1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
|
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "av1/encoder/txb_rdopt.h"
#include "av1/encoder/txb_rdopt_utils.h"
#include "aom_ports/mem.h"
#include "av1/common/idct.h"
static inline void update_coeff_general(
int *accu_rate, int64_t *accu_dist, int si, int eob, TX_SIZE tx_size,
TX_CLASS tx_class, int bhl, int width, int64_t rdmult, int shift,
int dc_sign_ctx, const int16_t *dequant, const int16_t *scan,
const LV_MAP_COEFF_COST *txb_costs, const tran_low_t *tcoeff,
tran_low_t *qcoeff, tran_low_t *dqcoeff, uint8_t *levels,
const qm_val_t *iqmatrix, const qm_val_t *qmatrix) {
const int dqv = get_dqv(dequant, scan[si], iqmatrix);
const int ci = scan[si];
const tran_low_t qc = qcoeff[ci];
const int is_last = si == (eob - 1);
const int coeff_ctx = get_lower_levels_ctx_general(
is_last, si, bhl, width, levels, ci, tx_size, tx_class);
if (qc == 0) {
*accu_rate += txb_costs->base_cost[coeff_ctx][0];
} else {
const int sign = (qc < 0) ? 1 : 0;
const tran_low_t abs_qc = abs(qc);
const tran_low_t tqc = tcoeff[ci];
const tran_low_t dqc = dqcoeff[ci];
const int64_t dist = get_coeff_dist(tqc, dqc, shift, qmatrix, ci);
const int64_t dist0 = get_coeff_dist(tqc, 0, shift, qmatrix, ci);
const int rate =
get_coeff_cost_general(is_last, ci, abs_qc, sign, coeff_ctx,
dc_sign_ctx, txb_costs, bhl, tx_class, levels);
const int64_t rd = RDCOST(rdmult, rate, dist);
tran_low_t qc_low, dqc_low;
tran_low_t abs_qc_low;
int64_t dist_low, rd_low;
int rate_low;
if (abs_qc == 1) {
abs_qc_low = qc_low = dqc_low = 0;
dist_low = dist0;
rate_low = txb_costs->base_cost[coeff_ctx][0];
} else {
get_qc_dqc_low(abs_qc, sign, dqv, shift, &qc_low, &dqc_low);
abs_qc_low = abs_qc - 1;
dist_low = get_coeff_dist(tqc, dqc_low, shift, qmatrix, ci);
rate_low =
get_coeff_cost_general(is_last, ci, abs_qc_low, sign, coeff_ctx,
dc_sign_ctx, txb_costs, bhl, tx_class, levels);
}
rd_low = RDCOST(rdmult, rate_low, dist_low);
if (rd_low < rd) {
qcoeff[ci] = qc_low;
dqcoeff[ci] = dqc_low;
levels[get_padded_idx(ci, bhl)] = AOMMIN(abs_qc_low, INT8_MAX);
*accu_rate += rate_low;
*accu_dist += dist_low - dist0;
} else {
*accu_rate += rate;
*accu_dist += dist - dist0;
}
}
}
static AOM_FORCE_INLINE void update_coeff_simple(
int *accu_rate, int si, int eob, TX_SIZE tx_size, TX_CLASS tx_class,
int bhl, int64_t rdmult, int shift, const int16_t *dequant,
const int16_t *scan, const LV_MAP_COEFF_COST *txb_costs,
const tran_low_t *tcoeff, tran_low_t *qcoeff, tran_low_t *dqcoeff,
uint8_t *levels, int sharpness, const qm_val_t *iqmatrix,
const qm_val_t *qmatrix) {
const int dqv = get_dqv(dequant, scan[si], iqmatrix);
(void)eob;
// this simple version assumes the coeff's scan_idx is not DC (scan_idx != 0)
