1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
|
/*
* Copyright (c) 2019, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <limits.h>
#include <math.h>
#include <stdbool.h>
#include <stdio.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/av1_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/binary_codes_writer.h"
#include "aom_ports/mem.h"
#include "aom_ports/aom_timer.h"
#include "av1/common/reconinter.h"
#include "av1/common/blockd.h"
#include "av1/common/quant_common.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/encodeframe_utils.h"
#include "av1/encoder/var_based_part.h"
#include "av1/encoder/reconinter_enc.h"
#include "av1/encoder/rdopt_utils.h"
// Possible values for the force_split variable while evaluating variance based
// partitioning.
enum {
// Evaluate all partition types
PART_EVAL_ALL = 0,
// Force PARTITION_SPLIT
PART_EVAL_ONLY_SPLIT = 1,
// Force PARTITION_NONE
PART_EVAL_ONLY_NONE = 2
} UENUM1BYTE(PART_EVAL_STATUS);
typedef struct {
VPVariance *part_variances;
VPartVar *split[4];
} variance_node;
static inline void tree_to_node(void *data, BLOCK_SIZE bsize,
variance_node *node) {
node->part_variances = NULL;
switch (bsize) {
case BLOCK_128X128: {
VP128x128 *vt = (VP128x128 *)data;
node->part_variances = &vt->part_variances;
for (int split_idx = 0; split_idx < 4; split_idx++)
node->split[split_idx] = &vt->split[split_idx].part_variances.none;
break;
}
case BLOCK_64X64: {
VP64x64 *vt = (VP64x64 *)data;
node->part_variances = &vt->part_variances;
for (int split_idx = 0; split_idx < 4; split_idx++)
node->split[split_idx] = &vt->split[split_idx].part_variances.none;
break;
}
case BLOCK_32X32: {
VP32x32 *vt = (VP32x32 *)data;
node->part_variances = &vt->part_variances;
for (int split_idx = 0; split_idx < 4; split_idx++)
node->split[split_idx] = &vt->split[split_idx].part_variances.none;
break;
}
case BLOCK_16X16: {
VP16x16 *vt = (VP16x16 *)data;
node->part_variances = &vt->part_variances;
for (int split_idx = 0; split_idx < 4; split_idx++)
node->split[split_idx] = &vt->split[split_idx].part_variances.none;
break;
}
case BLOCK_8X8: {
VP8x8 *vt = (VP8x8 *)data;
node->part_variances = &vt->part_variances;
for (int split_idx = 0; split_idx < 4; split_idx++)
node->split[split_idx] = &vt->split[split_idx].part_variances.none;
break;
}
default: {
VP4x4 *vt = (VP4x4 *)data;
assert(bsize == BLOCK_4X4);
node->part_variances = &vt->part_variances;
for (int split_idx = 0; split_idx < 4; split_idx++)
node->split[split_idx] = &vt->split[split_idx];
break;
}
}
}
// Set variance values given sum square error, sum error, count.
static inline void fill_variance(uint32_t s2, int32_t s, int c, VPartVar *v) {
v->sum_square_error = s2;
v->sum_error = s;
v->log2_count = c;
}
static inline void get_variance(VPartVar *v) {
v->variance =
(int)(256 * (v->sum_square_error -
(uint32_t)(((int64_t)v->sum_error * v->sum_error) >>
v->log2_count)) >>
v->log2_count);
}
static inline void sum_2_variances(const VPartVar *a, const VPartVar *b,
VPartVar *r) {
assert(a->log2_count == b->log2_count);
fill_variance(a->sum_square_error + b->sum_square_error,
a->sum_error + b->sum_error, a->log2_count + 1, r);
}
static inline void fill_variance_tree(void *data, BLOCK_SIZE bsize) {
variance_node node;
memset(&node, 0, sizeof(node));
tree_to_node(data, bsize, &node);
sum_2_variances(node.split[0], node.split[1], &node.part_variances->horz[0]);
sum_2_variances(node.split[2], node.split[3], &node.part_variances->horz[1]);
sum_2_variances(node.split[0], node.split[2], &node.part_variances->vert[0]);
sum_2_variances(node.split[1], node.split[3], &node.part_variances->vert[1]);
sum_2_variances(&node.part_variances->vert[0], &node.part_variances->vert[1],
&node.part_variances->none);
