_trellis
? (USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B
: AV1_XFORM_QUANT_FP)
: AV1_XFORM_QUANT_FP,
cpi->oxcf.q_cfg.quant_b_adapt, &quant_param_intra);
av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, best_tx_type,
&quant_param_intra);
av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize,
&txfm_param_intra, &quant_param_intra);
if (quant_param_intra.use_optimize_b) {
av1_optimize_b(cpi, x, plane, block, tx_size, best_tx_type, txb_ctx,
rate_cost);
}
}
inverse_transform_block_facade(x, plane, block, blk_row, blk_col,
x->plane[plane].eobs[block],
cm->features.reduced_tx_set_used);
// This may happen because of hash collision. The eob stored in the hash
// table is non-zero, but the real eob is zero. We need to make sure tx_type
// is DCT_DCT in this case.
if (plane == 0 && x->plane[plane].eobs[block] == 0 &&
best_tx_type != DCT_DCT) {
update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT);
}
}
}
static unsigned pixel_dist_visible_only(
const AV1_COMP *const cpi, const MACROBLOCK *x, const uint8_t *src,
const int src_stride, const uint8_t *dst, const int dst_stride,
const BLOCK_SIZE tx_bsize, int txb_rows, int txb_cols, int visible_rows,
int visible_cols) {
unsigned sse;
if (txb_rows == visible_rows && txb_cols == visible_cols) {
cpi->ppi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &sse);
return sse;
}
#if CONFIG_AV1_HIGHBITDEPTH
const MACROBLOCKD *xd = &x->e_mbd;
if (is_cur_buf_hbd(xd)) {
uint64_t sse64 = aom_highbd_sse_odd_size(src, src_stride, dst, dst_stride,
visible_cols, visible_rows);
return (unsigned int)ROUND_POWER_OF_TWO(sse64, (xd->bd - 8) * 2);
}
#else
(void)x;
#endif
sse = aom_sse_odd_size(src, src_stride, dst, dst_stride, visible_cols,
visible_rows);
return sse;
}
// Compute the pixel domain distortion from src and dst on all visible 4x4s in
// the
// transform block.
static unsigned pixel_dist(const AV1_COMP *const cpi, const MACROBLOCK *x,
int plane, const uint8_t *src, const int src_stride,
const uint8_t *dst, const int dst_stride,
int blk_row, int blk_col,
const BLOCK_SIZE plane_bsize,
const BLOCK_SIZE tx_bsize) {
int txb_rows, txb_cols, visible_rows, visible_cols;
const MACROBLOCKD *xd = &x->e_mbd;
get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize,
&txb_cols, &txb_rows, &visible_cols, &visible_rows);
assert(visible_rows > 0);
assert(visible_cols > 0);
unsigned sse = pixel_dist_visible_only(cpi, x, src, src_stride, dst,
dst_stride, tx_bsize, txb_rows,
txb_cols, visible_rows, visible_cols);
return sse;
}
static inline int64_t dist_block_px_domain(const AV1_COMP *cpi, MACROBLOCK *x,
int plane, BLOCK_SIZE plane_bsize,
int block, int blk_row, int blk_col,
TX_SIZE tx_size) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblock_plane *const p = &x->plane[plane];
const uint16_t eob = p->eobs[block];
const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size];
const int bsw = block_size_wide[tx_bsize];
const int bsh = block_size_high[tx_bsize];
const int src_stride = x->plane[plane].src.stride;
const int dst_stride = xd->plane[plane].dst.stride;
// Scale the transform block index to pixel unit.
const int src_idx = (blk_row * src_stride + blk_col) << MI_SIZE_LOG2;
const int dst_idx = (blk_row * dst_stride + blk_col) << MI_SIZE_LOG2;
const uint8_t *src = &x->plane[plane].src.buf[src_idx];
const uint8_t *dst = &xd->plane[plane].dst.buf[dst_idx];
const tran_low_t *dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
assert(cpi != NULL);
assert(tx_size_wide_log2[0] == tx_size_high_log2[0]);
uint8_t *recon;
DECLARE_ALIGNED(16, uint16_t, recon16[MAX_TX_SQUARE]);
#if CONFIG_AV1_HIGHBITDEPTH
if (is_cur_buf_hbd(xd)) {
recon = CONVERT_TO_BYTEPTR(recon16);
aom_highbd_convolve_copy(CONVERT_TO_SHORTPTR(dst), dst_stride,
CONVERT_TO_SHORTPTR(recon), MAX_TX_SIZE, bsw, bsh);
} else {
recon = (uint8_t *)recon16;
aom_convolve_copy(dst, dst_stride, recon, MAX_TX_SIZE, bsw, bsh);
}
#else
recon = (uint8_t *)recon16;
aom_convolve_copy(dst, dst_stride, recon, MAX_TX_SIZE, bsw, bsh);
#endif
const PLANE_TYPE plane_type = get_plane_type(plane);
TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col, tx_size,
cpi->common.features.reduced_tx_set_used);
av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, recon,
MAX_TX_SIZE, eob,
cpi->common.features.reduced_tx_set_used);
return 16 * pixel_dist(cpi, x, plane, src, src_stride, recon, MAX_TX_SIZE,
blk_row, blk_col, plane_bsize, tx_bsize);
}
// pruning thresholds for prune_txk_type and prune_txk_type_separ
static const int prune_factors[5] = { 200, 200, 120, 80, 40 }; // scale 1000
static const int mul_factors[5] = { 80, 80, 70, 50, 30 }; // scale 100
// R-D costs are sorted in ascending order.
static inline void sort_rd(int64_t rds[], int txk[], int len) {
int i, j, k;
for (i = 1; i <= len - 1; ++i) {
for (j = 0; j < i; ++j) {
if (rds[j] > rds[i]) {
int64_t temprd;
int tempi;
temprd = rds[i];
tempi = txk[i];
for (k = i; k > j; k--) {
rds[k] = rds[k - 1];
txk[k] = txk[k - 1];
}
rds[j] = temprd;
txk[j] = tempi;
break;
}
}
}
}
static inline int64_t av1_block_error_qm(
const tran_low_t *coeff, const tran_low_t *dqcoeff, intptr_t block_size,
const qm_val_t *qmatrix, const int16_t *scan, int64_t *ssz, int bd) {
int i;
int64_t error = 0, sqcoeff = 0;
int shift = 2 * (bd - 8);
int rounding = (1 << shift) >> 1;
for (i = 0; i < block_size; i++) {
int64_t weight = qmatrix[scan[i]];
int64_t dd = coeff[i] - dqcoeff[i];
dd *= weight;
int64_t cc = coeff[i];
cc *= weight;
// The ranges of coeff and dqcoeff are
// bd8 : 18 bits (including sign)
// bd10: 20 bits (including sign)
// bd12: 22 bits (including sign)
// As AOM_QM_BITS is 5, the intermediate quantities in the calculation
// below should fit in 54 bits, thus no overflow should happen.
error += (dd * dd + (1 << (2 * AOM_QM_BITS - 1))) >> (2 * AOM_QM_BITS);
sqcoeff += (cc * cc + (1 << (2 * AOM_QM_BITS - 1))) >> (2 * AOM_QM_BITS);
}
error = (error + rounding) >> shift;
sqcoeff = (sqcoeff + rounding) >> shift;
*ssz = sqcoeff;
return error;
}
static inline void dist_block_tx_domain(MACROBLOCK *x, int plane, int block,
TX_SIZE tx_size,
const qm_val_t *qmatrix,
const int16_t *scan, int64_t *out_dist,
int64_t *out_sse) {
const struct macroblock_plane *const p = &x->plane[plane];
// Transform domain distortion computation is more efficient as it does
// not involve an inverse transform, but it is less accurate.
const int buffer_length = av1_get_max_eob(tx_size);
int64_t this_sse;
// TX-domain results need to shift down to Q2/D10 to match pixel
// domain distortion values which are in Q2^2
int shift = (MAX_TX_SCALE - av1_get_tx_scale(tx_size)) * 2;
const int block_offset = BLOCK_OFFSET(block);
tran_low_t *const coeff = p->coeff + block_offset;
tran_low_t *const dqcoeff = p->dqcoeff + block_offset;
#if CONFIG_AV1_HIGHBITDEPTH
MACROBLOCKD *const xd = &x->e_mbd;
if (is_cur_buf_hbd(xd)) {
if (qmatrix == NULL || !x->txfm_search_params.use_qm_dist_metric) {
*out_dist = av1_highbd_block_error(coeff, dqcoeff, buffer_length,
&this_sse, xd->bd);
} else {
*out_dist = av1_block_error_qm(coeff, dqcoeff, buffer_length, qmatrix,
scan, &this_sse, xd->bd);
}
} else {
#endif
if (qmatrix == NULL || !x->txfm_search_params.use_qm_dist_metric) {
*out_dist = av1_block_error(coeff, dqcoeff, buffer_length, &this_sse);
} else {
*out_dist = av1_block_error_qm(coeff, dqcoeff, buffer_length, qmatrix,
scan, &this_sse, 8);
}
#if CONFIG_AV1_HIGHBITDEPTH
}
#endif
*out_dist = RIGHT_SIGNED_SHIFT(*out_dist, shift);
*out_sse = RIGHT_SIGNED_SHIFT(this_sse, shift);
}
static uint16_t prune_txk_type_separ(
const AV1_COMP *cpi, MACROBLOCK *x, int plane, int block, TX_SIZE tx_size,
int blk_row, int blk_col, BLOCK_SIZE plane_bsize, int *txk_map,
int16_t allowed_tx_mask, int prune_factor, const TXB_CTX *const txb_ctx,
int reduced_tx_set_used, int64_t ref_best_rd, int num_sel) {
const AV1_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
int idx;
int64_t rds_v[4];
int64_t rds_h[4];
int idx_v[4] = { 0, 1, 2, 3 };
int idx_h[4] = { 0, 1, 2, 3 };
int skip_v[4] = { 0 };
int skip_h[4] = { 0 };
const int idx_map[16] = {
DCT_DCT, DCT_ADST, DCT_FLIPADST, V_DCT,
ADST_DCT, ADST_ADST, ADST_FLIPADST, V_ADST,
FLIPADST_DCT, FLIPADST_ADST, FLIPADST_FLIPADST, V_FLIPADST,
H_DCT, H_ADST, H_FLIPADST, IDTX
};
const int sel_pattern_v[16] = {
0, 0, 1, 1, 0, 2, 1, 2, 2, 0, 3, 1, 3, 2, 3, 3
};
const int sel_pattern_h[16] = {
0, 1, 0, 1, 2, 0, 2, 1, 2, 3, 0, 3, 1, 3, 2, 3
};
QUANT_PARAM quant_param;
TxfmParam txfm_param;
av1_setup_xform(cm, x, tx_size, DCT_DCT, &txfm_param);
av1_setup_quant(tx_size, 1, AV1_XFORM_QUANT_B, cpi->oxcf.q_cfg.quant_b_adapt,
&quant_param);
int tx_type;
// to ensure we can try ones even outside of ext_tx_set of current block
// this function should only be called for size < 16
assert(txsize_sqr_up_map[tx_size] <= TX_16X16);
txfm_param.tx_set_type = EXT_TX_SET_ALL16;
int rate_cost = 0;
int64_t dist = 0, sse = 0;
// evaluate horizontal with vertical DCT
for (idx = 0; idx < 4; ++idx) {
tx_type = idx_map[idx];
txfm_param.tx_type = tx_type;
av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
&quant_param);
av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param,
&quant_param);
const SCAN_ORDER *const scan_order =
get_scan(txfm_param.tx_size, txfm_param.tx_type);
dist_block_tx_domain(x, plane, block, tx_size, quant_param.qmatrix,
scan_order->scan, &dist, &sse);
rate_cost = av1_cost_coeffs_txb_laplacian(x, plane, block, tx_size, tx_type,
txb_ctx, reduced_tx_set_used, 0);
rds_h[idx] = RDCOST(x->rdmult, rate_cost, dist);
if ((rds_h[idx] - (rds_h[idx] >> 2)) > ref_best_rd) {
skip_h[idx] = 1;
}
}
sort_rd(rds_h, idx_h, 4);
for (idx = 1; idx < 4; idx++) {
if (rds_h[idx] > rds_h[0] * 1.2) skip_h[idx_h[idx]] = 1;
}
if (skip_h[idx_h[0]]) return (uint16_t)0xFFFF;
// evaluate vertical with the best horizontal chosen
rds_v[0] = rds_h[0];
int start_v = 1, end_v = 4;
const int *idx_map_v = idx_map + idx_h[0];
for (idx = start_v; idx < end_v; ++idx) {
tx_type = idx_map_v[idx_v[idx] * 4];
txfm_param.tx_type = tx_type;
av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
&quant_param);
av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param,
&quant_param);
const SCAN_ORDER *const scan_order =
get_scan(txfm_param.tx_size, txfm_param.tx_type);
dist_block_tx_domain(x, plane, block, tx_size, quant_param.qmatrix,
scan_order->scan, &dist, &sse);
rate_cost = av1_cost_coeffs_txb_laplacian(x, plane, block, tx_size, tx_type,
txb_ctx, reduced_tx_set_used, 0);
rds_v[idx] = RDCOST(x->rdmult, rate_cost, dist);
if ((rds_v[idx] - (rds_v[idx] >> 2)) > ref_best_rd) {
skip_v[idx] = 1;
}
}
sort_rd(rds_v, idx_v, 4);
for (idx = 1; idx < 4; idx++) {
if (rds_v[idx] > rds_v[0] * 1.2) skip_v[idx_v[idx]] = 1;
}
// combine rd_h and rd_v to prune tx candidates
int i_v, i_h;
int64_t rds[16];
int num_cand = 0, last = TX_TYPES - 1;
for (int i = 0; i < 16; i++) {
i_v = sel_pattern_v[i];
i_h = sel_pattern_h[i];
tx_type = idx_map[idx_v[i_v] * 4 + idx_h[i_h]];
if (!(allowed_tx_mask & (1 << tx_type)) || skip_h[idx_h[i_h]] ||
skip_v[idx_v[i_v]]) {
txk_map[last] = tx_type;
last--;
} else {
txk_map[num_cand] = tx_type;
rds[num_cand] = rds_v[i_v] + rds_h[i_h];
if (rds[num_cand] == 0) rds[num_cand] = 1;
num_cand++;
}
}
sort_rd(rds, txk_map, num_cand);
uint16_t prune = (uint16_t)(~(1 << txk_map[0]));
num_sel = AOMMIN(num_sel, num_cand);
for (int i = 1; i < num_sel; i++) {
int64_t factor = 1800 * (rds[i] - rds[0]) / (rds[0]);
if (factor < (int64_t)prune_factor)
prune &= ~(1 << txk_map[i]);
else
break;
}
return prune;
}
static uint16_t prune_txk_type(const AV1_COMP *cpi, MACROBLOCK *x, int plane,
int block, TX_SIZE tx_size, int blk_row,
int blk_col, BLOCK_SIZE plane_bsize,
int *txk_map, uint16_t allowed_tx_mask,
int prune_factor, const TXB_CTX *const txb_ctx,
int reduced_tx_set_used) {
const AV1_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
int tx_type;
int64_t rds[TX_TYPES];
int num_cand = 0;
int last = TX_TYPES - 1;
TxfmParam txfm_param;