// and not the last (scan_idx != eob - 1)
assert(si != eob - 1);
assert(si > 0);
const int ci = scan[si];
const tran_low_t qc = qcoeff[ci];
const int coeff_ctx =
get_lower_levels_ctx(levels, ci, bhl, tx_size, tx_class);
if (qc == 0) {
*accu_rate += txb_costs->base_cost[coeff_ctx][0];
} else {
const tran_low_t abs_qc = abs(qc);
const tran_low_t abs_tqc = abs(tcoeff[ci]);
const tran_low_t abs_dqc = abs(dqcoeff[ci]);
int rate_low = 0;
const int rate = get_two_coeff_cost_simple(
ci, abs_qc, coeff_ctx, txb_costs, bhl, tx_class, levels, &rate_low);
if (abs_dqc < abs_tqc) {
*accu_rate += rate;
return;
}
const int64_t dist = get_coeff_dist(abs_tqc, abs_dqc, shift, qmatrix, ci);
const int64_t rd = RDCOST(rdmult, rate, dist);
const tran_low_t abs_qc_low = abs_qc - 1;
const tran_low_t abs_dqc_low = (abs_qc_low * dqv) >> shift;
const int64_t dist_low =
get_coeff_dist(abs_tqc, abs_dqc_low, shift, qmatrix, ci);
const int64_t rd_low = RDCOST(rdmult, rate_low, dist_low);
int allow_lower_qc = sharpness ? (abs_qc > 1) : 1;
if (rd_low < rd && allow_lower_qc) {
const int sign = (qc < 0) ? 1 : 0;
qcoeff[ci] = (-sign ^ abs_qc_low) + sign;
dqcoeff[ci] = (-sign ^ abs_dqc_low) + sign;
levels[get_padded_idx(ci, bhl)] = AOMMIN(abs_qc_low, INT8_MAX);
*accu_rate += rate_low;
} else {
*accu_rate += rate;
}
}
}
static AOM_FORCE_INLINE void update_coeff_eob(
int *accu_rate, int64_t *accu_dist, int *eob, int *nz_num, int *nz_ci,
int si, TX_SIZE tx_size, TX_CLASS tx_class, int bhl, int width,
int dc_sign_ctx, int64_t rdmult, int shift, const int16_t *dequant,
const int16_t *scan, const LV_MAP_EOB_COST *txb_eob_costs,
const LV_MAP_COEFF_COST *txb_costs, const tran_low_t *tcoeff,
tran_low_t *qcoeff, tran_low_t *dqcoeff, uint8_t *levels, int sharpness,
const qm_val_t *iqmatrix, const qm_val_t *qmatrix) {
const int dqv = get_dqv(dequant, scan[si], iqmatrix);
assert(si != *eob - 1);
const int ci = scan[si];
const tran_low_t qc = qcoeff[ci];
const int coeff_ctx =
get_lower_levels_ctx(levels, ci, bhl, tx_size, tx_class);
if (qc == 0) {
*accu_rate += txb_costs->base_cost[coeff_ctx][0];
} else {
int lower_level = 0;
const tran_low_t abs_qc = abs(qc);
const tran_low_t tqc = tcoeff[ci];
const tran_low_t dqc = dqcoeff[ci];
const int sign = (qc < 0) ? 1 : 0;
const int64_t dist0 = get_coeff_dist(tqc, 0, shift, qmatrix, ci);
int64_t dist = get_coeff_dist(tqc, dqc, shift, qmatrix, ci) - dist0;
int rate =
get_coeff_cost_general(0, ci, abs_qc, sign, coeff_ctx, dc_sign_ctx,
txb_costs, bhl, tx_class, levels);
int64_t rd = RDCOST(rdmult, *accu_rate + rate, *accu_dist + dist);
tran_low_t qc_low, dqc_low;
tran_low_t abs_qc_low;
int64_t dist_low, rd_low;
int rate_low;
if (abs_qc == 1) {
abs_qc_low = 0;
dqc_low = qc_low = 0;
dist_low = 0;