}
static inline void set_block_size(AV1_COMP *const cpi, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
if (cpi->common.mi_params.mi_cols > mi_col &&
cpi->common.mi_params.mi_rows > mi_row) {
CommonModeInfoParams *mi_params = &cpi->common.mi_params;
const int mi_grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col);
const int mi_alloc_idx = get_alloc_mi_idx(mi_params, mi_row, mi_col);
MB_MODE_INFO *mi = mi_params->mi_grid_base[mi_grid_idx] =
&mi_params->mi_alloc[mi_alloc_idx];
mi->bsize = bsize;
}
}
static int set_vt_partitioning(AV1_COMP *cpi, MACROBLOCKD *const xd,
const TileInfo *const tile, void *data,
BLOCK_SIZE bsize, int mi_row, int mi_col,
int64_t threshold, BLOCK_SIZE bsize_min,
PART_EVAL_STATUS force_split) {
AV1_COMMON *const cm = &cpi->common;
variance_node vt;
const int block_width = mi_size_wide[bsize];
const int block_height = mi_size_high[bsize];
int bs_width_check = block_width;
int bs_height_check = block_height;
int bs_width_vert_check = block_width >> 1;
int bs_height_horiz_check = block_height >> 1;
// On the right and bottom boundary we only need to check
// if half the bsize fits, because boundary is extended
// up to 64. So do this check only for sb_size = 64X64.
if (cm->seq_params->sb_size == BLOCK_64X64) {
if (tile->mi_col_end == cm->mi_params.mi_cols) {
bs_width_check = (block_width >> 1) + 1;
bs_width_vert_check = (block_width >> 2) + 1;
}
if (tile->mi_row_end == cm->mi_params.mi_rows) {
bs_height_check = (block_height >> 1) + 1;
bs_height_horiz_check = (block_height >> 2) + 1;
}
}
assert(block_height == block_width);
tree_to_node(data, bsize, &vt);
if (mi_col + bs_width_check <= tile->mi_col_end &&
mi_row + bs_height_check <= tile->mi_row_end &&
force_split == PART_EVAL_ONLY_NONE) {
set_block_size(cpi, mi_row, mi_col, bsize);
return 1;
}
if (force_split == PART_EVAL_ONLY_SPLIT) return 0;
// For bsize=bsize_min (16x16/8x8 for 8x8/4x4 downsampling), select if
// variance is below threshold, otherwise split will be selected.
// No check for vert/horiz split as too few samples for variance.
if (bsize == bsize_min) {
// Variance already computed to set the force_split.
if (frame_is_intra_only(cm)) get_variance(&vt.part_variances->none);
if (mi_col + bs_width_check <= tile->mi_col_end &&
mi_row + bs_height_check <= tile->mi_row_end &&
vt.part_variances->none.variance < threshold) {
set_block_size(cpi, mi_row, mi_col, bsize);
return 1;
}
return 0;
} else if (bsize > bsize_min) {
// Variance already computed to set the force_split.
if (frame_is_intra_only(cm)) get_variance(&vt.part_variances->none);
// For key frame: take split for bsize above 32X32 or very high variance.
if (frame_is_intra_only(cm) &&
(bsize > BLOCK_32X32 ||
vt.part_variances->none.variance > (threshold << 4))) {
return 0;
}
// If variance is low, take the bsize (no split).
if (mi_col + bs_width_check <= tile->mi_col_end &&
mi_row + bs_height_check <= tile->mi_row_end &&
vt.part_variances->none.variance < threshold) {
set_block_size(cpi, mi_row, mi_col, bsize);
return 1;
}
// Check vertical split.
if (mi_row + bs_height_check <= tile->mi_row_end &&
mi_col + bs_width_vert_check <= tile->mi_col_end) {
BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_VERT);
BLOCK_SIZE plane_bsize =
get_plane_block_size(subsize, xd->plane[AOM_PLANE_U].subsampling_x,
xd->plane[AOM_PLANE_U].subsampling_y);
get_variance(&vt.part_variances->vert[0]);
get_variance(&vt.part_variances->vert[1]);
if (vt.part_variances->vert[0].variance < threshold &&
vt.part_variances->vert[1].variance < threshold &&
plane_bsize < BLOCK_INVALID) {
set_block_size(cpi, mi_row, mi_col, subsize);
set_block_size(cpi, mi_row, mi_col + block_width / 2, subsize);
return 1;
}
}
// Check horizontal split.