QUANT_PARAM quant_param;
av1_setup_xform(cm, x, tx_size, DCT_DCT, &txfm_param);
av1_setup_quant(tx_size, 1, AV1_XFORM_QUANT_B, cpi->oxcf.q_cfg.quant_b_adapt,
&quant_param);
for (int idx = 0; idx < TX_TYPES; idx++) {
tx_type = idx;
int rate_cost = 0;
int64_t dist = 0, sse = 0;
if (!(allowed_tx_mask & (1 << tx_type))) {
txk_map[last] = tx_type;
last--;
continue;
}
txfm_param.tx_type = tx_type;
av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
&quant_param);
// do txfm and quantization
av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param,
&quant_param);
// estimate rate cost
rate_cost = av1_cost_coeffs_txb_laplacian(x, plane, block, tx_size, tx_type,
txb_ctx, reduced_tx_set_used, 0);
// tx domain dist
const SCAN_ORDER *const scan_order =
get_scan(txfm_param.tx_size, txfm_param.tx_type);
dist_block_tx_domain(x, plane, block, tx_size, quant_param.qmatrix,
scan_order->scan, &dist, &sse);
txk_map[num_cand] = tx_type;
rds[num_cand] = RDCOST(x->rdmult, rate_cost, dist);
if (rds[num_cand] == 0) rds[num_cand] = 1;
num_cand++;
}
if (num_cand == 0) return (uint16_t)0xFFFF;
sort_rd(rds, txk_map, num_cand);
uint16_t prune = (uint16_t)(~(1 << txk_map[0]));
// 0 < prune_factor <= 1000 controls aggressiveness
int64_t factor = 0;
for (int idx = 1; idx < num_cand; idx++) {
factor = 1000 * (rds[idx] - rds[0]) / rds[0];
if (factor < (int64_t)prune_factor)
prune &= ~(1 << txk_map[idx]);
else
break;
}
return prune;
}
// These thresholds were calibrated to provide a certain number of TX types
// pruned by the model on average, i.e. selecting a threshold with index i
// will lead to pruning i+1 TX types on average
static const float *prune_2D_adaptive_thresholds[] = {
// TX_4X4
(float[]){ 0.00549f, 0.01306f, 0.02039f, 0.02747f, 0.03406f, 0.04065f,
0.04724f, 0.05383f, 0.06067f, 0.06799f, 0.07605f, 0.08533f,
0.09778f, 0.11780f },
// TX_8X8
(float[]){ 0.00037f, 0.00183f, 0.00525f, 0.01038f, 0.01697f, 0.02502f,
0.03381f, 0.04333f, 0.05286f, 0.06287f, 0.07434f, 0.08850f,
0.10803f, 0.14124f },
// TX_16X16
(float[]){ 0.01404f, 0.02000f, 0.04211f, 0.05164f, 0.05798f, 0.06335f,
0.06897f, 0.07629f, 0.08875f, 0.11169f },
// TX_32X32
NULL,
// TX_64X64
NULL,
// TX_4X8
(float[]){ 0.00183f, 0.00745f, 0.01428f, 0.02185f, 0.02966f, 0.03723f,
0.04456f, 0.05188f, 0.05920f, 0.06702f, 0.07605f, 0.08704f,
0.10168f, 0.12585f },
// TX_8X4
(float[]){ 0.00085f, 0.00476f, 0.01135f, 0.01892f, 0.02698f, 0.03528f,
0.04358f, 0.05164f, 0.05994f, 0.06848f, 0.07849f, 0.09021f,
0.10583f, 0.13123f },
// TX_8X16
(float[]){ 0.00037f, 0.00232f, 0.00671f, 0.01257f, 0.01965f, 0.02722f,
0.03552f, 0.04382f, 0.05237f, 0.06189f, 0.07336f, 0.08728f,
0.10730f, 0.14221f },
// TX_16X8
(float[]){ 0.00061f, 0.00330f, 0.00818f, 0.01453f, 0.02185f, 0.02966f,
0.03772f, 0.04578f, 0.05383f, 0.06262f, 0.07288f, 0.08582f,
0.10339f, 0.13464f },
// TX_16X32
NULL,
// TX_32X16
NULL,
// TX_32X64
NULL,
// TX_64X32
NULL,
// TX_4X16
(float[]){ 0.00232f, 0.00671f, 0.01257f, 0.01941f, 0.02673f, 0.03430f,
0.04211f, 0.04968f, 0.05750f, 0.06580f, 0.07507f, 0.08655f,
0.10242f, 0.12878f },
// TX_16X4
(float[]){ 0.00110f, 0.00525f, 0.01208f, 0.01990f, 0.02795f, 0.03601f,
0.04358f, 0.05115f, 0.05896f, 0.06702f, 0.07629f, 0.08752f,
0.10217f, 0.12610f },
// TX_8X32
NULL,
// TX_32X8
NULL,
// TX_16X64
NULL,
// TX_64X16
NULL,
};
static inline float get_adaptive_thresholds(
TX_SIZE tx_size, TxSetType tx_set_type,
TX_TYPE_PRUNE_MODE prune_2d_txfm_mode) {
const int prune_aggr_table[5][2] = {
{ 4, 1 }, { 6, 3 }, { 9, 6 }, { 9, 6 }, { 12, 9 }
};
int pruning_aggressiveness = 0;
if (tx_set_type == EXT_TX_SET_ALL16)
pruning_aggressiveness =
prune_aggr_table[prune_2d_txfm_mode - TX_TYPE_PRUNE_1][0];
else if (tx_set_type == EXT_TX_SET_DTT9_IDTX_1DDCT)
pruning_aggressiveness =
prune_aggr_table[prune_2d_txfm_mode - TX_TYPE_PRUNE_1][1];
return prune_2D_adaptive_thresholds[tx_size][pruning_aggressiveness];
}
static inline void get_energy_distribution_finer(const int16_t *diff,
int stride, int bw, int bh,
float *hordist,
float *verdist) {
// First compute downscaled block energy values (esq); downscale factors
// are defined by w_shift and h_shift.
unsigned int esq[256];
const int w_shift = bw <= 8 ? 0 : 1;
const int h_shift = bh <= 8 ? 0 : 1;
const int esq_w = bw >> w_shift;
const int esq_h = bh >> h_shift;
const int esq_sz = esq_w * esq_h;
int i, j;
memset(esq, 0, esq_sz * sizeof(esq[0]));
if (w_shift) {
for (i = 0; i < bh; i++) {
unsigned int *cur_esq_row = esq + (i >> h_shift) * esq_w;
const int16_t *cur_diff_row = diff + i * stride;
for (j = 0; j < bw; j += 2) {
cur_esq_row[j >> 1] += (cur_diff_row[j] * cur_diff_row[j] +
cur_diff_row[j + 1] * cur_diff_row[j + 1]);
}
}
} else {
for (i = 0; i < bh; i++) {
unsigned int *cur_esq_row = esq + (i >> h_shift) * esq_w;
const int16_t *cur_diff_row = diff + i * stride;
for (j = 0; j < bw; j++) {
cur_esq_row[j] += cur_diff_row[j] * cur_diff_row[j];
}
}
}
uint64_t total = 0;
for (i = 0; i < esq_sz; i++) total += esq[i];
// Output hordist and verdist arrays are normalized 1D projections of esq
if (total == 0) {
float hor_val = 1.0f / esq_w;
for (j = 0; j < esq_w - 1; j++) hordist[j] = hor_val;
float ver_val = 1.0f / esq_h;
for (i = 0; i < esq_h - 1; i++) verdist[i] = ver_val;
return;
}
const float e_recip = 1.0f / (float)total;
memset(hordist, 0, (esq_w - 1) * sizeof(hordist[0]));
memset(verdist, 0, (esq_h - 1) * sizeof(verdist[0]));
const unsigned int *cur_esq_row;
for (i = 0; i < esq_h - 1; i++) {
cur_esq_row = esq + i * esq_w;
for (j = 0; j < esq_w - 1; j++) {
hordist[j] += (float)cur_esq_row[j];
verdist[i] += (float)cur_esq_row[j];
}
verdist[i] += (float)cur_esq_row[j];
}
cur_esq_row = esq + i * esq_w;
for (j = 0; j < esq_w - 1; j++) hordist[j] += (float)cur_esq_row[j];
for (j = 0; j < esq_w - 1; j++) hordist[j] *= e_recip;
for (i = 0; i < esq_h - 1; i++) verdist[i] *= e_recip;
}
static inline bool check_bit_mask(uint16_t mask, int val) {
return mask & (1 << val);
}
static inline void set_bit_mask(uint16_t *mask, int val) {
*mask |= (1 << val);
}
static inline void unset_bit_mask(uint16_t *mask, int val) {
*mask &= ~(1 << val);
}
static void prune_tx_2D(MACROBLOCK *x, BLOCK_SIZE bsize, TX_SIZE tx_size,
int blk_row, int blk_col, TxSetType tx_set_type,
TX_TYPE_PRUNE_MODE prune_2d_txfm_mode, int *txk_map,
uint16_t *allowed_tx_mask) {
// This table is used because the search order is different from the enum
// order.
static const int tx_type_table_2D[16] = {
DCT_DCT, DCT_ADST, DCT_FLIPADST, V_DCT,
ADST_DCT, ADST_ADST, ADST_FLIPADST, V_ADST,
FLIPADST_DCT, FLIPADST_ADST, FLIPADST_FLIPADST, V_FLIPADST,
H_DCT, H_ADST, H_FLIPADST, IDTX
};
if (tx_set_type != EXT_TX_SET_ALL16 &&
tx_set_type != EXT_TX_SET_DTT9_IDTX_1DDCT)
return;
#if CONFIG_NN_V2
NN_CONFIG_V2 *nn_config_hor = av1_tx_type_nnconfig_map_hor[tx_size];
NN_CONFIG_V2 *nn_config_ver = av1_tx_type_nnconfig_map_ver[tx_size];
#else
const NN_CONFIG *nn_config_hor = av1_tx_type_nnconfig_map_hor[tx_size];
const NN_CONFIG *nn_config_ver = av1_tx_type_nnconfig_map_ver[tx_size];
#endif
if (!nn_config_hor || !nn_config_ver) return; // Model not established yet.
float hfeatures[16], vfeatures[16];
float hscores[4], vscores[4];
float scores_2D_raw[16];
const int bw = tx_size_wide[tx_size];
const int bh = tx_size_high[tx_size];
const int hfeatures_num = bw <= 8 ? bw : bw / 2;
const int vfeatures_num = bh <= 8 ? bh : bh / 2;
assert(hfeatures_num <= 16);
assert(vfeatures_num <= 16);
const struct macroblock_plane *const p = &x->plane[0];
const int diff_stride = block_size_wide[bsize];
const int16_t *diff = p->src_diff + 4 * blk_row * diff_stride + 4 * blk_col;
get_energy_distribution_finer(diff, diff_stride, bw, bh, hfeatures,
vfeatures);
av1_get_horver_correlation_full(diff, diff_stride, bw, bh,
&hfeatures[hfeatures_num - 1],
&vfeatures[vfeatures_num - 1]);
#if CONFIG_NN_V2
av1_nn_predict_v2(hfeatures, nn_config_hor, 0, hscores);
av1_nn_predict_v2(vfeatures, nn_config_ver, 0, vscores);
#else
av1_nn_predict(hfeatures, nn_config_hor, 1, hscores);
av1_nn_predict(vfeatures, nn_config_ver, 1, vscores);
#endif
for (int i = 0; i < 4; i++) {
float *cur_scores_2D = scores_2D_raw + i * 4;
cur_scores_2D[0] = vscores[i] * hscores[0];
cur_scores_2D[1] = vscores[i] * hscores[1];
cur_scores_2D[2] = vscores[i] * hscores[2];
cur_scores_2D[3] = vscores[i] * hscores[3];
}
assert(TX_TYPES == 16);
// This version of the function only works when there are at most 16 classes.
// So we will need to change the optimization or use av1_nn_softmax instead if
// this ever gets changed.
av1_nn_fast_softmax_16(scores_2D_raw, scores_2D_raw);
const float score_thresh =
get_adaptive_thresholds(tx_size, tx_set_type, prune_2d_txfm_mode);
// Always keep the TX type with the highest score, prune all others with
// score below score_thresh.
int max_score_i = 0;
float max_score = 0.0f;
uint16_t allow_bitmask = 0;
float sum_score = 0.0;
// Calculate sum of allowed tx type score and Populate allow bit mask based
// on score_thresh and allowed_tx_mask
int allow_count = 0;
int tx_type_allowed[16] = { TX_TYPE_INVALID, TX_TYPE_INVALID, TX_TYPE_INVALID,
TX_TYPE_INVALID, TX_TYPE_INVALID, TX_TYPE_INVALID,
TX_TYPE_INVALID, TX_TYPE_INVALID, TX_TYPE_INVALID,
TX_TYPE_INVALID, TX_TYPE_INVALID, TX_TYPE_INVALID,
TX_TYPE_INVALID, TX_TYPE_INVALID, TX_TYPE_INVALID,
TX_TYPE_INVALID };
float scores_2D[16] = {
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
};
for (int tx_idx = 0; tx_idx < TX_TYPES; tx_idx++) {
const int allow_tx_type =
check_bit_mask(*allowed_tx_mask, tx_type_table_2D[tx_idx]);
if (!allow_tx_type) {
continue;
}
if (scores_2D_raw[tx_idx] > max_score) {
max_score = scores_2D_raw[tx_idx];
max_score_i = tx_idx;
}
if (scores_2D_raw[tx_idx] >= score_thresh) {
// Set allow mask based on score_thresh
set_bit_mask(&allow_bitmask, tx_type_table_2D[tx_idx]);
// Accumulate score of allowed tx type
sum_score += scores_2D_raw[tx_idx];
scores_2D[allow_count] = scores_2D_raw[tx_idx];
tx_type_allowed[allow_count] = tx_type_table_2D[tx_idx];
allow_count += 1;
}
}
if (!check_bit_mask(allow_bitmask, tx_type_table_2D[max_score_i])) {
// If even the tx_type with max score is pruned, this means that no other
// tx_type is feasible. When this happens, we force enable max_score_i and
// end the search.
set_bit_mask(&allow_bitmask, tx_type_table_2D[max_score_i]);
memcpy(txk_map, tx_type_table_2D, sizeof(tx_type_table_2D));
*allowed_tx_mask = allow_bitmask;
return;
}
// Sort tx type probability of all types
if (allow_count <= 8) {
av1_sort_fi32_8(scores_2D, tx_type_allowed);
} else {
av1_sort_fi32_16(scores_2D, tx_type_allowed);
}
// Enable more pruning based on tx type probability and number of allowed tx
// types
if (prune_2d_txfm_mode >= TX_TYPE_PRUNE_4) {
float temp_score = 0.0;
float score_ratio = 0.0;
int tx_idx, tx_count = 0;
const float inv_sum_score = 100 / sum_score;
// Get allowed tx types based on sorted probability score and tx count
for (tx_idx = 0; tx_idx < allow_count; tx_idx++) {
// Skip the tx type which has more than 30% of cumulative
// probability and allowed tx type count is more than 2
if (score_ratio > 30.0 && tx_count >= 2) break;
assert(check_bit_mask(allow_bitmask, tx_type_allowed[tx_idx]));
// Calculate cumulative probability
temp_score += scores_2D[tx_idx];
// Calculate percentage of cumulative probability of allowed tx type
score_ratio = temp_score * inv_sum_score;
tx_count++;
}
// Set remaining tx types as pruned
for (; tx_idx < allow_count; tx_idx++)
unset_bit_mask(&allow_bitmask, tx_type_allowed[tx_idx]);
}
memcpy(txk_map, tx_type_allowed, sizeof(tx_type_table_2D));
*allowed_tx_mask = allow_bitmask;
}
static float get_dev(float mean, double x2_sum, int num) {
const float e_x2 = (float)(x2_sum / num);
const float diff = e_x2 - mean * mean;
const float dev = (diff > 0) ? sqrtf(diff) : 0;
return dev;
}
// Writes the features required by the ML model to predict tx split based on
// mean and standard deviation values of the block and sub-blocks.