rate_low = txb_costs->base_cost[coeff_ctx][0];
rd_low = RDCOST(rdmult, *accu_rate + rate_low, *accu_dist);
} else {
get_qc_dqc_low(abs_qc, sign, dqv, shift, &qc_low, &dqc_low);
abs_qc_low = abs_qc - 1;
dist_low = get_coeff_dist(tqc, dqc_low, shift, qmatrix, ci) - dist0;
rate_low =
get_coeff_cost_general(0, ci, abs_qc_low, sign, coeff_ctx,
dc_sign_ctx, txb_costs, bhl, tx_class, levels);
rd_low = RDCOST(rdmult, *accu_rate + rate_low, *accu_dist + dist_low);
}
int lower_level_new_eob = 0;
const int new_eob = si + 1;
const int coeff_ctx_new_eob = get_lower_levels_ctx_eob(bhl, width, si);
const int new_eob_cost =
get_eob_cost(new_eob, txb_eob_costs, txb_costs, tx_class);
int rate_coeff_eob =
new_eob_cost + get_coeff_cost_eob(ci, abs_qc, sign, coeff_ctx_new_eob,
dc_sign_ctx, txb_costs, bhl,
tx_class);
int64_t dist_new_eob = dist;
int64_t rd_new_eob = RDCOST(rdmult, rate_coeff_eob, dist_new_eob);
if (abs_qc_low > 0) {
const int rate_coeff_eob_low =
new_eob_cost + get_coeff_cost_eob(ci, abs_qc_low, sign,
coeff_ctx_new_eob, dc_sign_ctx,
txb_costs, bhl, tx_class);
const int64_t dist_new_eob_low = dist_low;
const int64_t rd_new_eob_low =
RDCOST(rdmult, rate_coeff_eob_low, dist_new_eob_low);
if (rd_new_eob_low < rd_new_eob) {
lower_level_new_eob = 1;
rd_new_eob = rd_new_eob_low;
rate_coeff_eob = rate_coeff_eob_low;
dist_new_eob = dist_new_eob_low;
}
}
const int qc_threshold = (si <= 5) ? 2 : 1;
const int allow_lower_qc = sharpness ? abs_qc > qc_threshold : 1;
if (allow_lower_qc) {
if (rd_low < rd) {
lower_level = 1;
rd = rd_low;
rate = rate_low;
dist = dist_low;
}
}
if ((sharpness == 0 || new_eob >= 5) && rd_new_eob < rd) {
for (int ni = 0; ni < *nz_num; ++ni) {
int last_ci = nz_ci[ni];
levels[get_padded_idx(last_ci, bhl)] = 0;
qcoeff[last_ci] = 0;
dqcoeff[last_ci] = 0;
}
*eob = new_eob;
*nz_num = 0;
*accu_rate = rate_coeff_eob;
*accu_dist = dist_new_eob;
lower_level = lower_level_new_eob;
} else {
*accu_rate += rate;
*accu_dist += dist;
}
if (lower_level) {
qcoeff[ci] = qc_low;
dqcoeff[ci] = dqc_low;
levels[get_padded_idx(ci, bhl)] = AOMMIN(abs_qc_low, INT8_MAX);
}
if (qcoeff[ci]) {
nz_ci[*nz_num] = ci;
++*nz_num;
}
}
}
static inline void update_skip(int *accu_rate, int64_t accu_dist, int *eob,
int nz_num, int *nz_ci, int64_t rdmult,
int skip_cost, int non_skip_cost,
tran_low_t *qcoeff, tran_low_t *dqcoeff) {
const int64_t rd = RDCOST(rdmult, *accu_rate + non_skip_cost, accu_dist);
const int64_t rd_new_eob = RDCOST(rdmult, skip_cost, 0);
if (rd_new_eob < rd) {
for (int i = 0; i < nz_num; ++i) {
const int ci = nz_ci[i];
qcoeff[ci] = 0;
dqcoeff[ci] = 0;
// no need to set up levels because this is the last step
// levels[get_padded_idx(ci, bhl)] = 0;
}
*accu_rate = 0;
*eob = 0;
}
}
// TODO(angiebird): use this function whenever it's possible