if (mi_col + bs_width_check <= tile->mi_col_end &&
mi_row + bs_height_horiz_check <= tile->mi_row_end) {
BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_HORZ);
BLOCK_SIZE plane_bsize =
get_plane_block_size(subsize, xd->plane[AOM_PLANE_U].subsampling_x,
xd->plane[AOM_PLANE_U].subsampling_y);
get_variance(&vt.part_variances->horz[0]);
get_variance(&vt.part_variances->horz[1]);
if (vt.part_variances->horz[0].variance < threshold &&
vt.part_variances->horz[1].variance < threshold &&
plane_bsize < BLOCK_INVALID) {
set_block_size(cpi, mi_row, mi_col, subsize);
set_block_size(cpi, mi_row + block_height / 2, mi_col, subsize);
return 1;
}
}
return 0;
}
return 0;
}
static inline int all_blks_inside(int x16_idx, int y16_idx, int pixels_wide,
int pixels_high) {
int all_inside = 1;
for (int idx = 0; idx < 4; idx++) {
all_inside &= ((x16_idx + GET_BLK_IDX_X(idx, 3)) < pixels_wide);
all_inside &= ((y16_idx + GET_BLK_IDX_Y(idx, 3)) < pixels_high);
}
return all_inside;
}
#if CONFIG_AV1_HIGHBITDEPTH
// TODO(yunqingwang): Perform average of four 8x8 blocks similar to lowbd
static inline void fill_variance_8x8avg_highbd(
const uint8_t *src_buf, int src_stride, const uint8_t *dst_buf,
int dst_stride, int x16_idx, int y16_idx, VP16x16 *vst, int pixels_wide,
int pixels_high) {
for (int idx = 0; idx < 4; idx++) {
const int x8_idx = x16_idx + GET_BLK_IDX_X(idx, 3);
const int y8_idx = y16_idx + GET_BLK_IDX_Y(idx, 3);
unsigned int sse = 0;
int sum = 0;
if (x8_idx < pixels_wide && y8_idx < pixels_high) {
int src_avg = aom_highbd_avg_8x8(src_buf + y8_idx * src_stride + x8_idx,
src_stride);
int dst_avg = aom_highbd_avg_8x8(dst_buf + y8_idx * dst_stride + x8_idx,
dst_stride);
sum = src_avg - dst_avg;
sse = sum * sum;
}
fill_variance(sse, sum, 0, &vst->split[idx].part_variances.none);
}
}
#endif
static inline void fill_variance_8x8avg_lowbd(
const uint8_t *src_buf, int src_stride, const uint8_t *dst_buf,
int dst_stride, int x16_idx, int y16_idx, VP16x16 *vst, int pixels_wide,
int pixels_high) {
unsigned int sse[4] = { 0 };
int sum[4] = { 0 };
if (all_blks_inside(x16_idx, y16_idx, pixels_wide, pixels_high)) {
int src_avg[4];
int dst_avg[4];
aom_avg_8x8_quad(src_buf, src_stride, x16_idx, y16_idx, src_avg);
aom_avg_8x8_quad(dst_buf, dst_stride, x16_idx, y16_idx, dst_avg);
for (int idx = 0; idx < 4; idx++) {
sum[idx] = src_avg[idx] - dst_avg[idx];
sse[idx] = sum[idx] * sum[idx];
}
} else {
for (int idx = 0; idx < 4; idx++) {
const int x8_idx = x16_idx + GET_BLK_IDX_X(idx, 3);
const int y8_idx = y16_idx + GET_BLK_IDX_Y(idx, 3);
if (x8_idx < pixels_wide && y8_idx < pixels_high) {
int src_avg =
aom_avg_8x8(src_buf + y8_idx * src_stride + x8_idx, src_stride);
int dst_avg =
aom_avg_8x8(dst_buf + y8_idx * dst_stride + x8_idx, dst_stride);
sum[idx] = src_avg - dst_avg;
sse[idx] = sum[idx] * sum[idx];
}
}
}
for (int idx = 0; idx < 4; idx++) {
fill_variance(sse[idx], sum[idx], 0, &vst->split[idx].part_variances.none);
}
}
// Obtain parameters required to calculate variance (such as sum, sse, etc,.)