// Returns the number of elements written to the output array which is at most
// 12 currently. Hence 'features' buffer should be able to accommodate at least
// 12 elements.
static inline int get_mean_dev_features(const int16_t *data, int stride, int bw,
int bh, float *features) {
const int16_t *const data_ptr = &data[0];
const int subh = (bh >= bw) ? (bh >> 1) : bh;
const int subw = (bw >= bh) ? (bw >> 1) : bw;
const int num = bw * bh;
const int sub_num = subw * subh;
int feature_idx = 2;
int total_x_sum = 0;
int64_t total_x2_sum = 0;
int num_sub_blks = 0;
double mean2_sum = 0.0f;
float dev_sum = 0.0f;
for (int row = 0; row < bh; row += subh) {
for (int col = 0; col < bw; col += subw) {
int x_sum;
int64_t x2_sum;
// TODO(any): Write a SIMD version. Clear registers.
aom_get_blk_sse_sum(data_ptr + row * stride + col, stride, subw, subh,
&x_sum, &x2_sum);
total_x_sum += x_sum;
total_x2_sum += x2_sum;
const float mean = (float)x_sum / sub_num;
const float dev = get_dev(mean, (double)x2_sum, sub_num);
features[feature_idx++] = mean;
features[feature_idx++] = dev;
mean2_sum += (double)(mean * mean);
dev_sum += dev;
num_sub_blks++;
}
}
const float lvl0_mean = (float)total_x_sum / num;
features[0] = lvl0_mean;
features[1] = get_dev(lvl0_mean, (double)total_x2_sum, num);
// Deviation of means.
features[feature_idx++] = get_dev(lvl0_mean, mean2_sum, num_sub_blks);
// Mean of deviations.
features[feature_idx++] = dev_sum / num_sub_blks;
return feature_idx;
}
static int ml_predict_tx_split(MACROBLOCK *x, BLOCK_SIZE bsize, int blk_row,
int blk_col, TX_SIZE tx_size) {
const NN_CONFIG *nn_config = av1_tx_split_nnconfig_map[tx_size];
if (!nn_config) return -1;
const int diff_stride = block_size_wide[bsize];
const int16_t *diff =
x->plane[0].src_diff + 4 * blk_row * diff_stride + 4 * blk_col;
const int bw = tx_size_wide[tx_size];
const int bh = tx_size_high[tx_size];
float features[64] = { 0.0f };
get_mean_dev_features(diff, diff_stride, bw, bh, features);
float score = 0.0f;
av1_nn_predict(features, nn_config, 1, &score);
int int_score = (int)(score * 10000);
return clamp(int_score, -80000, 80000);
}
static inline uint16_t get_tx_mask(
const AV1_COMP *cpi, MACROBLOCK *x, int plane, int block, int blk_row,
int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
const TXB_CTX *const txb_ctx, FAST_TX_SEARCH_MODE ftxs_mode,
int64_t ref_best_rd, TX_TYPE *allowed_txk_types, int *txk_map) {
const AV1_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
const TxfmSearchParams *txfm_params = &x->txfm_search_params;
const int is_inter = is_inter_block(mbmi);
const int fast_tx_search = ftxs_mode & FTXS_DCT_AND_1D_DCT_ONLY;
// if txk_allowed = TX_TYPES, >1 tx types are allowed, else, if txk_allowed <
// TX_TYPES, only that specific tx type is allowed.
TX_TYPE txk_allowed = TX_TYPES;
const FRAME_UPDATE_TYPE update_type =
get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
int use_actual_frame_probs = 1;
const int *tx_type_probs;
#if CONFIG_FPMT_TEST
use_actual_frame_probs =
(cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) ? 0 : 1;
if (!use_actual_frame_probs) {
tx_type_probs =
(int *)cpi->ppi->temp_frame_probs.tx_type_probs[update_type][tx_size];
}
#endif
if (use_actual_frame_probs) {
tx_type_probs = cpi->ppi->frame_probs.tx_type_probs[update_type][tx_size];
}
if ((!is_inter && txfm_params->use_default_intra_tx_type) ||
(is_inter && txfm_params->default_inter_tx_type_prob_thresh == 0)) {
txk_allowed =
get_default_tx_type(0, xd, tx_size, cpi->use_screen_content_tools);
} else if (is_inter &&
txfm_params->default_inter_tx_type_prob_thresh != INT_MAX) {
if (tx_type_probs[DEFAULT_INTER_TX_TYPE] >
txfm_params->default_inter_tx_type_prob_thresh) {
txk_allowed = DEFAULT_INTER_TX_TYPE;
} else {
int force_tx_type = 0;
int max_prob = 0;
const int tx_type_prob_threshold =
txfm_params->default_inter_tx_type_prob_thresh +
PROB_THRESH_OFFSET_TX_TYPE;
for (int i = 1; i < TX_TYPES; i++) { // find maximum probability.
if (tx_type_probs[i] > max_prob) {
max_prob = tx_type_probs[i];
force_tx_type = i;
}
}
if (max_prob > tx_type_prob_threshold) // force tx type with max prob.
txk_allowed = force_tx_type;
else if (x->rd_model == LOW_TXFM_RD) {
if (plane == 0) txk_allowed = DCT_DCT;
}
}
} else if (x->rd_model == LOW_TXFM_RD) {
if (plane == 0) txk_allowed = DCT_DCT;
}
const TxSetType tx_set_type = av1_get_ext_tx_set_type(
tx_size, is_inter, cm->features.reduced_tx_set_used);
TX_TYPE uv_tx_type = DCT_DCT;
if (plane) {
// tx_type of PLANE_TYPE_UV should be the same as PLANE_TYPE_Y
uv_tx_type = txk_allowed =
av1_get_tx_type(xd, get_plane_type(plane), blk_row, blk_col, tx_size,
cm->features.reduced_tx_set_used);
}
PREDICTION_MODE intra_dir =
mbmi->filter_intra_mode_info.use_filter_intra
? fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode]
: mbmi->mode;
uint16_t ext_tx_used_flag =
cpi->sf.tx_sf.tx_type_search.use_reduced_intra_txset != 0 &&
tx_set_type == EXT_TX_SET_DTT4_IDTX_1DDCT
? av1_reduced_intra_tx_used_flag[intra_dir]
: av1_ext_tx_used_flag[tx_set_type];
if (cpi->sf.tx_sf.tx_type_search.use_reduced_intra_txset == 2)
ext_tx_used_flag &= av1_derived_intra_tx_used_flag[intra_dir];
if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32 ||
ext_tx_used_flag == 0x0001 ||
(is_inter && cpi->oxcf.txfm_cfg.use_inter_dct_only) ||
(!is_inter && cpi->oxcf.txfm_cfg.use_intra_dct_only)) {
txk_allowed = DCT_DCT;
}
if (cpi->oxcf.txfm_cfg.enable_flip_idtx == 0)
ext_tx_used_flag &= DCT_ADST_TX_MASK;
uint16_t allowed_tx_mask = 0; // 1: allow; 0: skip.
if (txk_allowed < TX_TYPES) {
allowed_tx_mask = 1 << txk_allowed;
allowed_tx_mask &= ext_tx_used_flag;
} else if (fast_tx_search) {
allowed_tx_mask = 0x0c01; // V_DCT, H_DCT, DCT_DCT
allowed_tx_mask &= ext_tx_used_flag;
} else {
assert(plane == 0);
allowed_tx_mask = ext_tx_used_flag;
int num_allowed = 0;
int i;
if (cpi->sf.tx_sf.tx_type_search.prune_tx_type_using_stats) {
static const int thresh_arr[2][7] = { { 10, 15, 15, 10, 15, 15, 15 },
{ 10, 17, 17, 10, 17, 17, 17 } };
const int thresh =
thresh_arr[cpi->sf.tx_sf.tx_type_search.prune_tx_type_using_stats - 1]
[update_type];
uint16_t prune = 0;
int max_prob = -1;
int max_idx = 0;
for (i = 0; i < TX_TYPES; i++) {
if (tx_type_probs[i] > max_prob && (allowed_tx_mask & (1 << i))) {
max_prob = tx_type_probs[i];
max_idx = i;
}
if (tx_type_probs[i] < thresh) prune |= (1 << i);
}
if ((prune >> max_idx) & 0x01) prune &= ~(1 << max_idx);
allowed_tx_mask &= (~prune);
}
for (i = 0; i < TX_TYPES; i++) {
if (allowed_tx_mask & (1 << i)) num_allowed++;
}
assert(num_allowed > 0);
if (num_allowed > 2 && cpi->sf.tx_sf.tx_type_search.prune_tx_type_est_rd) {
int pf = prune_factors[txfm_params->prune_2d_txfm_mode];
int mf = mul_factors[txfm_params->prune_2d_txfm_mode];
if (num_allowed <= 7) {
const uint16_t prune =
prune_txk_type(cpi, x, plane, block, tx_size, blk_row, blk_col,
plane_bsize, txk_map, allowed_tx_mask, pf, txb_ctx,
cm->features.reduced_tx_set_used);
allowed_tx_mask &= (~prune);
} else {
const int num_sel = (num_allowed * mf + 50) / 100;
const uint16_t prune = prune_txk_type_separ(
cpi, x, plane, block, tx_size, blk_row, blk_col, plane_bsize,
txk_map, allowed_tx_mask, pf, txb_ctx,
cm->features.reduced_tx_set_used, ref_best_rd, num_sel);
allowed_tx_mask &= (~prune);
}
} else {
assert(num_allowed > 0);
int allowed_tx_count =
(txfm_params->prune_2d_txfm_mode >= TX_TYPE_PRUNE_4) ? 1 : 5;
// !fast_tx_search && txk_end != txk_start && plane == 0
if (txfm_params->prune_2d_txfm_mode >= TX_TYPE_PRUNE_1 && is_inter &&
num_allowed > allowed_tx_count) {
prune_tx_2D(x, plane_bsize, tx_size, blk_row, blk_col, tx_set_type,
txfm_params->prune_2d_txfm_mode, txk_map, &allowed_tx_mask);
}
}
}
// Need to have at least one transform type allowed.
if (allowed_tx_mask == 0) {
txk_allowed = (plane ? uv_tx_type : DCT_DCT);
allowed_tx_mask = (1 << txk_allowed);
}
assert(IMPLIES(txk_allowed < TX_TYPES, allowed_tx_mask == 1 << txk_allowed));
*allowed_txk_types = txk_allowed;
return allowed_tx_mask;
}
#if CONFIG_RD_DEBUG
static inline void update_txb_coeff_cost(RD_STATS *rd_stats, int plane,
int txb_coeff_cost) {
rd_stats->txb_coeff_cost[plane] += txb_coeff_cost;
}
#endif
static inline int cost_coeffs(MACROBLOCK *x, int plane, int block,
TX_SIZE tx_size, const TX_TYPE tx_type,
const TXB_CTX *const txb_ctx,
int reduced_tx_set_used) {
#if TXCOEFF_COST_TIMER
struct aom_usec_timer timer;
aom_usec_timer_start(&timer);
#endif
const int cost = av1_cost_coeffs_txb(x, plane, block, tx_size, tx_type,
txb_ctx, reduced_tx_set_used);
#if TXCOEFF_COST_TIMER
AV1_COMMON *tmp_cm = (AV1_COMMON *)&cpi->common;
aom_usec_timer_mark(&timer);
const int64_t elapsed_time = aom_usec_timer_elapsed(&timer);
tmp_cm->txcoeff_cost_timer += elapsed_time;
++tmp_cm->txcoeff_cost_count;
#endif
return cost;
}
static int skip_trellis_opt_based_on_satd(MACROBLOCK *x,
QUANT_PARAM *quant_param, int plane,
int block, TX_SIZE tx_size,
int quant_b_adapt, int qstep,
unsigned int coeff_opt_satd_threshold,
int skip_trellis, int dc_only_blk) {
if (skip_trellis || (coeff_opt_satd_threshold == UINT_MAX))
return skip_trellis;
const struct macroblock_plane *const p = &x->plane[plane];
const int block_offset = BLOCK_OFFSET(block);
tran_low_t *const coeff_ptr = p->coeff + block_offset;
const int n_coeffs = av1_get_max_eob(tx_size);
const int shift = (MAX_TX_SCALE - av1_get_tx_scale(tx_size));
int satd = (dc_only_blk) ? abs(coeff_ptr[0]) : aom_satd(coeff_ptr, n_coeffs);
satd = RIGHT_SIGNED_SHIFT(satd, shift);
satd >>= (x->e_mbd.bd - 8);
const int skip_block_trellis =
((uint64_t)satd >
(uint64_t)coeff_opt_satd_threshold * qstep * sqrt_tx_pixels_2d[tx_size]);
av1_setup_quant(
tx_size, !skip_block_trellis,
skip_block_trellis
? (USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP)
: AV1_XFORM_QUANT_FP,
quant_b_adapt, quant_param);
return skip_block_trellis;
}
// Predict DC only blocks if the residual variance is below a qstep based
// threshold.For such blocks, transform type search is bypassed.
static inline void predict_dc_only_block(
MACROBLOCK *x, int plane, BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
int block, int blk_row, int blk_col, RD_STATS *best_rd_stats,
int64_t *block_sse, unsigned int *block_mse_q8, int64_t *per_px_mean,
int *dc_only_blk) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3;
const int qstep = x->plane[plane].dequant_QTX[1] >> dequant_shift;
uint64_t block_var = UINT64_MAX;
const int dc_qstep = x->plane[plane].dequant_QTX[0] >> 3;
*block_sse = pixel_diff_stats(x, plane, blk_row, blk_col, plane_bsize,
txsize_to_bsize[tx_size], block_mse_q8,
per_px_mean, &block_var);
assert((*block_mse_q8) != UINT_MAX);
uint64_t var_threshold = (uint64_t)(1.8 * qstep * qstep);
if (is_cur_buf_hbd(xd))
block_var = ROUND_POWER_OF_TWO(block_var, (xd->bd - 8) * 2);
if (block_var >= var_threshold) return;
const unsigned int predict_dc_level = x->txfm_search_params.predict_dc_level;
assert(predict_dc_level != 0);
// Prediction of skip block if residual mean and variance are less
// than qstep based threshold
if ((llabs(*per_px_mean) * dc_coeff_scale[tx_size]) < (dc_qstep << 12)) {
// If the normalized mean of residual block is less than the dc qstep and
// the normalized block variance is less than ac qstep, then the block is
// assumed to be a skip block and its rdcost is updated accordingly.
best_rd_stats->skip_txfm = 1;
x->plane[plane].eobs[block] = 0;
if (is_cur_buf_hbd(xd))
*block_sse = ROUND_POWER_OF_TWO((*block_sse), (xd->bd - 8) * 2);
best_rd_stats->dist = (*block_sse) << 4;
best_rd_stats->sse = best_rd_stats->dist;
ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE];
ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE];
av1_get_entropy_contexts(plane_bsize, &xd->plane[plane], ctxa, ctxl);
ENTROPY_CONTEXT *ta = ctxa;
ENTROPY_CONTEXT *tl = ctxl;
const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
TXB_CTX txb_ctx_tmp;
const PLANE_TYPE plane_type = get_plane_type(plane);
get_txb_ctx(plane_bsize, tx_size, plane, ta, tl, &txb_ctx_tmp);
const int zero_blk_rate = x->coeff_costs.coeff_costs[txs_ctx][plane_type]
.txb_skip_cost[txb_ctx_tmp.txb_skip_ctx][1];
best_rd_stats->rate = zero_blk_rate;
best_rd_stats->rdcost =
RDCOST(x->rdmult, best_rd_stats->rate, best_rd_stats->sse);
x->plane[plane].txb_entropy_ctx[block] = 0;
} else if (predict_dc_level > 1) {
// Predict DC only blocks based on residual variance.
// For chroma plane, this prediction is disabled for intra blocks.
if ((plane == 0) || (plane > 0 && is_inter_block(mbmi))) *dc_only_blk = 1;
}
}
// Search for the best transform type for a given transform block.