static int get_tx_type_cost(const MACROBLOCK *x, const MACROBLOCKD *xd,
int plane, TX_SIZE tx_size, TX_TYPE tx_type,
int reduced_tx_set_used) {
if (plane > 0) return 0;
const TX_SIZE square_tx_size = txsize_sqr_map[tx_size];
const MB_MODE_INFO *mbmi = xd->mi[0];
const int is_inter = is_inter_block(mbmi);
if (get_ext_tx_types(tx_size, is_inter, reduced_tx_set_used) > 1 &&
!xd->lossless[xd->mi[0]->segment_id]) {
const int ext_tx_set =
get_ext_tx_set(tx_size, is_inter, reduced_tx_set_used);
if (is_inter) {
if (ext_tx_set > 0)
return x->mode_costs
.inter_tx_type_costs[ext_tx_set][square_tx_size][tx_type];
} else {
if (ext_tx_set > 0) {
PREDICTION_MODE intra_dir;
if (mbmi->filter_intra_mode_info.use_filter_intra)
intra_dir = fimode_to_intradir[mbmi->filter_intra_mode_info
.filter_intra_mode];
else
intra_dir = mbmi->mode;
return x->mode_costs.intra_tx_type_costs[ext_tx_set][square_tx_size]
[intra_dir][tx_type];
}
}
}
return 0;
}
int av1_optimize_txb(const struct AV1_COMP *cpi, MACROBLOCK *x, int plane,
int block, TX_SIZE tx_size, TX_TYPE tx_type,
const TXB_CTX *const txb_ctx, int *rate_cost,
int sharpness) {
MACROBLOCKD *xd = &x->e_mbd;
const struct macroblock_plane *p = &x->plane[plane];
const SCAN_ORDER *scan_order = get_scan(tx_size, tx_type);
const int16_t *scan = scan_order->scan;
const int shift = av1_get_tx_scale(tx_size);
int eob = p->eobs[block];
const int16_t *dequant = p->dequant_QTX;
const qm_val_t *iqmatrix =
av1_get_iqmatrix(&cpi->common.quant_params, xd, plane, tx_size, tx_type);
const qm_val_t *qmatrix =
cpi->oxcf.tune_cfg.dist_metric == AOM_DIST_METRIC_QM_PSNR
? av1_get_qmatrix(&cpi->common.quant_params, xd, plane, tx_size,
tx_type)
: NULL;
const int block_offset = BLOCK_OFFSET(block);
tran_low_t *qcoeff = p->qcoeff + block_offset;
tran_low_t *dqcoeff = p->dqcoeff + block_offset;
const tran_low_t *tcoeff = p->coeff + block_offset;
const CoeffCosts *coeff_costs = &x->coeff_costs;
// This function is not called if eob = 0.
assert(eob > 0);
const AV1_COMMON *cm = &cpi->common;
const PLANE_TYPE plane_type = get_plane_type(plane);
const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
const TX_CLASS tx_class = tx_type_to_class[tx_type];
const MB_MODE_INFO *mbmi = xd->mi[0];
const int bhl = get_txb_bhl(tx_size);
const int width = get_txb_wide(tx_size);
const int height = get_txb_high(tx_size);
assert(height == (1 << bhl));
const int is_inter = is_inter_block(mbmi);
const LV_MAP_COEFF_COST *txb_costs =
&coeff_costs->coeff_costs[txs_ctx][plane_type];
const int eob_multi_size = txsize_log2_minus4[tx_size];
const LV_MAP_EOB_COST *txb_eob_costs =
&coeff_costs->eob_costs[eob_multi_size][plane_type];
// For the IQ and SSIMULACRA 2 tunings, increase rshift from 2 to 4.