// at 8x8 sub-block level for a given 16x16 block.
// The function can be called only when is_key_frame is false since sum is
// computed between source and reference frames.
static inline void fill_variance_8x8avg(const uint8_t *src_buf, int src_stride,
const uint8_t *dst_buf, int dst_stride,
int x16_idx, int y16_idx, VP16x16 *vst,
int highbd_flag, int pixels_wide,
int pixels_high) {
#if CONFIG_AV1_HIGHBITDEPTH
if (highbd_flag) {
fill_variance_8x8avg_highbd(src_buf, src_stride, dst_buf, dst_stride,
x16_idx, y16_idx, vst, pixels_wide,
pixels_high);
return;
}
#else
(void)highbd_flag;
#endif // CONFIG_AV1_HIGHBITDEPTH
fill_variance_8x8avg_lowbd(src_buf, src_stride, dst_buf, dst_stride, x16_idx,
y16_idx, vst, pixels_wide, pixels_high);
}
static int compute_minmax_8x8(const uint8_t *src_buf, int src_stride,
const uint8_t *dst_buf, int dst_stride,
int x16_idx, int y16_idx,
#if CONFIG_AV1_HIGHBITDEPTH
int highbd_flag,
#endif
int pixels_wide, int pixels_high) {
int minmax_max = 0;
int minmax_min = 255;
// Loop over the 4 8x8 subblocks.
for (int idx = 0; idx < 4; idx++) {
const int x8_idx = x16_idx + GET_BLK_IDX_X(idx, 3);
const int y8_idx = y16_idx + GET_BLK_IDX_Y(idx, 3);
int min = 0;
int max = 0;
if (x8_idx < pixels_wide && y8_idx < pixels_high) {
#if CONFIG_AV1_HIGHBITDEPTH
if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
aom_highbd_minmax_8x8(
src_buf + y8_idx * src_stride + x8_idx, src_stride,
dst_buf + y8_idx * dst_stride + x8_idx, dst_stride, &min, &max);
} else {
aom_minmax_8x8(src_buf + y8_idx * src_stride + x8_idx, src_stride,
dst_buf + y8_idx * dst_stride + x8_idx, dst_stride, &min,
&max);
}
#else
aom_minmax_8x8(src_buf + y8_idx * src_stride + x8_idx, src_stride,
dst_buf + y8_idx * dst_stride + x8_idx, dst_stride, &min,
&max);
#endif
if ((max - min) > minmax_max) minmax_max = (max - min);
if ((max - min) < minmax_min) minmax_min = (max - min);
}
}
return (minmax_max - minmax_min);
}
// Function to compute average and variance of 4x4 sub-block.
// The function can be called only when is_key_frame is true since sum is
// computed using source frame only.
static inline void fill_variance_4x4avg(const uint8_t *src_buf, int src_stride,
int x8_idx, int y8_idx, VP8x8 *vst,
#if CONFIG_AV1_HIGHBITDEPTH
int highbd_flag,
#endif
int pixels_wide, int pixels_high,
int border_offset_4x4) {
for (int idx = 0; idx < 4; idx++) {
const int x4_idx = x8_idx + GET_BLK_IDX_X(idx, 2);
const int y4_idx = y8_idx + GET_BLK_IDX_Y(idx, 2);
unsigned int sse = 0;
int sum = 0;
if (x4_idx < pixels_wide - border_offset_4x4 &&
y4_idx < pixels_high - border_offset_4x4) {
int src_avg;
int dst_avg = 128;
#if CONFIG_AV1_HIGHBITDEPTH
if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
src_avg = aom_highbd_avg_4x4(src_buf + y4_idx * src_stride + x4_idx,
src_stride);
} else {
src_avg =
aom_avg_4x4(src_buf + y4_idx * src_stride + x4_idx, src_stride);
}
#else
src_avg = aom_avg_4x4(src_buf + y4_idx * src_stride + x4_idx, src_stride);
#endif
sum = src_avg - dst_avg;
sse = sum * sum;
}
fill_variance(sse, sum, 0, &vst->split[idx].part_variances.none);
}
}
static int64_t scale_part_thresh_content(int64_t threshold_base, int speed,
int non_reference_frame,
int is_static) {
int64_t threshold = threshold_base;
if (non_reference_frame && !is_static) threshold = (3 * threshold) >> 1;
if (speed >= 8) {
return (5 * threshold) >> 2;
}
return threshold;
}