// This function can be used for both inter and intra, both luma and chroma.
static void search_tx_type(const AV1_COMP *cpi, MACROBLOCK *x, int plane,
int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
const TXB_CTX *const txb_ctx,
FAST_TX_SEARCH_MODE ftxs_mode, int skip_trellis,
int64_t ref_best_rd, RD_STATS *best_rd_stats) {
const AV1_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
const TxfmSearchParams *txfm_params = &x->txfm_search_params;
int64_t best_rd = INT64_MAX;
uint16_t best_eob = 0;
TX_TYPE best_tx_type = DCT_DCT;
int rate_cost = 0;
struct macroblock_plane *const p = &x->plane[plane];
tran_low_t *orig_dqcoeff = p->dqcoeff;
tran_low_t *best_dqcoeff = x->dqcoeff_buf;
const int tx_type_map_idx =
plane ? 0 : blk_row * xd->tx_type_map_stride + blk_col;
av1_invalid_rd_stats(best_rd_stats);
skip_trellis |= !is_trellis_used(cpi->optimize_seg_arr[xd->mi[0]->segment_id],
DRY_RUN_NORMAL);
uint8_t best_txb_ctx = 0;
// txk_allowed = TX_TYPES: >1 tx types are allowed
// txk_allowed < TX_TYPES: only that specific tx type is allowed.
TX_TYPE txk_allowed = TX_TYPES;
int txk_map[TX_TYPES] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
};
const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3;
const int qstep = x->plane[plane].dequant_QTX[1] >> dequant_shift;
const uint8_t txw = tx_size_wide[tx_size];
const uint8_t txh = tx_size_high[tx_size];
int64_t block_sse;
unsigned int block_mse_q8;
int dc_only_blk = 0;
const bool predict_dc_block =
txfm_params->predict_dc_level >= 1 && txw != 64 && txh != 64;
int64_t per_px_mean = INT64_MAX;
if (predict_dc_block) {
predict_dc_only_block(x, plane, plane_bsize, tx_size, block, blk_row,
blk_col, best_rd_stats, &block_sse, &block_mse_q8,
&per_px_mean, &dc_only_blk);
if (best_rd_stats->skip_txfm == 1) {
const TX_TYPE tx_type = DCT_DCT;
if (plane == 0) xd->tx_type_map[tx_type_map_idx] = tx_type;
return;
}
} else {
block_sse = av1_pixel_diff_dist(x, plane, blk_row, blk_col, plane_bsize,
txsize_to_bsize[tx_size], &block_mse_q8);
assert(block_mse_q8 != UINT_MAX);
}
// Bit mask to indicate which transform types are allowed in the RD search.
uint16_t tx_mask;
// Use DCT_DCT transform for DC only block.
if (dc_only_blk || cpi->sf.rt_sf.dct_only_palette_nonrd == 1)
tx_mask = 1 << DCT_DCT;
else
tx_mask = get_tx_mask(cpi, x, plane, block, blk_row, blk_col, plane_bsize,
tx_size, txb_ctx, ftxs_mode, ref_best_rd,
&txk_allowed, txk_map);
const uint16_t allowed_tx_mask = tx_mask;
if (is_cur_buf_hbd(xd)) {
block_sse = ROUND_POWER_OF_TWO(block_sse, (xd->bd - 8) * 2);
block_mse_q8 = ROUND_POWER_OF_TWO(block_mse_q8, (xd->bd - 8) * 2);
}
block_sse *= 16;
// Use mse / qstep^2 based threshold logic to take decision of R-D
// optimization of coeffs. For smaller residuals, coeff optimization
// would be helpful. For larger residuals, R-D optimization may not be
// effective.
// TODO(any): Experiment with variance and mean based thresholds
const int perform_block_coeff_opt =
((uint64_t)block_mse_q8 <=
(uint64_t)txfm_params->coeff_opt_thresholds[0] * qstep * qstep);
skip_trellis |= !perform_block_coeff_opt;
// Flag to indicate if distortion should be calculated in transform domain or
// not during iterating through transform type candidates.
// Transform domain distortion is accurate for higher residuals.
// TODO(any): Experiment with variance and mean based thresholds
int use_transform_domain_distortion =
(txfm_params->use_transform_domain_distortion > 0) &&
(block_mse_q8 >= txfm_params->tx_domain_dist_threshold) &&
// Any 64-pt transforms only preserves half the coefficients.
// Therefore transform domain distortion is not valid for these
// transform sizes.
(txsize_sqr_up_map[tx_size] != TX_64X64) &&
// Use pixel domain distortion for DC only blocks
!dc_only_blk;
// Flag to indicate if an extra calculation of distortion in the pixel domain
// should be performed at the end, after the best transform type has been
// decided.
int calc_pixel_domain_distortion_final =
txfm_params->use_transform_domain_distortion == 1 &&
use_transform_domain_distortion && x->rd_model != LOW_TXFM_RD;
if (calc_pixel_domain_distortion_final &&
(txk_allowed < TX_TYPES || allowed_tx_mask == 0x0001))
calc_pixel_domain_distortion_final = use_transform_domain_distortion = 0;
const uint16_t *eobs_ptr = x->plane[plane].eobs;
TxfmParam txfm_param;
QUANT_PARAM quant_param;
int skip_trellis_based_on_satd[TX_TYPES] = { 0 };
av1_setup_xform(cm, x, tx_size, DCT_DCT, &txfm_param);
av1_setup_quant(tx_size, !skip_trellis,
skip_trellis ? (USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B
: AV1_XFORM_QUANT_FP)
: AV1_XFORM_QUANT_FP,
cpi->oxcf.q_cfg.quant_b_adapt, &quant_param);
// Iterate through all transform type candidates.
for (int idx = 0; idx < TX_TYPES; ++idx) {
const TX_TYPE tx_type = (TX_TYPE)txk_map[idx];
if (tx_type == TX_TYPE_INVALID || !check_bit_mask(allowed_tx_mask, tx_type))
continue;
txfm_param.tx_type = tx_type;
if (av1_use_qmatrix(&cm->quant_params, xd, mbmi->segment_id)) {
av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
&quant_param);
}
if (plane == 0) xd->tx_type_map[tx_type_map_idx] = tx_type;
RD_STATS this_rd_stats;
av1_invalid_rd_stats(&this_rd_stats);
if (!dc_only_blk)
av1_xform(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param);
else
av1_xform_dc_only(x, plane, block, &txfm_param, per_px_mean);
skip_trellis_based_on_satd[tx_type] = skip_trellis_opt_based_on_satd(
x, &quant_param, plane, block, tx_size, cpi->oxcf.q_cfg.quant_b_adapt,
qstep, txfm_params->coeff_opt_thresholds[1], skip_trellis, dc_only_blk);
av1_quant(x, plane, block, &txfm_param, &quant_param);
// Calculate rate cost of quantized coefficients.
if (quant_param.use_optimize_b) {
// TODO(aomedia:3209): update Trellis quantization to take into account
// quantization matrices.
av1_optimize_b(cpi, x, plane, block, tx_size, tx_type, txb_ctx,
&rate_cost);
} else {
rate_cost = cost_coeffs(x, plane, block, tx_size, tx_type, txb_ctx,
cm->features.reduced_tx_set_used);
}
// If rd cost based on coeff rate alone is already more than best_rd,
// terminate early.
if (RDCOST(x->rdmult, rate_cost, 0) > best_rd) continue;
// Calculate distortion.
if (eobs_ptr[block] == 0) {
// When eob is 0, pixel domain distortion is more efficient and accurate.
this_rd_stats.dist = this_rd_stats.sse = block_sse;
} else if (dc_only_blk) {
this_rd_stats.sse = block_sse;
this_rd_stats.dist = dist_block_px_domain(
cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size);
} else if (use_transform_domain_distortion) {
const SCAN_ORDER *const scan_order =
get_scan(txfm_param.tx_size, txfm_param.tx_type);
dist_block_tx_domain(x, plane, block, tx_size, quant_param.qmatrix,
scan_order->scan, &this_rd_stats.dist,
&this_rd_stats.sse);
} else {
int64_t sse_diff = INT64_MAX;
// high_energy threshold assumes that every pixel within a txfm block
// has a residue energy of at least 25% of the maximum, i.e. 128 * 128
// for 8 bit.
const int64_t high_energy_thresh =
((int64_t)128 * 128 * tx_size_2d[tx_size]);
const int is_high_energy = (block_sse >= high_energy_thresh);
if (tx_size == TX_64X64 || is_high_energy) {
// Because 3 out 4 quadrants of transform coefficients are forced to
// zero, the inverse transform has a tendency to overflow. sse_diff
// is effectively the energy of those 3 quadrants, here we use it
// to decide if we should do pixel domain distortion. If the energy
// is mostly in first quadrant, then it is unlikely that we have
// overflow issue in inverse transform.
const SCAN_ORDER *const scan_order =
get_scan(txfm_param.tx_size, txfm_param.tx_type);
dist_block_tx_domain(x, plane, block, tx_size, quant_param.qmatrix,
scan_order->scan, &this_rd_stats.dist,
&this_rd_stats.sse);
sse_diff = block_sse - this_rd_stats.sse;
}
if (tx_size != TX_64X64 || !is_high_energy ||
(sse_diff * 2) < this_rd_stats.sse) {
const int64_t tx_domain_dist = this_rd_stats.dist;
this_rd_stats.dist = dist_block_px_domain(
cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size);
// For high energy blocks, occasionally, the pixel domain distortion
// can be artificially low due to clamping at reconstruction stage
// even when inverse transform output is hugely different from the
// actual residue.
if (is_high_energy && this_rd_stats.dist < tx_domain_dist)
this_rd_stats.dist = tx_domain_dist;
} else {
assert(sse_diff < INT64_MAX);
this_rd_stats.dist += sse_diff;
}
this_rd_stats.sse = block_sse;
}
this_rd_stats.rate = rate_cost;
const int64_t rd =
RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist);
if (rd < best_rd) {
best_rd = rd;
*best_rd_stats = this_rd_stats;
best_tx_type = tx_type;
best_txb_ctx = x->plane[plane].txb_entropy_ctx[block];
best_eob = x->plane[plane].eobs[block];
// Swap dqcoeff buffers
tran_low_t *const tmp_dqcoeff = best_dqcoeff;
best_dqcoeff = p->dqcoeff;
p->dqcoeff = tmp_dqcoeff;
}
#if CONFIG_COLLECT_RD_STATS == 1
if (plane == 0) {
PrintTransformUnitStats(cpi, x, &this_rd_stats, blk_row, blk_col,
plane_bsize, tx_size, tx_type, rd);
}
#endif // CONFIG_COLLECT_RD_STATS == 1
#if COLLECT_TX_SIZE_DATA
// Generate small sample to restrict output size.
static unsigned int seed = 21743;
if (lcg_rand16(&seed) % 200 == 0) {
FILE *fp = NULL;
if (within_border) {
fp = fopen(av1_tx_size_data_output_file, "a");
}
if (fp) {
// Transform info and RD
const int txb_w = tx_size_wide[tx_size];
const int txb_h = tx_size_high[tx_size];
// Residue signal.
const int diff_stride = block_size_wide[plane_bsize];
struct macroblock_plane *const p = &x->plane[plane];
const int16_t *src_diff =
&p->src_diff[(blk_row * diff_stride + blk_col) * 4];
for (int r = 0; r < txb_h; ++r) {
for (int c = 0; c < txb_w; ++c) {
fprintf(fp, "%d,", src_diff[c]);
}
src_diff += diff_stride;
}
fprintf(fp, "%d,%d,%d,%" PRId64, txb_w, txb_h, tx_type, rd);
fprintf(fp, "\n");
fclose(fp);
}
}
#endif // COLLECT_TX_SIZE_DATA
// If the current best RD cost is much worse than the reference RD cost,
// terminate early.
if (cpi->sf.tx_sf.adaptive_txb_search_level) {
if ((best_rd - (best_rd >> cpi->sf.tx_sf.adaptive_txb_search_level)) >
ref_best_rd) {
break;
}
}
// Terminate transform type search if the block has been quantized to
// all zero.
if (cpi->sf.tx_sf.tx_type_search.skip_tx_search && !best_eob) break;
}
assert(best_rd != INT64_MAX);
best_rd_stats->skip_txfm = best_eob == 0;
if (plane == 0) update_txk_array(xd, blk_row, blk_col, tx_size, best_tx_type);
x->plane[plane].txb_entropy_ctx[block] = best_txb_ctx;
x->plane[plane].eobs[block] = best_eob;
skip_trellis = skip_trellis_based_on_satd[best_tx_type];
// Point dqcoeff to the quantized coefficients corresponding to the best
// transform type, then we can skip transform and quantization, e.g. in the
// final pixel domain distortion calculation and recon_intra().
p->dqcoeff = best_dqcoeff;
if (calc_pixel_domain_distortion_final && best_eob) {
best_rd_stats->dist = dist_block_px_domain(
cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size);
best_rd_stats->sse = block_sse;
}
// Intra mode needs decoded pixels such that the next transform block
// can use them for prediction.
recon_intra(cpi, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
txb_ctx, skip_trellis, best_tx_type, 0, &rate_cost, best_eob);
p->dqcoeff = orig_dqcoeff;
}
// Pick transform type for a luma transform block of tx_size. Note this function
// is used only for inter-predicted blocks.
static inline void tx_type_rd(const AV1_COMP *cpi, MACROBLOCK *x,
TX_SIZE tx_size, int blk_row, int blk_col,
int block, int plane_bsize, TXB_CTX *txb_ctx,
RD_STATS *rd_stats, FAST_TX_SEARCH_MODE ftxs_mode,
int64_t ref_rdcost) {
assert(is_inter_block(x->e_mbd.mi[0]));
RD_STATS this_rd_stats;
const int skip_trellis = 0;
search_tx_type(cpi, x, 0, block, blk_row, blk_col, plane_bsize, tx_size,
txb_ctx, ftxs_mode, skip_trellis, ref_rdcost, &this_rd_stats);
av1_merge_rd_stats(rd_stats, &this_rd_stats);
}
static inline void try_tx_block_no_split(
const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block,
TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize,
const ENTROPY_CONTEXT *ta, const ENTROPY_CONTEXT *tl,
int txfm_partition_ctx, RD_STATS *rd_stats, int64_t ref_best_rd,
FAST_TX_SEARCH_MODE ftxs_mode, TxCandidateInfo *no_split) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
struct macroblock_plane *const p = &x->plane[0];
const int bw = mi_size_wide[plane_bsize];
const ENTROPY_CONTEXT *const pta = ta + blk_col;
const ENTROPY_CONTEXT *const ptl = tl + blk_row;
const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
TXB_CTX txb_ctx;
get_txb_ctx(plane_bsize, tx_size, 0, pta, ptl, &txb_ctx);
const int zero_blk_rate = x->coeff_costs.coeff_costs[txs_ctx][PLANE_TYPE_Y]
.txb_skip_cost[txb_ctx.txb_skip_ctx][1];
rd_stats->zero_rate = zero_blk_rate;
const int index = av1_get_txb_size_index(plane_bsize, blk_row, blk_col);
mbmi->inter_tx_size[index] = tx_size;
tx_type_rd(cpi, x, tx_size, blk_row, blk_col, block, plane_bsize, &txb_ctx,
rd_stats, ftxs_mode, ref_best_rd);
assert(rd_stats->rate < INT_MAX);
const int pick_skip_txfm =
!xd->lossless[mbmi->segment_id] &&
(rd_stats->skip_txfm == 1 ||
RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) >=
RDCOST(x->rdmult, zero_blk_rate, rd_stats->sse));
if (pick_skip_txfm) {
#if CONFIG_RD_DEBUG
update_txb_coeff_cost(rd_stats, 0, zero_blk_rate - rd_stats->rate);
#endif // CONFIG_RD_DEBUG
rd_stats->rate = zero_blk_rate;
rd_stats->dist = rd_stats->sse;
p->eobs[block] = 0;
update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT);
}
rd_stats->skip_txfm = pick_skip_txfm;
set_blk_skip(x->txfm_search_info.blk_skip, 0, blk_row * bw + blk_col,
pick_skip_txfm);
if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH)
rd_stats->rate += x->mode_costs.txfm_partition_cost[txfm_partition_ctx][0];
no_split->rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
no_split->txb_entropy_ctx = p->txb_entropy_ctx[block];
no_split->tx_type =
xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
}
static inline void try_tx_block_split(
const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block,
TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta,
ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left,
int txfm_partition_ctx, int64_t no_split_rd, int64_t ref_best_rd,
FAST_TX_SEARCH_MODE ftxs_mode, RD_STATS *split_rd_stats) {
assert(tx_size < TX_SIZES_ALL);
MACROBLOCKD *const xd = &x->e_mbd;
const int max_blocks_high = max_block_high(xd, plane_bsize, 0);
const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0);
const int txb_width = tx_size_wide_unit[tx_size];
const int txb_height = tx_size_high_unit[tx_size];
// Transform size after splitting current block.