// This biases trellis quantization towards keeping more coefficients, and
// together with the IQ and SSIMULACRA2 rdmult adjustment in
// av1_compute_rd_mult_based_on_qindex(), this helps preserve image
// features (like repeating patterns and camera noise/film grain), which
// improves SSIMULACRA 2 scores.
const int rshift = (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_IQ ||
cpi->oxcf.tune_cfg.tuning == AOM_TUNE_SSIMULACRA2)
? 7
: 5;
const int64_t rdmult = ROUND_POWER_OF_TWO(
(int64_t)x->rdmult * (8 - sharpness) *
(plane_rd_mult[is_inter][plane_type] << (2 * (xd->bd - 8))),
rshift);
uint8_t levels_buf[TX_PAD_2D];
uint8_t *const levels = set_levels(levels_buf, height);
if (eob > 1) av1_txb_init_levels(qcoeff, width, height, levels);
// TODO(angirbird): check iqmatrix
const int non_skip_cost = txb_costs->txb_skip_cost[txb_ctx->txb_skip_ctx][0];
const int skip_cost = txb_costs->txb_skip_cost[txb_ctx->txb_skip_ctx][1];
const int eob_cost = get_eob_cost(eob, txb_eob_costs, txb_costs, tx_class);
int accu_rate = eob_cost;
int64_t accu_dist = 0;
int si = eob - 1;
const int ci = scan[si];
const tran_low_t qc = qcoeff[ci];
const tran_low_t abs_qc = abs(qc);
const int sign = qc < 0;
const int max_nz_num = 2;
int nz_num = 1;
int nz_ci[3] = { ci, 0, 0 };
if (abs_qc >= 2) {
update_coeff_general(&accu_rate, &accu_dist, si, eob, tx_size, tx_class,
bhl, width, rdmult, shift, txb_ctx->dc_sign_ctx,
dequant, scan, txb_costs, tcoeff, qcoeff, dqcoeff,
levels, iqmatrix, qmatrix);
--si;
} else {
assert(abs_qc == 1);
const int coeff_ctx = get_lower_levels_ctx_eob(bhl, width, si);
accu_rate +=
get_coeff_cost_eob(ci, abs_qc, sign, coeff_ctx, txb_ctx->dc_sign_ctx,
txb_costs, bhl, tx_class);
const tran_low_t tqc = tcoeff[ci];
const tran_low_t dqc = dqcoeff[ci];
const int64_t dist = get_coeff_dist(tqc, dqc, shift, qmatrix, ci);
const int64_t dist0 = get_coeff_dist(tqc, 0, shift, qmatrix, ci);
accu_dist += dist - dist0;
--si;
}
#define UPDATE_COEFF_EOB_CASE(tx_class_literal) \
case tx_class_literal: \
for (; si >= 0 && nz_num <= max_nz_num; --si) { \
update_coeff_eob(&accu_rate, &accu_dist, &eob, &nz_num, nz_ci, si, \
tx_size, tx_class_literal, bhl, width, \
txb_ctx->dc_sign_ctx, rdmult, shift, dequant, scan, \
txb_eob_costs, txb_costs, tcoeff, qcoeff, dqcoeff, \
levels, sharpness, iqmatrix, qmatrix); \
} \
break
switch (tx_class) {
UPDATE_COEFF_EOB_CASE(TX_CLASS_2D);
UPDATE_COEFF_EOB_CASE(TX_CLASS_HORIZ);
UPDATE_COEFF_EOB_CASE(TX_CLASS_VERT);
#undef UPDATE_COEFF_EOB_CASE
default: assert(false);
}
if (si == -1 && nz_num <= max_nz_num && sharpness == 0) {
update_skip(&accu_rate, accu_dist, &eob, nz_num, nz_ci, rdmult, skip_cost,
non_skip_cost, qcoeff, dqcoeff);
}