// Tune thresholds less or more aggressively to prefer larger partitions
static inline void tune_thresh_based_on_qindex(
AV1_COMP *cpi, int64_t thresholds[], uint64_t block_sad, int current_qindex,
int num_pixels, bool is_segment_id_boosted, int source_sad_nonrd,
int lighting_change) {
double weight;
if (cpi->sf.rt_sf.prefer_large_partition_blocks >= 3) {
const int win = 20;
if (current_qindex < QINDEX_LARGE_BLOCK_THR - win)
weight = 1.0;
else if (current_qindex > QINDEX_LARGE_BLOCK_THR + win)
weight = 0.0;
else
weight =
1.0 - (current_qindex - QINDEX_LARGE_BLOCK_THR + win) / (2 * win);
if (num_pixels > RESOLUTION_480P) {
for (int i = 0; i < 4; i++) {
thresholds[i] <<= 1;
}
}
if (num_pixels <= RESOLUTION_288P) {
thresholds[3] = INT64_MAX;
if (is_segment_id_boosted == false) {
thresholds[1] <<= 2;
thresholds[2] <<= (source_sad_nonrd <= kLowSad) ? 5 : 4;
} else {
thresholds[1] <<= 1;
thresholds[2] <<= 3;
}
// Allow for split to 8x8 for superblocks where part of it has
// moving boundary. So allow for sb with source_sad above threshold,
// and avoid very large source_sad or high source content, to avoid
// too many 8x8 within superblock.
uint64_t avg_source_sad_thresh = 25000;
uint64_t block_sad_low = 25000;
uint64_t block_sad_high = 50000;
if (cpi->svc.temporal_layer_id == 0 &&
cpi->svc.number_temporal_layers > 1) {
// Increase the sad thresholds for base TL0, as reference/LAST is
// 2/4 frames behind (for 2/3 #TL).
avg_source_sad_thresh = 40000;
block_sad_high = 70000;
}
if (is_segment_id_boosted == false &&
cpi->rc.avg_source_sad < avg_source_sad_thresh &&
block_sad > block_sad_low && block_sad < block_sad_high &&
!lighting_change) {
thresholds[2] = (3 * thresholds[2]) >> 2;
thresholds[3] = thresholds[2] << 3;
}
// Condition the increase of partition thresholds on the segment
// and the content. Avoid the increase for superblocks which have
// high source sad, unless the whole frame has very high motion
// (i.e, cpi->rc.avg_source_sad is very large, in which case all blocks
// have high source sad).
} else if (num_pixels > RESOLUTION_480P && is_segment_id_boosted == false &&
(source_sad_nonrd != kHighSad ||
cpi->rc.avg_source_sad > 50000)) {
thresholds[0] = (3 * thresholds[0]) >> 1;
thresholds[3] = INT64_MAX;
if (current_qindex > QINDEX_LARGE_BLOCK_THR) {
thresholds[1] =
(int)((1 - weight) * (thresholds[1] << 1) + weight * thresholds[1]);
thresholds[2] =
(int)((1 - weight) * (thresholds[2] << 1) + weight * thresholds[2]);
}
} else if (current_qindex > QINDEX_LARGE_BLOCK_THR &&
is_segment_id_boosted == false &&
(source_sad_nonrd != kHighSad ||
cpi->rc.avg_source_sad > 50000)) {
thresholds[1] =
(int)((1 - weight) * (thresholds[1] << 2) + weight * thresholds[1]);
thresholds[2] =
(int)((1 - weight) * (thresholds[2] << 4) + weight * thresholds[2]);
thresholds[3] = INT64_MAX;
}
} else if (cpi->sf.rt_sf.prefer_large_partition_blocks >= 2) {
thresholds[1] <<= (source_sad_nonrd <= kLowSad) ? 2 : 0;
thresholds[2] =
(source_sad_nonrd <= kLowSad) ? (3 * thresholds[2]) : thresholds[2];
} else if (cpi->sf.rt_sf.prefer_large_partition_blocks >= 1) {
const int fac = (source_sad_nonrd <= kLowSad) ? 2 : 1;
if (current_qindex < QINDEX_LARGE_BLOCK_THR - 45)
weight = 1.0;
else if (current_qindex > QINDEX_LARGE_BLOCK_THR + 45)
weight = 0.0;
else
weight = 1.0 - (current_qindex - QINDEX_LARGE_BLOCK_THR + 45) / (2 * 45);
thresholds[1] =
(int)((1 - weight) * (thresholds[1] << 1) + weight * thresholds[1]);