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int sub_txb_width = tx_size_wide_unit[sub_txs];
const int sub_txb_height = tx_size_high_unit[sub_txs];
const int sub_step = sub_txb_width * sub_txb_height;
const int nblks = (txb_height / sub_txb_height) * (txb_width / sub_txb_width);
assert(nblks > 0);
av1_init_rd_stats(split_rd_stats);
split_rd_stats->rate =
x->mode_costs.txfm_partition_cost[txfm_partition_ctx][1];
for (int r = 0, blk_idx = 0; r < txb_height; r += sub_txb_height) {
const int offsetr = blk_row + r;
if (offsetr >= max_blocks_high) break;
for (int c = 0; c < txb_width; c += sub_txb_width, ++blk_idx) {
assert(blk_idx < 4);
const int offsetc = blk_col + c;
if (offsetc >= max_blocks_wide) continue;
RD_STATS this_rd_stats;
int this_cost_valid = 1;
select_tx_block(cpi, x, offsetr, offsetc, block, sub_txs, depth + 1,
plane_bsize, ta, tl, tx_above, tx_left, &this_rd_stats,
no_split_rd / nblks, ref_best_rd - split_rd_stats->rdcost,
&this_cost_valid, ftxs_mode);
if (!this_cost_valid) {
split_rd_stats->rdcost = INT64_MAX;
return;
}
av1_merge_rd_stats(split_rd_stats, &this_rd_stats);
split_rd_stats->rdcost =
RDCOST(x->rdmult, split_rd_stats->rate, split_rd_stats->dist);
if (split_rd_stats->rdcost > ref_best_rd) {
split_rd_stats->rdcost = INT64_MAX;
return;
}
block += sub_step;
}
}
}
static float get_var(float mean, double x2_sum, int num) {
const float e_x2 = (float)(x2_sum / num);
const float diff = e_x2 - mean * mean;
return diff;
}
static inline void get_blk_var_dev(const int16_t *data, int stride, int bw,
int bh, float *dev_of_mean,
float *var_of_vars) {
const int16_t *const data_ptr = &data[0];
const int subh = (bh >= bw) ? (bh >> 1) : bh;
const int subw = (bw >= bh) ? (bw >> 1) : bw;
const int num = bw * bh;
const int sub_num = subw * subh;
int total_x_sum = 0;
int64_t total_x2_sum = 0;
int blk_idx = 0;
float var_sum = 0.0f;
float mean_sum = 0.0f;
double var2_sum = 0.0f;
double mean2_sum = 0.0f;
for (int row = 0; row < bh; row += subh) {
for (int col = 0; col < bw; col += subw) {
int x_sum;
int64_t x2_sum;
aom_get_blk_sse_sum(data_ptr + row * stride + col, stride, subw, subh,
&x_sum, &x2_sum);
total_x_sum += x_sum;
total_x2_sum += x2_sum;
const float mean = (float)x_sum / sub_num;
const float var = get_var(mean, (double)x2_sum, sub_num);
mean_sum += mean;
mean2_sum += (double)(mean * mean);
var_sum += var;
var2_sum += var * var;
blk_idx++;
}
}
const float lvl0_mean = (float)total_x_sum / num;
const float block_var = get_var(lvl0_mean, (double)total_x2_sum, num);
mean_sum += lvl0_mean;
mean2_sum += (double)(lvl0_mean * lvl0_mean);
var_sum += block_var;
var2_sum += block_var * block_var;
const float av_mean = mean_sum / 5;
if (blk_idx > 1) {
// Deviation of means.
*dev_of_mean = get_dev(av_mean, mean2_sum, (blk_idx + 1));
// Variance of variances.
const float mean_var = var_sum / (blk_idx + 1);
*var_of_vars = get_var(mean_var, var2_sum, (blk_idx + 1));
}
}
static void prune_tx_split_no_split(MACROBLOCK *x, BLOCK_SIZE bsize,
int blk_row, int blk_col, TX_SIZE tx_size,
int *try_no_split, int *try_split,
int pruning_level) {
const int diff_stride = block_size_wide[bsize];
const int16_t *diff =
x->plane[0].src_diff + 4 * blk_row * diff_stride + 4 * blk_col;
const int bw = tx_size_wide[tx_size];
const int bh = tx_size_high[tx_size];
float dev_of_means = 0.0f;
float var_of_vars = 0.0f;
// This function calculates the deviation of means, and the variance of pixel
// variances of the block as well as it's sub-blocks.
get_blk_var_dev(diff, diff_stride, bw, bh, &dev_of_means, &var_of_vars);
const int dc_q = x->plane[0].dequant_QTX[0] >> 3;
const int ac_q = x->plane[0].dequant_QTX[1] >> 3;
const int no_split_thresh_scales[4] = { 0, 24, 8, 8 };
const int no_split_thresh_scale = no_split_thresh_scales[pruning_level];
const int split_thresh_scales[4] = { 0, 24, 10, 8 };
const int split_thresh_scale = split_thresh_scales[pruning_level];
if ((dev_of_means <= dc_q) &&
(split_thresh_scale * var_of_vars <= ac_q * ac_q)) {
*try_split = 0;
}
if ((dev_of_means > no_split_thresh_scale * dc_q) &&
(var_of_vars > no_split_thresh_scale * ac_q * ac_q)) {
*try_no_split = 0;
}
}
// Search for the best transform partition(recursive)/type for a given
// inter-predicted luma block. The obtained transform selection will be saved
// in xd->mi[0], the corresponding RD stats will be saved in rd_stats.
static inline void select_tx_block(
const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block,
TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta,
ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left,
RD_STATS *rd_stats, int64_t prev_level_rd, int64_t ref_best_rd,
int *is_cost_valid, FAST_TX_SEARCH_MODE ftxs_mode) {
assert(tx_size < TX_SIZES_ALL);
av1_init_rd_stats(rd_stats);
if (ref_best_rd < 0) {
*is_cost_valid = 0;
return;
}
MACROBLOCKD *const xd = &x->e_mbd;
assert(blk_row < max_block_high(xd, plane_bsize, 0) &&
blk_col < max_block_wide(xd, plane_bsize, 0));
MB_MODE_INFO *const mbmi = xd->mi[0];
const int ctx = txfm_partition_context(tx_above + blk_col, tx_left + blk_row,
mbmi->bsize, tx_size);
struct macroblock_plane *const p = &x->plane[0];
int try_no_split = (cpi->oxcf.txfm_cfg.enable_tx64 ||
txsize_sqr_up_map[tx_size] != TX_64X64) &&
(cpi->oxcf.txfm_cfg.enable_rect_tx ||
tx_size_wide[tx_size] == tx_size_high[tx_size]);
int try_split = tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH;
TxCandidateInfo no_split = { INT64_MAX, 0, TX_TYPES };
// Prune tx_split and no-split based on sub-block properties.
if (tx_size != TX_4X4 && try_split == 1 && try_no_split == 1 &&
cpi->sf.tx_sf.prune_tx_size_level > 0) {
prune_tx_split_no_split(x, plane_bsize, blk_row, blk_col, tx_size,
&try_no_split, &try_split,
cpi->sf.tx_sf.prune_tx_size_level);
}
if (cpi->sf.rt_sf.skip_tx_no_split_var_based_partition) {
if (x->try_merge_partition && try_split && p->eobs[block]) try_no_split = 0;
}
// Try using current block as a single transform block without split.
if (try_no_split) {
try_tx_block_no_split(cpi, x, blk_row, blk_col, block, tx_size, depth,
plane_bsize, ta, tl, ctx, rd_stats, ref_best_rd,
ftxs_mode, &no_split);
// Speed features for early termination.
const int search_level = cpi->sf.tx_sf.adaptive_txb_search_level;
if (search_level) {
if ((no_split.rd - (no_split.rd >> (1 + search_level))) > ref_best_rd) {
*is_cost_valid = 0;
return;
}
if (no_split.rd - (no_split.rd >> (2 + search_level)) > prev_level_rd) {
try_split = 0;
}
}
if (cpi->sf.tx_sf.txb_split_cap) {
if (p->eobs[block] == 0) try_split = 0;
}
}
// ML based speed feature to skip searching for split transform blocks.
if (x->e_mbd.bd == 8 && try_split &&
!(ref_best_rd == INT64_MAX && no_split.rd == INT64_MAX)) {
const int threshold = cpi->sf.tx_sf.tx_type_search.ml_tx_split_thresh;
if (threshold >= 0) {
const int split_score =
ml_predict_tx_split(x, plane_bsize, blk_row, blk_col, tx_size);
if (split_score < -threshold) try_split = 0;
}
}
RD_STATS split_rd_stats;
split_rd_stats.rdcost = INT64_MAX;
// Try splitting current block into smaller transform blocks.
if (try_split) {
try_tx_block_split(cpi, x, blk_row, blk_col, block, tx_size, depth,
plane_bsize, ta, tl, tx_above, tx_left, ctx, no_split.rd,
AOMMIN(no_split.rd, ref_best_rd), ftxs_mode,
&split_rd_stats);
}
if (no_split.rd < split_rd_stats.rdcost) {
ENTROPY_CONTEXT *pta = ta + blk_col;
ENTROPY_CONTEXT *ptl = tl + blk_row;
p->txb_entropy_ctx[block] = no_split.txb_entropy_ctx;
av1_set_txb_context(x, 0, block, tx_size, pta, ptl);
txfm_partition_update(tx_above + blk_col, tx_left + blk_row, tx_size,
tx_size);
for (int idy = 0; idy < tx_size_high_unit[tx_size]; ++idy) {
for (int idx = 0; idx < tx_size_wide_unit[tx_size]; ++idx) {
const int index =
av1_get_txb_size_index(plane_bsize, blk_row + idy, blk_col + idx);
mbmi->inter_tx_size[index] = tx_size;
}
}
mbmi->tx_size = tx_size;
update_txk_array(xd, blk_row, blk_col, tx_size, no_split.tx_type);
const int bw = mi_size_wide[plane_bsize];
set_blk_skip(x->txfm_search_info.blk_skip, 0, blk_row * bw + blk_col,
rd_stats->skip_txfm);
} else {
*rd_stats = split_rd_stats;
if (split_rd_stats.rdcost == INT64_MAX) *is_cost_valid = 0;
}
}
static inline void choose_largest_tx_size(const AV1_COMP *const cpi,
MACROBLOCK *x, RD_STATS *rd_stats,
int64_t ref_best_rd, BLOCK_SIZE bs) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
const TxfmSearchParams *txfm_params = &x->txfm_search_params;
mbmi->tx_size = tx_size_from_tx_mode(bs, txfm_params->tx_mode_search_type);
// If tx64 is not enabled, we need to go down to the next available size
if (!cpi->oxcf.txfm_cfg.enable_tx64 && cpi->oxcf.txfm_cfg.enable_rect_tx) {
static const TX_SIZE tx_size_max_32[TX_SIZES_ALL] = {
TX_4X4, // 4x4 transform
TX_8X8, // 8x8 transform
TX_16X16, // 16x16 transform
TX_32X32, // 32x32 transform
TX_32X32, // 64x64 transform
TX_4X8, // 4x8 transform
TX_8X4, // 8x4 transform
TX_8X16, // 8x16 transform
TX_16X8, // 16x8 transform
TX_16X32, // 16x32 transform
TX_32X16, // 32x16 transform
TX_32X32, // 32x64 transform
TX_32X32, // 64x32 transform
TX_4X16, // 4x16 transform
TX_16X4, // 16x4 transform
TX_8X32, // 8x32 transform
TX_32X8, // 32x8 transform
TX_16X32, // 16x64 transform
TX_32X16, // 64x16 transform
};
mbmi->tx_size = tx_size_max_32[mbmi->tx_size];
} else if (cpi->oxcf.txfm_cfg.enable_tx64 &&
!cpi->oxcf.txfm_cfg.enable_rect_tx) {
static const TX_SIZE tx_size_max_square[TX_SIZES_ALL] = {
TX_4X4, // 4x4 transform
TX_8X8, // 8x8 transform
TX_16X16, // 16x16 transform
TX_32X32, // 32x32 transform
TX_64X64, // 64x64 transform
TX_4X4, // 4x8 transform
TX_4X4, // 8x4 transform
TX_8X8, // 8x16 transform
TX_8X8, // 16x8 transform
TX_16X16, // 16x32 transform
TX_16X16, // 32x16 transform
TX_32X32, // 32x64 transform
TX_32X32, // 64x32 transform
TX_4X4, // 4x16 transform
TX_4X4, // 16x4 transform
TX_8X8, // 8x32 transform
TX_8X8, // 32x8 transform
TX_16X16, // 16x64 transform
TX_16X16, // 64x16 transform
};
mbmi->tx_size = tx_size_max_square[mbmi->tx_size];
} else if (!cpi->oxcf.txfm_cfg.enable_tx64 &&
!cpi->oxcf.txfm_cfg.enable_rect_tx) {
static const TX_SIZE tx_size_max_32_square[TX_SIZES_ALL] = {
TX_4X4, // 4x4 transform
TX_8X8, // 8x8 transform
TX_16X16, // 16x16 transform
TX_32X32, // 32x32 transform
TX_32X32, // 64x64 transform
TX_4X4, // 4x8 transform
TX_4X4, // 8x4 transform
TX_8X8, // 8x16 transform
TX_8X8, // 16x8 transform
TX_16X16, // 16x32 transform
TX_16X16, // 32x16 transform
TX_32X32, // 32x64 transform
TX_32X32, // 64x32 transform
TX_4X4, // 4x16 transform
TX_4X4, // 16x4 transform
TX_8X8, // 8x32 transform
TX_8X8, // 32x8 transform
TX_16X16, // 16x64 transform
TX_16X16, // 64x16 transform
};
mbmi->tx_size = tx_size_max_32_square[mbmi->tx_size];
}
const int skip_ctx = av1_get_skip_txfm_context(xd);
const int no_skip_txfm_rate = x->mode_costs.skip_txfm_cost[skip_ctx][0];
const int skip_txfm_rate = x->mode_costs.skip_txfm_cost[skip_ctx][1];
// Skip RDcost is used only for Inter blocks
const int64_t skip_txfm_rd =
is_inter_block(mbmi) ? RDCOST(x->rdmult, skip_txfm_rate, 0) : INT64_MAX;
const int64_t no_skip_txfm_rd = RDCOST(x->rdmult, no_skip_txfm_rate, 0);
const int skip_trellis = 0;
av1_txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd,
AOMMIN(no_skip_txfm_rd, skip_txfm_rd), AOM_PLANE_Y, bs,
mbmi->tx_size, FTXS_NONE, skip_trellis);
}
static inline void choose_smallest_tx_size(const AV1_COMP *const cpi,
MACROBLOCK *x, RD_STATS *rd_stats,
int64_t ref_best_rd, BLOCK_SIZE bs) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
mbmi->tx_size = TX_4X4;
// TODO(any) : Pass this_rd based on skip/non-skip cost
const int skip_trellis = 0;
av1_txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, 0, 0, bs, mbmi->tx_size,
FTXS_NONE, skip_trellis);
}
#if !CONFIG_REALTIME_ONLY
static void ml_predict_intra_tx_depth_prune(MACROBLOCK *x, int blk_row,
int blk_col, BLOCK_SIZE bsize,
TX_SIZE tx_size) {
const MACROBLOCKD *const xd = &x->e_mbd;
const MB_MODE_INFO *const mbmi = xd->mi[0];
// Disable the pruning logic using NN model for the following cases:
// 1) Lossless coding as only 4x4 transform is evaluated in this case
// 2) When transform and current block sizes do not match as the features are
// obtained over the current block
// 3) When operating bit-depth is not 8-bit as the input features are not
// scaled according to bit-depth.
if (xd->lossless[mbmi->segment_id] || txsize_to_bsize[tx_size] != bsize ||
xd->bd != 8)
return;
// Currently NN model based pruning is supported only when largest transform
// size is 8x8
if (tx_size != TX_8X8) return;
// Neural network model is a sequential neural net and was trained using SGD
// optimizer. The model can be further improved in terms of speed/quality by
// considering the following experiments:
// 1) Generate ML model by training with balanced data for different learning
// rates and optimizers.