#define UPDATE_COEFF_SIMPLE_CASE(tx_class_literal) \
case tx_class_literal: \
for (; si >= 1; --si) { \
update_coeff_simple(&accu_rate, si, eob, tx_size, tx_class_literal, bhl, \
rdmult, shift, dequant, scan, txb_costs, tcoeff, \
qcoeff, dqcoeff, levels, sharpness, iqmatrix, \
qmatrix); \
} \
break
switch (tx_class) {
UPDATE_COEFF_SIMPLE_CASE(TX_CLASS_2D);
UPDATE_COEFF_SIMPLE_CASE(TX_CLASS_HORIZ);
UPDATE_COEFF_SIMPLE_CASE(TX_CLASS_VERT);
#undef UPDATE_COEFF_SIMPLE_CASE
default: assert(false);
}
// DC position
if (si == 0) {
// no need to update accu_dist because it's not used after this point
int64_t dummy_dist = 0;
update_coeff_general(&accu_rate, &dummy_dist, si, eob, tx_size, tx_class,
bhl, width, rdmult, shift, txb_ctx->dc_sign_ctx,
dequant, scan, txb_costs, tcoeff, qcoeff, dqcoeff,
levels, iqmatrix, qmatrix);
}
const int tx_type_cost = get_tx_type_cost(x, xd, plane, tx_size, tx_type,
cm->features.reduced_tx_set_used);
if (eob == 0)
accu_rate += skip_cost;
else
accu_rate += non_skip_cost + tx_type_cost;
p->eobs[block] = eob;
p->txb_entropy_ctx[block] =
av1_get_txb_entropy_context(qcoeff, scan_order, p->eobs[block]);
*rate_cost = accu_rate;
return eob;
}
static AOM_FORCE_INLINE int warehouse_efficients_txb(
const MACROBLOCK *x, const int plane, const int block,
const TX_SIZE tx_size, const TXB_CTX *const txb_ctx,
const struct macroblock_plane *p, const int eob,
const PLANE_TYPE plane_type, const LV_MAP_COEFF_COST *const coeff_costs,
const MACROBLOCKD *const xd, const TX_TYPE tx_type, const TX_CLASS tx_class,
int reduced_tx_set_used) {
const tran_low_t *const qcoeff = p->qcoeff + BLOCK_OFFSET(block);
const int txb_skip_ctx = txb_ctx->txb_skip_ctx;
const int bhl = get_txb_bhl(tx_size);
const int width = get_txb_wide(tx_size);
const int height = get_txb_high(tx_size);
const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type);
const int16_t *const scan = scan_order->scan;
uint8_t levels_buf[TX_PAD_2D];
uint8_t *const levels = set_levels(levels_buf, height);
DECLARE_ALIGNED(16, int8_t, coeff_contexts[MAX_TX_SQUARE]);
const int eob_multi_size = txsize_log2_minus4[tx_size];
const LV_MAP_EOB_COST *const eob_costs =
&x->coeff_costs.eob_costs[eob_multi_size][plane_type];
int cost = coeff_costs->txb_skip_cost[txb_skip_ctx][0];
av1_txb_init_levels(qcoeff, width, height, levels);
cost += get_tx_type_cost(x, xd, plane, tx_size, tx_type, reduced_tx_set_used);
cost += get_eob_cost(eob, eob_costs, coeff_costs, tx_class);
av1_get_nz_map_contexts(levels, scan, eob, tx_size, tx_class, coeff_contexts);
const int(*lps_cost)[COEFF_BASE_RANGE + 1 + COEFF_BASE_RANGE + 1] =
coeff_costs->lps_cost;
int c = eob - 1;
{
const int pos = scan[c];
const tran_low_t v = qcoeff[pos];