thresholds[2] =
(int)((1 - weight) * (thresholds[2] << 1) + weight * thresholds[2]);
thresholds[3] =
(int)((1 - weight) * (thresholds[3] << fac) + weight * thresholds[3]);
}
if (cpi->sf.part_sf.disable_8x8_part_based_on_qidx && (current_qindex < 128))
thresholds[3] = INT64_MAX;
}
static void set_vbp_thresholds_key_frame(AV1_COMP *cpi, int64_t thresholds[],
int64_t threshold_base,
int threshold_left_shift,
int num_pixels) {
if (cpi->sf.rt_sf.force_large_partition_blocks_intra) {
const int shift_steps =
threshold_left_shift - (cpi->oxcf.mode == ALLINTRA ? 7 : 8);
assert(shift_steps >= 0);
threshold_base <<= shift_steps;
}
thresholds[0] = threshold_base;
thresholds[1] = threshold_base;
if (num_pixels < RESOLUTION_720P) {
thresholds[2] = threshold_base / 3;
thresholds[3] = threshold_base >> 1;
} else {
int shift_val = 2;
if (cpi->sf.rt_sf.force_large_partition_blocks_intra) {
shift_val = (cpi->oxcf.mode == ALLINTRA ? 1 : 0);
}
thresholds[2] = threshold_base >> shift_val;
thresholds[3] = threshold_base >> shift_val;
}
thresholds[4] = threshold_base << 2;
}
static inline void tune_thresh_based_on_resolution(
AV1_COMP *cpi, int64_t thresholds[], int64_t threshold_base,
int current_qindex, int source_sad_rd, int num_pixels) {
if (num_pixels >= RESOLUTION_720P) thresholds[3] = thresholds[3] << 1;
if (num_pixels <= RESOLUTION_288P) {
const int qindex_thr[5][2] = {
{ 200, 220 }, { 140, 170 }, { 120, 150 }, { 200, 210 }, { 170, 220 },
};
int th_idx = 0;
if (cpi->sf.rt_sf.var_part_based_on_qidx >= 1)
th_idx =
(source_sad_rd <= kLowSad) ? cpi->sf.rt_sf.var_part_based_on_qidx : 0;
if (cpi->sf.rt_sf.var_part_based_on_qidx >= 3)
th_idx = cpi->sf.rt_sf.var_part_based_on_qidx;
const int qindex_low_thr = qindex_thr[th_idx][0];
const int qindex_high_thr = qindex_thr[th_idx][1];
if (current_qindex >= qindex_high_thr) {
threshold_base = (5 * threshold_base) >> 1;
thresholds[1] = threshold_base >> 3;
thresholds[2] = threshold_base << 2;
thresholds[3] = threshold_base << 5;
} else if (current_qindex < qindex_low_thr) {
thresholds[1] = threshold_base >> 3;
thresholds[2] = threshold_base >> 1;
thresholds[3] = threshold_base << 3;
} else {
int64_t qi_diff_low = current_qindex - qindex_low_thr;
int64_t qi_diff_high = qindex_high_thr - current_qindex;
int64_t threshold_diff = qindex_high_thr - qindex_low_thr;
int64_t threshold_base_high = (5 * threshold_base) >> 1;
threshold_diff = threshold_diff > 0 ? threshold_diff : 1;
threshold_base =
(qi_diff_low * threshold_base_high + qi_diff_high * threshold_base) /
threshold_diff;
thresholds[1] = threshold_base >> 3;
thresholds[2] = ((qi_diff_low * threshold_base) +
qi_diff_high * (threshold_base >> 1)) /
threshold_diff;
thresholds[3] = ((qi_diff_low * (threshold_base << 5)) +
qi_diff_high * (threshold_base << 3)) /
threshold_diff;
}
} else if (num_pixels < RESOLUTION_720P) {
thresholds[2] = (5 * threshold_base) >> 2;
} else if (num_pixels < RESOLUTION_1080P) {
thresholds[2] = threshold_base << 1;
} else {
// num_pixels >= RESOLUTION_1080P
if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN) {
if (num_pixels < RESOLUTION_1440P) {
thresholds[2] = (5 * threshold_base) >> 1;
} else {
thresholds[2] = (7 * threshold_base) >> 1;
}
} else {
if (cpi->oxcf.speed > 7) {
thresholds[2] = 6 * threshold_base;
} else {
thresholds[2] = 3 * threshold_base;
}
}
}
}
// Increase the base partition threshold, based on content and noise level.