// 2) Experiment with ML model by adding features related to the statistics of
// top and left pixels to capture the accuracy of reconstructed neighbouring
// pixels for 4x4 blocks numbered 1, 2, 3 in 8x8 block, source variance of 4x4
// sub-blocks, etc.
// 3) Generate ML models for transform blocks other than 8x8.
const NN_CONFIG *const nn_config = &av1_intra_tx_split_nnconfig_8x8;
const float *const intra_tx_prune_thresh = av1_intra_tx_prune_nn_thresh_8x8;
float features[NUM_INTRA_TX_SPLIT_FEATURES] = { 0.0f };
const int diff_stride = block_size_wide[bsize];
const int16_t *diff = x->plane[0].src_diff + MI_SIZE * blk_row * diff_stride +
MI_SIZE * blk_col;
const int bw = tx_size_wide[tx_size];
const int bh = tx_size_high[tx_size];
int feature_idx = get_mean_dev_features(diff, diff_stride, bw, bh, features);
features[feature_idx++] = log1pf((float)x->source_variance);
const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8);
const float log_dc_q_square = log1pf((float)(dc_q * dc_q) / 256.0f);
features[feature_idx++] = log_dc_q_square;
assert(feature_idx == NUM_INTRA_TX_SPLIT_FEATURES);
for (int i = 0; i < NUM_INTRA_TX_SPLIT_FEATURES; i++) {
features[i] = (features[i] - av1_intra_tx_split_8x8_mean[i]) /
av1_intra_tx_split_8x8_std[i];
}
float score;
av1_nn_predict(features, nn_config, 1, &score);
TxfmSearchParams *const txfm_params = &x->txfm_search_params;
if (score <= intra_tx_prune_thresh[0])
txfm_params->nn_prune_depths_for_intra_tx = TX_PRUNE_SPLIT;
else if (score > intra_tx_prune_thresh[1])
txfm_params->nn_prune_depths_for_intra_tx = TX_PRUNE_LARGEST;
}
#endif // !CONFIG_REALTIME_ONLY
/*!\brief Transform type search for luma macroblock with fixed transform size.
*
* \ingroup transform_search
* Search for the best transform type and return the transform coefficients RD
* cost of current luma macroblock with the given uniform transform size.
*
* \param[in] x Pointer to structure holding the data for the
current encoding macroblock
* \param[in] cpi Top-level encoder structure
* \param[in] rd_stats Pointer to struct to keep track of the RD stats
* \param[in] ref_best_rd Best RD cost seen for this block so far
* \param[in] bs Size of the current macroblock
* \param[in] tx_size The given transform size
* \param[in] ftxs_mode Transform search mode specifying desired speed
and quality tradeoff
* \param[in] skip_trellis Binary flag indicating if trellis optimization
should be skipped
* \return An int64_t value that is the best RD cost found.
*/
static int64_t uniform_txfm_yrd(const AV1_COMP *const cpi, MACROBLOCK *x,
RD_STATS *rd_stats, int64_t ref_best_rd,
BLOCK_SIZE bs, TX_SIZE tx_size,
FAST_TX_SEARCH_MODE ftxs_mode,
int skip_trellis) {
assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed_bsize(bs)));
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
const TxfmSearchParams *txfm_params = &x->txfm_search_params;
const ModeCosts *mode_costs = &x->mode_costs;
const int is_inter = is_inter_block(mbmi);
const int tx_select = txfm_params->tx_mode_search_type == TX_MODE_SELECT &&
block_signals_txsize(mbmi->bsize);
int tx_size_rate = 0;
if (tx_select) {
const int ctx = txfm_partition_context(
xd->above_txfm_context, xd->left_txfm_context, mbmi->bsize, tx_size);
tx_size_rate = is_inter ? mode_costs->txfm_partition_cost[ctx][0]
: tx_size_cost(x, bs, tx_size);
}
const int skip_ctx = av1_get_skip_txfm_context(xd);
const int no_skip_txfm_rate = mode_costs->skip_txfm_cost[skip_ctx][0];
const int skip_txfm_rate = mode_costs->skip_txfm_cost[skip_ctx][1];
const int64_t skip_txfm_rd =
is_inter ? RDCOST(x->rdmult, skip_txfm_rate, 0) : INT64_MAX;
const int64_t no_this_rd =
RDCOST(x->rdmult, no_skip_txfm_rate + tx_size_rate, 0);
mbmi->tx_size = tx_size;
av1_txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd,
AOMMIN(no_this_rd, skip_txfm_rd), AOM_PLANE_Y, bs,
tx_size, ftxs_mode, skip_trellis);
if (rd_stats->rate == INT_MAX) return INT64_MAX;
int64_t rd;
// rdstats->rate should include all the rate except skip/non-skip cost as the
// same is accounted in the caller functions after rd evaluation of all
// planes. However the decisions should be done after considering the
// skip/non-skip header cost
if (rd_stats->skip_txfm && is_inter) {
rd = RDCOST(x->rdmult, skip_txfm_rate, rd_stats->sse);
} else {
// Intra blocks are always signalled as non-skip
rd = RDCOST(x->rdmult, rd_stats->rate + no_skip_txfm_rate + tx_size_rate,
rd_stats->dist);
rd_stats->rate += tx_size_rate;
}
// Check if forcing the block to skip transform leads to smaller RD cost.
if (is_inter && !rd_stats->skip_txfm && !xd->lossless[mbmi->segment_id]) {
int64_t temp_skip_txfm_rd =
RDCOST(x->rdmult, skip_txfm_rate, rd_stats->sse);
if (temp_skip_txfm_rd <= rd) {
rd = temp_skip_txfm_rd;
rd_stats->rate = 0;
rd_stats->dist = rd_stats->sse;
rd_stats->skip_txfm = 1;
}
}
return rd;
}
// Search for the best uniform transform size and type for current coding block.
static inline void choose_tx_size_type_from_rd(const AV1_COMP *const cpi,
MACROBLOCK *x,
RD_STATS *rd_stats,
int64_t ref_best_rd,
BLOCK_SIZE bs) {
av1_invalid_rd_stats(rd_stats);
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
TxfmSearchParams *const txfm_params = &x->txfm_search_params;
const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bs];
const int tx_select = txfm_params->tx_mode_search_type == TX_MODE_SELECT;
int start_tx;
// The split depth can be at most MAX_TX_DEPTH, so the init_depth controls
// how many times of splitting is allowed during the RD search.
int init_depth;
if (tx_select) {
start_tx = max_rect_tx_size;
init_depth = get_search_init_depth(mi_size_wide[bs], mi_size_high[bs],
is_inter_block(mbmi), &cpi->sf,
txfm_params->tx_size_search_method);
if (init_depth == MAX_TX_DEPTH && !cpi->oxcf.txfm_cfg.enable_tx64 &&
txsize_sqr_up_map[start_tx] == TX_64X64) {
start_tx = sub_tx_size_map[start_tx];
}
} else {
const TX_SIZE chosen_tx_size =
tx_size_from_tx_mode(bs, txfm_params->tx_mode_search_type);
start_tx = chosen_tx_size;
init_depth = MAX_TX_DEPTH;
}
const int skip_trellis = 0;
uint8_t best_txk_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
TX_SIZE best_tx_size = max_rect_tx_size;
int64_t best_rd = INT64_MAX;
const int num_blks = bsize_to_num_blk(bs);
x->rd_model = FULL_TXFM_RD;
int64_t rd[MAX_TX_DEPTH + 1] = { INT64_MAX, INT64_MAX, INT64_MAX };
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
for (int tx_size = start_tx, depth = init_depth; depth <= MAX_TX_DEPTH;
depth++, tx_size = sub_tx_size_map[tx_size]) {
if ((!cpi->oxcf.txfm_cfg.enable_tx64 &&
txsize_sqr_up_map[tx_size] == TX_64X64) ||
(!cpi->oxcf.txfm_cfg.enable_rect_tx &&
tx_size_wide[tx_size] != tx_size_high[tx_size])) {
continue;
}
#if !CONFIG_REALTIME_ONLY
if (txfm_params->nn_prune_depths_for_intra_tx == TX_PRUNE_SPLIT) break;
// Set the flag to enable the evaluation of NN classifier to prune transform
// depths. As the features are based on intra residual information of
// largest transform, the evaluation of NN model is enabled only for this
// case.
txfm_params->enable_nn_prune_intra_tx_depths =
(cpi->sf.tx_sf.prune_intra_tx_depths_using_nn && tx_size == start_tx);
#endif
RD_STATS this_rd_stats;
// When the speed feature use_rd_based_breakout_for_intra_tx_search is
// enabled, use the known minimum best_rd for early termination.
const int64_t rd_thresh =
cpi->sf.tx_sf.use_rd_based_breakout_for_intra_tx_search
? AOMMIN(ref_best_rd, best_rd)
: ref_best_rd;
rd[depth] = uniform_txfm_yrd(cpi, x, &this_rd_stats, rd_thresh, bs, tx_size,
FTXS_NONE, skip_trellis);
if (rd[depth] < best_rd) {
av1_copy_array(best_blk_skip, txfm_info->blk_skip, num_blks);
av1_copy_array(best_txk_type_map, xd->tx_type_map, num_blks);
best_tx_size = tx_size;
best_rd = rd[depth];
*rd_stats = this_rd_stats;
}
if (tx_size == TX_4X4) break;
// If we are searching three depths, prune the smallest size depending
// on rd results for the first two depths for low contrast blocks.
if (depth > init_depth && depth != MAX_TX_DEPTH &&
x->source_variance < 256) {
if (rd[depth - 1] != INT64_MAX && rd[depth] > rd[depth - 1]) break;
}
}
if (rd_stats->rate != INT_MAX) {
mbmi->tx_size = best_tx_size;
av1_copy_array(xd->tx_type_map, best_txk_type_map, num_blks);
av1_copy_array(txfm_info->blk_skip, best_blk_skip, num_blks);
}
#if !CONFIG_REALTIME_ONLY
// Reset the flags to avoid any unintentional evaluation of NN model and
// consumption of prune depths.
txfm_params->enable_nn_prune_intra_tx_depths = false;
txfm_params->nn_prune_depths_for_intra_tx = TX_PRUNE_NONE;
#endif
}
// Search for the best transform type for the given transform block in the
// given plane/channel, and calculate the corresponding RD cost.
static inline void block_rd_txfm(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
struct rdcost_block_args *args = arg;
if (args->exit_early) {
args->incomplete_exit = 1;
return;
}
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
const int is_inter = is_inter_block(xd->mi[0]);
const AV1_COMP *cpi = args->cpi;
ENTROPY_CONTEXT *a = args->t_above + blk_col;
ENTROPY_CONTEXT *l = args->t_left + blk_row;
const AV1_COMMON *cm = &cpi->common;
RD_STATS this_rd_stats;
av1_init_rd_stats(&this_rd_stats);
if (!is_inter) {
av1_predict_intra_block_facade(cm, xd, plane, blk_col, blk_row, tx_size);
av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size);
#if !CONFIG_REALTIME_ONLY
const TxfmSearchParams *const txfm_params = &x->txfm_search_params;
if (txfm_params->enable_nn_prune_intra_tx_depths) {
ml_predict_intra_tx_depth_prune(x, blk_row, blk_col, plane_bsize,
tx_size);
if (txfm_params->nn_prune_depths_for_intra_tx == TX_PRUNE_LARGEST) {
av1_invalid_rd_stats(&args->rd_stats);
args->exit_early = 1;
return;
}
}
#endif
}
TXB_CTX txb_ctx;
get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx);
search_tx_type(cpi, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
&txb_ctx, args->ftxs_mode, args->skip_trellis,
args->best_rd - args->current_rd, &this_rd_stats);
#if !CONFIG_REALTIME_ONLY
if (plane == AOM_PLANE_Y && xd->cfl.store_y) {
assert(!is_inter || plane_bsize < BLOCK_8X8);
cfl_store_tx(xd, blk_row, blk_col, tx_size, plane_bsize);
}
#endif
#if CONFIG_RD_DEBUG
update_txb_coeff_cost(&this_rd_stats, plane, this_rd_stats.rate);
#endif // CONFIG_RD_DEBUG
av1_set_txb_context(x, plane, block, tx_size, a, l);
const int blk_idx =
blk_row * (block_size_wide[plane_bsize] >> MI_SIZE_LOG2) + blk_col;
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
if (plane == 0)
set_blk_skip(txfm_info->blk_skip, plane, blk_idx,
x->plane[plane].eobs[block] == 0);
else
set_blk_skip(txfm_info->blk_skip, plane, blk_idx, 0);
int64_t rd;
if (is_inter) {
const int64_t no_skip_txfm_rd =
RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist);
const int64_t skip_txfm_rd = RDCOST(x->rdmult, 0, this_rd_stats.sse);
rd = AOMMIN(no_skip_txfm_rd, skip_txfm_rd);
this_rd_stats.skip_txfm &= !x->plane[plane].eobs[block];
} else {
// Signal non-skip_txfm for Intra blocks
rd = RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist);
this_rd_stats.skip_txfm = 0;
}
av1_merge_rd_stats(&args->rd_stats, &this_rd_stats);
args->current_rd += rd;
if (args->current_rd > args->best_rd) args->exit_early = 1;
}
int64_t av1_estimate_txfm_yrd(const AV1_COMP *const cpi, MACROBLOCK *x,
RD_STATS *rd_stats, int64_t ref_best_rd,
BLOCK_SIZE bs, TX_SIZE tx_size) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
const TxfmSearchParams *txfm_params = &x->txfm_search_params;
const ModeCosts *mode_costs = &x->mode_costs;
const int is_inter = is_inter_block(mbmi);
const int tx_select = txfm_params->tx_mode_search_type == TX_MODE_SELECT &&
block_signals_txsize(mbmi->bsize);
int tx_size_rate = 0;
if (tx_select) {
const int ctx = txfm_partition_context(
xd->above_txfm_context, xd->left_txfm_context, mbmi->bsize, tx_size);
tx_size_rate = mode_costs->txfm_partition_cost[ctx][0];
}
const int skip_ctx = av1_get_skip_txfm_context(xd);
const int no_skip_txfm_rate = mode_costs->skip_txfm_cost[skip_ctx][0];
const int skip_txfm_rate = mode_costs->skip_txfm_cost[skip_ctx][1];
const int64_t skip_txfm_rd = RDCOST(x->rdmult, skip_txfm_rate, 0);
const int64_t no_this_rd =
RDCOST(x->rdmult, no_skip_txfm_rate + tx_size_rate, 0);
mbmi->tx_size = tx_size;
const uint8_t txw_unit = tx_size_wide_unit[tx_size];
const uint8_t txh_unit = tx_size_high_unit[tx_size];
const int step = txw_unit * txh_unit;
const int max_blocks_wide = max_block_wide(xd, bs, 0);
const int max_blocks_high = max_block_high(xd, bs, 0);
struct rdcost_block_args args;
av1_zero(args);
args.x = x;
args.cpi = cpi;
args.best_rd = ref_best_rd;
args.current_rd = AOMMIN(no_this_rd, skip_txfm_rd);
av1_init_rd_stats(&args.rd_stats);
av1_get_entropy_contexts(bs, &xd->plane[0], args.t_above, args.t_left);
int i = 0;
for (int blk_row = 0; blk_row < max_blocks_high && !args.incomplete_exit;
blk_row += txh_unit) {
for (int blk_col = 0; blk_col < max_blocks_wide; blk_col += txw_unit) {
RD_STATS this_rd_stats;
av1_init_rd_stats(&this_rd_stats);
if (args.exit_early) {
args.incomplete_exit = 1;
break;
}
ENTROPY_CONTEXT *a = args.t_above + blk_col;
ENTROPY_CONTEXT *l = args.t_left + blk_row;
TXB_CTX txb_ctx;
get_txb_ctx(bs, tx_size, 0, a, l, &txb_ctx);
TxfmParam txfm_param;
QUANT_PARAM quant_param;
av1_setup_xform(&cpi->common, x, tx_size, DCT_DCT, &txfm_param);
av1_setup_quant(tx_size, 0, AV1_XFORM_QUANT_B, 0, &quant_param);
av1_xform(x, 0, i, blk_row, blk_col, bs, &txfm_param);
av1_quant(x, 0, i, &txfm_param, &quant_param);
this_rd_stats.rate =
cost_coeffs(x, 0, i, tx_size, txfm_param.tx_type, &txb_ctx, 0);
const SCAN_ORDER *const scan_order =
get_scan(txfm_param.tx_size, txfm_param.tx_type);
dist_block_tx_domain(x, 0, i, tx_size, quant_param.qmatrix,
scan_order->scan, &this_rd_stats.dist,
&this_rd_stats.sse);
const int64_t no_skip_txfm_rd =
RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist);
const int64_t skip_rd = RDCOST(x->rdmult, 0, this_rd_stats.sse);
this_rd_stats.skip_txfm &= !x->plane[0].eobs[i];
av1_merge_rd_stats(&args.rd_stats, &this_rd_stats);
args.current_rd += AOMMIN(no_skip_txfm_rd, skip_rd);
if (args.current_rd > ref_best_rd) {
args.exit_early = 1;
break;
}
av1_set_txb_context(x, 0, i, tx_size, a, l);
i += step;
}
}
if (args.incomplete_exit) av1_invalid_rd_stats(&args.rd_stats);
*rd_stats = args.rd_stats;
if (rd_stats->rate == INT_MAX) return INT64_MAX;
int64_t rd;
// rdstats->rate should include all the rate except skip/non-skip cost as the
// same is accounted in the caller functions after rd evaluation of all
// planes. However the decisions should be done after considering the
// skip/non-skip header cost
if (rd_stats->skip_txfm && is_inter) {
rd = RDCOST(x->rdmult, skip_txfm_rate, rd_stats->sse);
} else {
// Intra blocks are always signalled as non-skip
rd = RDCOST(x->rdmult, rd_stats->rate + no_skip_txfm_rate + tx_size_rate,
rd_stats->dist);
rd_stats->rate += tx_size_rate;
}
// Check if forcing the block to skip transform leads to smaller RD cost.