const int sign = AOMSIGN(v);
const int level = (v ^ sign) - sign;
const int coeff_ctx = coeff_contexts[pos];
cost += coeff_costs->base_eob_cost[coeff_ctx][AOMMIN(level, 3) - 1];
if (v) {
// sign bit cost
if (level > NUM_BASE_LEVELS) {
const int ctx = get_br_ctx_eob(pos, bhl, tx_class);
cost += get_br_cost(level, lps_cost[ctx]);
}
if (c) {
cost += av1_cost_literal(1);
} else {
const int sign01 = (sign ^ sign) - sign;
const int dc_sign_ctx = txb_ctx->dc_sign_ctx;
cost += coeff_costs->dc_sign_cost[dc_sign_ctx][sign01];
return cost;
}
}
}
const int(*base_cost)[8] = coeff_costs->base_cost;
for (c = eob - 2; c >= 1; --c) {
const int pos = scan[c];
const int coeff_ctx = coeff_contexts[pos];
const tran_low_t v = qcoeff[pos];
const int level = abs(v);
cost += base_cost[coeff_ctx][AOMMIN(level, 3)];
if (v) {
// sign bit cost
cost += av1_cost_literal(1);
if (level > NUM_BASE_LEVELS) {
const int ctx = get_br_ctx(levels, pos, bhl, tx_class);
cost += get_br_cost(level, lps_cost[ctx]);
}
}
}
// c == 0 after previous loop
{
const int pos = scan[c];
const tran_low_t v = qcoeff[pos];
const int coeff_ctx = coeff_contexts[pos];
const int sign = AOMSIGN(v);
const int level = (v ^ sign) - sign;
cost += base_cost[coeff_ctx][AOMMIN(level, 3)];
if (v) {
// sign bit cost
const int sign01 = (sign ^ sign) - sign;
const int dc_sign_ctx = txb_ctx->dc_sign_ctx;
cost += coeff_costs->dc_sign_cost[dc_sign_ctx][sign01];
if (level > NUM_BASE_LEVELS) {
const int ctx = get_br_ctx(levels, pos, bhl, tx_class);
cost += get_br_cost(level, lps_cost[ctx]);
}
}
}
return cost;
}
/*!\brief Estimate the entropy cost of transform coefficients using Laplacian
* distribution.
*
* \ingroup coefficient_coding
*
* This function assumes each transform coefficient is of its own Laplacian
* distribution and the coefficient is the only observation of the Laplacian
* distribution.
*
* Based on that, each coefficient's coding cost can be estimated by computing
* the entropy of the corresponding Laplacian distribution.
*
* This function then return the sum of the estimated entropy cost for all
* coefficients in the transform block.
*
* Note that the entropy cost of end of block (eob) and transform type (tx_type)
* are not included.
*
* \param[in] x Pointer to structure holding the data for the
current encoding macroblock
* \param[in] plane The index of the current plane
* \param[in] block The index of the current transform block in the
* macroblock. It's defined by number of 4x4 units that have been coded before
* the currernt transform block
* \param[in] tx_size The transform size
* \param[in] tx_type The transform type
* \return int Estimated entropy cost of coefficients in the
* transform block.
*/
static int av1_cost_coeffs_txb_estimate(const MACROBLOCK *x, const int plane,
const int block, const TX_SIZE tx_size,
const TX_TYPE tx_type) {
assert(plane == 0);
int cost = 0;
const struct macroblock_plane *p = &x->plane[plane];
const SCAN_ORDER *scan_order = get_scan(tx_size, tx_type);
const int16_t *scan = scan_order->scan;
tran_low_t *qcoeff = p->qcoeff + BLOCK_OFFSET(block);
int eob = p->eobs[block];
// coeffs
int c = eob - 1;
// eob
{
const int pos = scan[c];
const tran_low_t v = abs(qcoeff[pos]) - 1;
cost += (v << (AV1_PROB_COST_SHIFT + 2));
}
// other coeffs
for (c = eob - 2; c >= 0; c--) {
const int pos = scan[c];
const tran_low_t v = abs(qcoeff[pos]);
const int idx = AOMMIN(v, 14);
cost += costLUT[idx];
}
// const_term does not contain DC, and log(e) does not contain eob, so both
// (eob-1)
cost += (const_term + loge_par) * (eob - 1);
return cost;
}
static AOM_FORCE_INLINE int warehouse_efficients_txb_laplacian(
const MACROBLOCK *x, const int plane, const int block,
const TX_SIZE tx_size, const TXB_CTX *const txb_ctx, const int eob,
const PLANE_TYPE plane_type, const LV_MAP_COEFF_COST *const coeff_costs,
const MACROBLOCKD *const xd, const TX_TYPE tx_type, const TX_CLASS tx_class,
int reduced_tx_set_used) {
const int txb_skip_ctx = txb_ctx->txb_skip_ctx;
const int eob_multi_size = txsize_log2_minus4[tx_size];
const LV_MAP_EOB_COST *const eob_costs =
&x->coeff_costs.eob_costs[eob_multi_size][plane_type];
int cost = coeff_costs->txb_skip_cost[txb_skip_ctx][0];
cost += get_tx_type_cost(x, xd, plane, tx_size, tx_type, reduced_tx_set_used);
cost += get_eob_cost(eob, eob_costs, coeff_costs, tx_class);
cost += av1_cost_coeffs_txb_estimate(x, plane, block, tx_size, tx_type);
return cost;
}
int av1_cost_coeffs_txb(const MACROBLOCK *x, const int plane, const int block,
const TX_SIZE tx_size, const TX_TYPE tx_type,
const TXB_CTX *const txb_ctx, int reduced_tx_set_used) {
const struct macroblock_plane *p = &x->plane[plane];
const int eob = p->eobs[block];
const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
const PLANE_TYPE plane_type = get_plane_type(plane);
const LV_MAP_COEFF_COST *const coeff_costs =
&x->coeff_costs.coeff_costs[txs_ctx][plane_type];
if (eob == 0) {
return coeff_costs->txb_skip_cost[txb_ctx->txb_skip_ctx][1];
}
const MACROBLOCKD *const xd = &x->e_mbd;
const TX_CLASS tx_class = tx_type_to_class[tx_type];
return warehouse_efficients_txb(x, plane, block, tx_size, txb_ctx, p, eob,
plane_type, coeff_costs, xd, tx_type,
tx_class, reduced_tx_set_used);
}
int av1_cost_coeffs_txb_laplacian(const MACROBLOCK *x, const int plane,
const int block, const TX_SIZE tx_size,
const TX_TYPE tx_type,
const TXB_CTX *const txb_ctx,
const int reduced_tx_set_used,
const int adjust_eob) {
const struct macroblock_plane *p = &x->plane[plane];
int eob = p->eobs[block];
if (adjust_eob) {
const SCAN_ORDER *scan_order = get_scan(tx_size, tx_type);
const int16_t *scan = scan_order->scan;
tran_low_t *tcoeff = p->coeff + BLOCK_OFFSET(block);
tran_low_t *qcoeff = p->qcoeff + BLOCK_OFFSET(block);
tran_low_t *dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
update_coeff_eob_fast(&eob, av1_get_tx_scale(tx_size), p->dequant_QTX, scan,
tcoeff, qcoeff, dqcoeff);
p->eobs[block] = eob;
}
const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
const PLANE_TYPE plane_type = get_plane_type(plane);
const LV_MAP_COEFF_COST *const coeff_costs =
&x->coeff_costs.coeff_costs[txs_ctx][plane_type];
if (eob == 0) {
return coeff_costs->txb_skip_cost[txb_ctx->txb_skip_ctx][1];
}
const MACROBLOCKD *const xd = &x->e_mbd;
const TX_CLASS tx_class = tx_type_to_class[tx_type];
return warehouse_efficients_txb_laplacian(
x, plane, block, tx_size, txb_ctx, eob, plane_type, coeff_costs, xd,
tx_type, tx_class, reduced_tx_set_used);
}
|