if (is_inter && !rd_stats->skip_txfm && !xd->lossless[mbmi->segment_id]) {
int64_t temp_skip_txfm_rd =
RDCOST(x->rdmult, skip_txfm_rate, rd_stats->sse);
if (temp_skip_txfm_rd <= rd) {
rd = temp_skip_txfm_rd;
rd_stats->rate = 0;
rd_stats->dist = rd_stats->sse;
rd_stats->skip_txfm = 1;
}
}
return rd;
}
// Search for the best transform type for a luma inter-predicted block, given
// the transform block partitions.
// This function is used only when some speed features are enabled.
static inline void tx_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row,
int blk_col, int block, TX_SIZE tx_size,
BLOCK_SIZE plane_bsize, int depth,
ENTROPY_CONTEXT *above_ctx,
ENTROPY_CONTEXT *left_ctx,
TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left,
int64_t ref_best_rd, RD_STATS *rd_stats,
FAST_TX_SEARCH_MODE ftxs_mode) {
assert(tx_size < TX_SIZES_ALL);
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
assert(is_inter_block(mbmi));
const int max_blocks_high = max_block_high(xd, plane_bsize, 0);
const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
const TX_SIZE plane_tx_size = mbmi->inter_tx_size[av1_get_txb_size_index(
plane_bsize, blk_row, blk_col)];
const int ctx = txfm_partition_context(tx_above + blk_col, tx_left + blk_row,
mbmi->bsize, tx_size);
av1_init_rd_stats(rd_stats);
if (tx_size == plane_tx_size) {
ENTROPY_CONTEXT *ta = above_ctx + blk_col;
ENTROPY_CONTEXT *tl = left_ctx + blk_row;
const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
TXB_CTX txb_ctx;
get_txb_ctx(plane_bsize, tx_size, 0, ta, tl, &txb_ctx);
const int zero_blk_rate =
x->coeff_costs.coeff_costs[txs_ctx][get_plane_type(0)]
.txb_skip_cost[txb_ctx.txb_skip_ctx][1];
rd_stats->zero_rate = zero_blk_rate;
tx_type_rd(cpi, x, tx_size, blk_row, blk_col, block, plane_bsize, &txb_ctx,
rd_stats, ftxs_mode, ref_best_rd);
const int mi_width = mi_size_wide[plane_bsize];
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
if (RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) >=
RDCOST(x->rdmult, zero_blk_rate, rd_stats->sse) ||
rd_stats->skip_txfm == 1) {
rd_stats->rate = zero_blk_rate;
rd_stats->dist = rd_stats->sse;
rd_stats->skip_txfm = 1;
set_blk_skip(txfm_info->blk_skip, 0, blk_row * mi_width + blk_col, 1);
x->plane[0].eobs[block] = 0;
x->plane[0].txb_entropy_ctx[block] = 0;
update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT);
} else {
rd_stats->skip_txfm = 0;
set_blk_skip(txfm_info->blk_skip, 0, blk_row * mi_width + blk_col, 0);
}
if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH)
rd_stats->rate += x->mode_costs.txfm_partition_cost[ctx][0];
av1_set_txb_context(x, 0, block, tx_size, ta, tl);
txfm_partition_update(tx_above + blk_col, tx_left + blk_row, tx_size,
tx_size);
} else {
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int txb_width = tx_size_wide_unit[sub_txs];
const int txb_height = tx_size_high_unit[sub_txs];
const int step = txb_height * txb_width;
const int row_end =
AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row);
const int col_end =
AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col);
RD_STATS pn_rd_stats;
int64_t this_rd = 0;
assert(txb_width > 0 && txb_height > 0);
for (int row = 0; row < row_end; row += txb_height) {
const int offsetr = blk_row + row;
for (int col = 0; col < col_end; col += txb_width) {
const int offsetc = blk_col + col;
av1_init_rd_stats(&pn_rd_stats);
tx_block_yrd(cpi, x, offsetr, offsetc, block, sub_txs, plane_bsize,
depth + 1, above_ctx, left_ctx, tx_above, tx_left,
ref_best_rd - this_rd, &pn_rd_stats, ftxs_mode);
if (pn_rd_stats.rate == INT_MAX) {
av1_invalid_rd_stats(rd_stats);
return;
}
av1_merge_rd_stats(rd_stats, &pn_rd_stats);
this_rd += RDCOST(x->rdmult, pn_rd_stats.rate, pn_rd_stats.dist);
block += step;
}
}
if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH)
rd_stats->rate += x->mode_costs.txfm_partition_cost[ctx][1];
}
}
// search for tx type with tx sizes already decided for a inter-predicted luma
// partition block. It's used only when some speed features are enabled.
// Return value 0: early termination triggered, no valid rd cost available;
// 1: rd cost values are valid.
static int inter_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x,
RD_STATS *rd_stats, BLOCK_SIZE bsize,
int64_t ref_best_rd, FAST_TX_SEARCH_MODE ftxs_mode) {
if (ref_best_rd < 0) {
av1_invalid_rd_stats(rd_stats);
return 0;
}
av1_init_rd_stats(rd_stats);
MACROBLOCKD *const xd = &x->e_mbd;
const TxfmSearchParams *txfm_params = &x->txfm_search_params;
const struct macroblockd_plane *const pd = &xd->plane[0];
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, bsize, 0);
const int bh = tx_size_high_unit[max_tx_size];
const int bw = tx_size_wide_unit[max_tx_size];
const int step = bw * bh;
const int init_depth = get_search_init_depth(
mi_width, mi_height, 1, &cpi->sf, txfm_params->tx_size_search_method);
ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE];
ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE];
TXFM_CONTEXT tx_above[MAX_MIB_SIZE];
TXFM_CONTEXT tx_left[MAX_MIB_SIZE];
av1_get_entropy_contexts(bsize, pd, ctxa, ctxl);
memcpy(tx_above, xd->above_txfm_context, sizeof(TXFM_CONTEXT) * mi_width);
memcpy(tx_left, xd->left_txfm_context, sizeof(TXFM_CONTEXT) * mi_height);
int64_t this_rd = 0;
for (int idy = 0, block = 0; idy < mi_height; idy += bh) {
for (int idx = 0; idx < mi_width; idx += bw) {
RD_STATS pn_rd_stats;
av1_init_rd_stats(&pn_rd_stats);
tx_block_yrd(cpi, x, idy, idx, block, max_tx_size, bsize, init_depth,
ctxa, ctxl, tx_above, tx_left, ref_best_rd - this_rd,
&pn_rd_stats, ftxs_mode);
if (pn_rd_stats.rate == INT_MAX) {
av1_invalid_rd_stats(rd_stats);
return 0;
}
av1_merge_rd_stats(rd_stats, &pn_rd_stats);
this_rd +=
AOMMIN(RDCOST(x->rdmult, pn_rd_stats.rate, pn_rd_stats.dist),
RDCOST(x->rdmult, pn_rd_stats.zero_rate, pn_rd_stats.sse));
block += step;
}
}
const int skip_ctx = av1_get_skip_txfm_context(xd);
const int no_skip_txfm_rate = x->mode_costs.skip_txfm_cost[skip_ctx][0];
const int skip_txfm_rate = x->mode_costs.skip_txfm_cost[skip_ctx][1];
const int64_t skip_txfm_rd = RDCOST(x->rdmult, skip_txfm_rate, rd_stats->sse);
this_rd =
RDCOST(x->rdmult, rd_stats->rate + no_skip_txfm_rate, rd_stats->dist);
if (skip_txfm_rd < this_rd) {
this_rd = skip_txfm_rd;
rd_stats->rate = 0;
rd_stats->dist = rd_stats->sse;
rd_stats->skip_txfm = 1;
}
const int is_cost_valid = this_rd > ref_best_rd;
if (!is_cost_valid) {
// reset cost value
av1_invalid_rd_stats(rd_stats);
}
return is_cost_valid;
}
// Search for the best transform size and type for current inter-predicted
// luma block with recursive transform block partitioning. The obtained
// transform selection will be saved in xd->mi[0], the corresponding RD stats
// will be saved in rd_stats. The returned value is the corresponding RD cost.
static int64_t select_tx_size_and_type(const AV1_COMP *cpi, MACROBLOCK *x,
RD_STATS *rd_stats, BLOCK_SIZE bsize,
int64_t ref_best_rd) {
MACROBLOCKD *const xd = &x->e_mbd;
const TxfmSearchParams *txfm_params = &x->txfm_search_params;
assert(is_inter_block(xd->mi[0]));
assert(bsize < BLOCK_SIZES_ALL);
const int fast_tx_search = txfm_params->tx_size_search_method > USE_FULL_RD;
int64_t rd_thresh = ref_best_rd;
if (rd_thresh == 0) {
av1_invalid_rd_stats(rd_stats);
return INT64_MAX;
}
if (fast_tx_search && rd_thresh < INT64_MAX) {
if (INT64_MAX - rd_thresh > (rd_thresh >> 3)) rd_thresh += (rd_thresh >> 3);
}
assert(rd_thresh > 0);
const FAST_TX_SEARCH_MODE ftxs_mode =
fast_tx_search ? FTXS_DCT_AND_1D_DCT_ONLY : FTXS_NONE;
const struct macroblockd_plane *const pd = &xd->plane[0];
assert(bsize < BLOCK_SIZES_ALL);
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE];
ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE];
TXFM_CONTEXT tx_above[MAX_MIB_SIZE];
TXFM_CONTEXT tx_left[MAX_MIB_SIZE];
av1_get_entropy_contexts(bsize, pd, ctxa, ctxl);
memcpy(tx_above, xd->above_txfm_context, sizeof(TXFM_CONTEXT) * mi_width);
memcpy(tx_left, xd->left_txfm_context, sizeof(TXFM_CONTEXT) * mi_height);
const int init_depth = get_search_init_depth(
mi_width, mi_height, 1, &cpi->sf, txfm_params->tx_size_search_method);
const TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
const int bh = tx_size_high_unit[max_tx_size];
const int bw = tx_size_wide_unit[max_tx_size];
const int step = bw * bh;
const int skip_ctx = av1_get_skip_txfm_context(xd);
const int no_skip_txfm_cost = x->mode_costs.skip_txfm_cost[skip_ctx][0];
const int skip_txfm_cost = x->mode_costs.skip_txfm_cost[skip_ctx][1];
int64_t skip_txfm_rd = RDCOST(x->rdmult, skip_txfm_cost, 0);
int64_t no_skip_txfm_rd = RDCOST(x->rdmult, no_skip_txfm_cost, 0);
int block = 0;
av1_init_rd_stats(rd_stats);
for (int idy = 0; idy < max_block_high(xd, bsize, 0); idy += bh) {
for (int idx = 0; idx < max_block_wide(xd, bsize, 0); idx += bw) {
const int64_t best_rd_sofar =
(rd_thresh == INT64_MAX)
? INT64_MAX
: (rd_thresh - (AOMMIN(skip_txfm_rd, no_skip_txfm_rd)));
int is_cost_valid = 1;
RD_STATS pn_rd_stats;
// Search for the best transform block size and type for the sub-block.
select_tx_block(cpi, x, idy, idx, block, max_tx_size, init_depth, bsize,
ctxa, ctxl, tx_above, tx_left, &pn_rd_stats, INT64_MAX,
best_rd_sofar, &is_cost_valid, ftxs_mode);
if (!is_cost_valid || pn_rd_stats.rate == INT_MAX) {
av1_invalid_rd_stats(rd_stats);
return INT64_MAX;
}
av1_merge_rd_stats(rd_stats, &pn_rd_stats);
skip_txfm_rd = RDCOST(x->rdmult, skip_txfm_cost, rd_stats->sse);
no_skip_txfm_rd =
RDCOST(x->rdmult, rd_stats->rate + no_skip_txfm_cost, rd_stats->dist);
block += step;
}
}
if (rd_stats->rate == INT_MAX) return INT64_MAX;
rd_stats->skip_txfm = (skip_txfm_rd <= no_skip_txfm_rd);
// If fast_tx_search is true, only DCT and 1D DCT were tested in
// select_inter_block_yrd() above. Do a better search for tx type with
// tx sizes already decided.
if (fast_tx_search && cpi->sf.tx_sf.refine_fast_tx_search_results) {
if (!inter_block_yrd(cpi, x, rd_stats, bsize, ref_best_rd, FTXS_NONE))
return INT64_MAX;
}
int64_t final_rd;
if (rd_stats->skip_txfm) {
final_rd = RDCOST(x->rdmult, skip_txfm_cost, rd_stats->sse);
} else {
final_rd =
RDCOST(x->rdmult, rd_stats->rate + no_skip_txfm_cost, rd_stats->dist);
if (!xd->lossless[xd->mi[0]->segment_id]) {
final_rd =
AOMMIN(final_rd, RDCOST(x->rdmult, skip_txfm_cost, rd_stats->sse));
}
}
return final_rd;
}
// Return 1 to terminate transform search early. The decision is made based on
// the comparison with the reference RD cost and the model-estimated RD cost.
static inline int model_based_tx_search_prune(const AV1_COMP *cpi,
MACROBLOCK *x, BLOCK_SIZE bsize,
int64_t ref_best_rd) {
const int level = cpi->sf.tx_sf.model_based_prune_tx_search_level;
assert(level >= 0 && level <= 2);
int model_rate;
int64_t model_dist;
uint8_t model_skip;
MACROBLOCKD *const xd = &x->e_mbd;
model_rd_sb_fn[MODELRD_TYPE_TX_SEARCH_PRUNE](
cpi, bsize, x, xd, 0, 0, &model_rate, &model_dist, &model_skip, NULL,
NULL, NULL, NULL);
if (model_skip) return 0;
const int64_t model_rd = RDCOST(x->rdmult, model_rate, model_dist);
// TODO(debargha, urvang): Improve the model and make the check below
// tighter.
static const int prune_factor_by8[] = { 3, 5 };
const int factor = prune_factor_by8[level - 1];
return ((model_rd * factor) >> 3) > ref_best_rd;
}
void av1_pick_recursive_tx_size_type_yrd(const AV1_COMP *cpi, MACROBLOCK *x,
RD_STATS *rd_stats, BLOCK_SIZE bsize,
int64_t ref_best_rd) {
MACROBLOCKD *const xd = &x->e_mbd;
const TxfmSearchParams *txfm_params = &x->txfm_search_params;
assert(is_inter_block(xd->mi[0]));
av1_invalid_rd_stats(rd_stats);
// If modeled RD cost is a lot worse than the best so far, terminate early.
if (cpi->sf.tx_sf.model_based_prune_tx_search_level &&
ref_best_rd != INT64_MAX) {
if (model_based_tx_search_prune(cpi, x, bsize, ref_best_rd)) return;
}
// Hashing based speed feature. If the hash of the prediction residue block is
// found in the hash table, use previous search results and terminate early.
uint32_t hash = 0;
MB_RD_RECORD *mb_rd_record = NULL;
const int mi_row = x->e_mbd.mi_row;
const int mi_col = x->e_mbd.mi_col;
const int within_border =
mi_row >= xd->tile.mi_row_start &&
(mi_row + mi_size_high[bsize] < xd->tile.mi_row_end) &&
mi_col >= xd->tile.mi_col_start &&
(mi_col + mi_size_wide[bsize] < xd->tile.mi_col_end);
const int is_mb_rd_hash_enabled =
(within_border && cpi->sf.rd_sf.use_mb_rd_hash);
const int n4 = bsize_to_num_blk(bsize);
if (is_mb_rd_hash_enabled) {
hash = get_block_residue_hash(x, bsize);
mb_rd_record = x->txfm_search_info.mb_rd_record;
const int match_index = find_mb_rd_info(mb_rd_record, ref_best_rd, hash);
if (match_index != -1) {
MB_RD_INFO *mb_rd_info = &mb_rd_record->mb_rd_info[match_index];
fetch_mb_rd_info(n4, mb_rd_info, rd_stats, x);
return;
}
}
// If we predict that skip is the optimal RD decision - set the respective
// context and terminate early.
int64_t dist;
if (txfm_params->skip_txfm_level &&
predict_skip_txfm(x, bsize, &dist,
cpi->common.features.reduced_tx_set_used)) {
set_skip_txfm(x, rd_stats, bsize, dist);
// Save the RD search results into mb_rd_record.
if (is_mb_rd_hash_enabled)
save_mb_rd_info(n4, hash, x, rd_stats, mb_rd_record);
return;
}
#if CONFIG_SPEED_STATS
++x->txfm_search_info.tx_search_count;
#endif // CONFIG_SPEED_STATS
const int64_t rd =
select_tx_size_and_type(cpi, x, rd_stats, bsize, ref_best_rd);
if (rd == INT64_MAX) {
// We should always find at least one candidate unless ref_best_rd is less
// than INT64_MAX (in which case, all the calls to select_tx_size_fix_type
// might have failed to find something better)
assert(ref_best_rd != INT64_MAX);
av1_invalid_rd_stats(rd_stats);
return;
}
// Save the RD search results into mb_rd_record.
if (is_mb_rd_hash_enabled) {
assert(mb_rd_record != NULL);
save_mb_rd_info(n4, hash, x, rd_stats, mb_rd_record);
}
}
void av1_pick_uniform_tx_size_type_yrd(const AV1_COMP *const cpi, MACROBLOCK *x,
RD_STATS *rd_stats, BLOCK_SIZE bs,
int64_t ref_best_rd) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
const TxfmSearchParams *tx_params = &x->txfm_search_params;
assert(bs == mbmi->bsize);
const int is_inter = is_inter_block(mbmi);
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
av1_init_rd_stats(rd_stats);
// Hashing based speed feature for inter blocks. If the hash of the residue
// block is found in the table, use previously saved search results and
// terminate early.
uint32_t hash = 0;
MB_RD_RECORD *mb_rd_record = NULL;
const int num_blks = bsize_to_num_blk(bs);
if (is_inter && cpi->sf.rd_sf.use_mb_rd_hash) {
const int within_border =
mi_row >= xd->tile.mi_row_start &&
(mi_row + mi_size_high[bs] < xd->tile.mi_row_end) &&
mi_col >= xd->tile.mi_col_start &&
(mi_col + mi_size_wide[bs] < xd->tile.mi_col_end);
if (within_border) {
hash = get_block_residue_hash(x, bs);
mb_rd_record = x->txfm_search_info.mb_rd_record;
const int match_index = find_mb_rd_info(mb_rd_record, ref_best_rd, hash);
if (match_index != -1) {
MB_RD_INFO *mb_rd_info = &mb_rd_record->mb_rd_info[match_index];
fetch_mb_rd_info(num_blks, mb_rd_info, rd_stats, x);
return;
}
}
}
// If we predict that skip is the optimal RD decision - set the respective
// context and terminate early.
int64_t dist;
if (tx_params->skip_txfm_level && is_inter &&
!xd->lossless[mbmi->segment_id] &&
predict_skip_txfm(x, bs, &dist,
cpi->common.features.reduced_tx_set_used)) {
// Populate rdstats as per skip decision
set_skip_txfm(x, rd_stats, bs, dist);
// Save the RD search results into mb_rd_record.
if (mb_rd_record) {
save_mb_rd_info(num_blks, hash, x, rd_stats, mb_rd_record);
}
return;
}
if (xd->lossless[mbmi->segment_id]) {
// Lossless mode can only pick the smallest (4x4) transform size.
choose_smallest_tx_size(cpi, x, rd_stats, ref_best_rd, bs);
} else if (tx_params->tx_size_search_method == USE_LARGESTALL) {
choose_largest_tx_size(cpi, x, rd_stats, ref_best_rd, bs);
} else {
choose_tx_size_type_from_rd(cpi, x, rd_stats, ref_best_rd, bs);
}
// Save the RD search results into mb_rd_record for possible reuse in future.
if (mb_rd_record) {
save_mb_rd_info(num_blks, hash, x, rd_stats, mb_rd_record);
}
}
int av1_txfm_uvrd(const AV1_COMP *const cpi, MACROBLOCK *x, RD_STATS *rd_stats,
BLOCK_SIZE bsize, int64_t ref_best_rd) {
av1_init_rd_stats(rd_stats);
if (ref_best_rd < 0) return 0;
if (!x->e_mbd.is_chroma_ref) return 1;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_U];
const int is_inter = is_inter_block(mbmi);
int64_t this_rd = 0, skip_txfm_rd = 0;
const BLOCK_SIZE plane_bsize =
get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
if (is_inter) {
for (int plane = 1; plane < MAX_MB_PLANE; ++plane)
av1_subtract_plane(x, plane_bsize, plane);
}
const int skip_trellis = 0;
const TX_SIZE uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd);
int is_cost_valid = 1;
for (int plane = 1; plane < MAX_MB_PLANE; ++plane) {
RD_STATS this_rd_stats;
int64_t chroma_ref_best_rd = ref_best_rd;
// For inter blocks, refined ref_best_rd is used for early exit
// For intra blocks, even though current rd crosses ref_best_rd, early
// exit is not recommended as current rd is used for gating subsequent
// modes as well (say, for angular modes)
// TODO(any): Extend the early exit mechanism for intra modes as well
if (cpi->sf.inter_sf.perform_best_rd_based_gating_for_chroma && is_inter &&
chroma_ref_best_rd != INT64_MAX)
chroma_ref_best_rd = ref_best_rd - AOMMIN(this_rd, skip_txfm_rd);
av1_txfm_rd_in_plane(x, cpi, &this_rd_stats, chroma_ref_best_rd, 0, plane,
plane_bsize, uv_tx_size, FTXS_NONE, skip_trellis);
if (this_rd_stats.rate == INT_MAX) {
is_cost_valid = 0;
break;
}
av1_merge_rd_stats(rd_stats, &this_rd_stats);
this_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
skip_txfm_rd = RDCOST(x->rdmult, 0, rd_stats->sse);
if (AOMMIN(this_rd, skip_txfm_rd) > ref_best_rd) {
is_cost_valid = 0;
break;
}
}
if (!is_cost_valid) {
// reset cost value
av1_invalid_rd_stats(rd_stats);
}
return is_cost_valid;
}
void av1_txfm_rd_in_plane(MACROBLOCK *x, const AV1_COMP *cpi,
RD_STATS *rd_stats, int64_t ref_best_rd,
int64_t current_rd, int plane, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, FAST_TX_SEARCH_MODE ftxs_mode,
int skip_trellis) {
assert(IMPLIES(plane == 0, x->e_mbd.mi[0]->tx_size == tx_size));
if (!cpi->oxcf.txfm_cfg.enable_tx64 &&
txsize_sqr_up_map[tx_size] == TX_64X64) {
av1_invalid_rd_stats(rd_stats);
return;
}
if (current_rd > ref_best_rd) {
av1_invalid_rd_stats(rd_stats);
return;
}
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblockd_plane *const pd = &xd->plane[plane];
struct rdcost_block_args args;
av1_zero(args);
args.x = x;
args.cpi = cpi;
args.best_rd = ref_best_rd;
args.current_rd = current_rd;
args.ftxs_mode = ftxs_mode;
args.skip_trellis = skip_trellis;
av1_init_rd_stats(&args.rd_stats);
av1_get_entropy_contexts(plane_bsize, pd, args.t_above, args.t_left);
av1_foreach_transformed_block_in_plane(xd, plane_bsize, plane, block_rd_txfm,
&args);
MB_MODE_INFO *const mbmi = xd->mi[0];
const int is_inter = is_inter_block(mbmi);
const int invalid_rd = is_inter ? args.incomplete_exit : args.exit_early;
if (invalid_rd) {
av1_invalid_rd_stats(rd_stats);
} else {
*rd_stats = args.rd_stats;
}
}
int av1_txfm_search(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
RD_STATS *rd_stats, RD_STATS *rd_stats_y,
RD_STATS *rd_stats_uv, int mode_rate, int64_t ref_best_rd) {
MACROBLOCKD *const xd = &x->e_mbd;
TxfmSearchParams *txfm_params = &x->txfm_search_params;
const int skip_ctx = av1_get_skip_txfm_context(xd);
const int skip_txfm_cost[2] = { x->mode_costs.skip_txfm_cost[skip_ctx][0],
x->mode_costs.skip_txfm_cost[skip_ctx][1] };
const int64_t min_header_rate =
mode_rate + AOMMIN(skip_txfm_cost[0], skip_txfm_cost[1]);
// Account for minimum skip and non_skip rd.
// Eventually either one of them will be added to mode_rate
const int64_t min_header_rd_possible = RDCOST(x->rdmult, min_header_rate, 0);
if (min_header_rd_possible > ref_best_rd) {
av1_invalid_rd_stats(rd_stats_y);
return 0;
}
const AV1_COMMON *cm = &cpi->common;
MB_MODE_INFO *const mbmi = xd->mi[0];
const int64_t mode_rd = RDCOST(x->rdmult, mode_rate, 0);
const int64_t rd_thresh =
ref_best_rd == INT64_MAX ? INT64_MAX : ref_best_rd - mode_rd;
av1_init_rd_stats(rd_stats);
av1_init_rd_stats(rd_stats_y);
rd_stats->rate = mode_rate;
// cost and distortion
av1_subtract_plane(x, bsize, 0);
if (txfm_params->tx_mode_search_type == TX_MODE_SELECT &&
!xd->lossless[mbmi->segment_id]) {
av1_pick_recursive_tx_size_type_yrd(cpi, x, rd_stats_y, bsize, rd_thresh);
#if CONFIG_COLLECT_RD_STATS == 2
PrintPredictionUnitStats(cpi, tile_data, x, rd_stats_y, bsize);
#endif // CONFIG_COLLECT_RD_STATS == 2
} else {
av1_pick_uniform_tx_size_type_yrd(cpi, x, rd_stats_y, bsize, rd_thresh);
memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size));
for (int i = 0; i < xd->height * xd->width; ++i)
set_blk_skip(x->txfm_search_info.blk_skip, 0, i, rd_stats_y->skip_txfm);
}
if (rd_stats_y->rate == INT_MAX) return 0;
av1_merge_rd_stats(rd_stats, rd_stats_y);
const int64_t non_skip_txfm_rdcosty =
RDCOST(x->rdmult, rd_stats->rate + skip_txfm_cost[0], rd_stats->dist);
const int64_t skip_txfm_rdcosty =
RDCOST(x->rdmult, mode_rate + skip_txfm_cost[1], rd_stats->sse);
const int64_t min_rdcosty = AOMMIN(non_skip_txfm_rdcosty, skip_txfm_rdcosty);
if (min_rdcosty > ref_best_rd) return 0;
av1_init_rd_stats(rd_stats_uv);
const int num_planes = av1_num_planes(cm);
if (num_planes > 1) {
int64_t ref_best_chroma_rd = ref_best_rd;
// Calculate best rd cost possible for chroma
if (cpi->sf.inter_sf.perform_best_rd_based_gating_for_chroma &&
(ref_best_chroma_rd != INT64_MAX)) {
ref_best_chroma_rd = (ref_best_chroma_rd -
AOMMIN(non_skip_txfm_rdcosty, skip_txfm_rdcosty));
}
const int is_cost_valid_uv =
av1_txfm_uvrd(cpi, x, rd_stats_uv, bsize, ref_best_chroma_rd);
if (!is_cost_valid_uv) return 0;
av1_merge_rd_stats(rd_stats, rd_stats_uv);
}
int choose_skip_txfm = rd_stats->skip_txfm;
if (!choose_skip_txfm && !xd->lossless[mbmi->segment_id]) {
const int64_t rdcost_no_skip_txfm = RDCOST(
x->rdmult, rd_stats_y->rate + rd_stats_uv->rate + skip_txfm_cost[0],
rd_stats->dist);
const int64_t rdcost_skip_txfm =
RDCOST(x->rdmult, skip_txfm_cost[1], rd_stats->sse);
if (rdcost_no_skip_txfm >= rdcost_skip_txfm) choose_skip_txfm = 1;
}
if (choose_skip_txfm) {
rd_stats_y->rate = 0;
rd_stats_uv->rate = 0;
rd_stats->rate = mode_rate + skip_txfm_cost[1];
rd_stats->dist = rd_stats->sse;
rd_stats_y->dist = rd_stats_y->sse;
rd_stats_uv->dist = rd_stats_uv->sse;
mbmi->skip_txfm = 1;
if (rd_stats->skip_txfm) {
const int64_t tmprd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
if (tmprd > ref_best_rd) return 0;
}
} else {
rd_stats->rate += skip_txfm_cost[0];
mbmi->skip_txfm = 0;
}
return 1;
}
|