static inline int64_t tune_base_thresh_content(AV1_COMP *cpi,
int64_t threshold_base,
int content_lowsumdiff,
int source_sad_nonrd,
int num_pixels) {
AV1_COMMON *const cm = &cpi->common;
int64_t updated_thresh_base = threshold_base;
if (cpi->noise_estimate.enabled && content_lowsumdiff &&
num_pixels > RESOLUTION_480P && cm->current_frame.frame_number > 60) {
NOISE_LEVEL noise_level =
av1_noise_estimate_extract_level(&cpi->noise_estimate);
if (noise_level == kHigh)
updated_thresh_base = (5 * updated_thresh_base) >> 1;
else if (noise_level == kMedium &&
!cpi->sf.rt_sf.prefer_large_partition_blocks)
updated_thresh_base = (5 * updated_thresh_base) >> 2;
}
updated_thresh_base = scale_part_thresh_content(
updated_thresh_base, cpi->oxcf.speed,
cpi->ppi->rtc_ref.non_reference_frame, cpi->rc.frame_source_sad == 0);
if (cpi->oxcf.speed >= 11 && source_sad_nonrd > kLowSad &&
cpi->rc.high_motion_content_screen_rtc)
updated_thresh_base = updated_thresh_base << 4;
return updated_thresh_base;
}
static inline void set_vbp_thresholds(AV1_COMP *cpi, int64_t thresholds[],
uint64_t blk_sad, int qindex,
int content_lowsumdiff,
int source_sad_nonrd, int source_sad_rd,
bool is_segment_id_boosted,
int lighting_change) {
AV1_COMMON *const cm = &cpi->common;
const int is_key_frame = frame_is_intra_only(cm);
const int threshold_multiplier = is_key_frame ? 120 : 1;
const int ac_q = av1_ac_quant_QTX(qindex, 0, cm->seq_params->bit_depth);
int64_t threshold_base = (int64_t)(threshold_multiplier * ac_q);
const int current_qindex = cm->quant_params.base_qindex;
const int threshold_left_shift = cpi->sf.rt_sf.var_part_split_threshold_shift;
const int num_pixels = cm->width * cm->height;
if (is_key_frame) {
set_vbp_thresholds_key_frame(cpi, thresholds, threshold_base,
threshold_left_shift, num_pixels);
return;
}
threshold_base = tune_base_thresh_content(
cpi, threshold_base, content_lowsumdiff, source_sad_nonrd, num_pixels);
thresholds[0] = threshold_base >> 1;
thresholds[1] = threshold_base;
thresholds[3] = threshold_base << threshold_left_shift;
tune_thresh_based_on_resolution(cpi, thresholds, threshold_base,
current_qindex, source_sad_rd, num_pixels);
tune_thresh_based_on_qindex(cpi, thresholds, blk_sad, current_qindex,
num_pixels, is_segment_id_boosted,
source_sad_nonrd, lighting_change);
}
// Set temporal variance low flag for superblock 64x64.
// Only first 25 in the array are used in this case.
static inline void set_low_temp_var_flag_64x64(CommonModeInfoParams *mi_params,
PartitionSearchInfo *part_info,
MACROBLOCKD *xd, VP64x64 *vt,
const int64_t thresholds[],
int mi_col, int mi_row) {
if (xd->mi[0]->bsize == BLOCK_64X64) {
if ((vt->part_variances).none.variance < (thresholds[0] >> 1))
part_info->variance_low[0] = 1;
} else if (xd->mi[0]->bsize == BLOCK_64X32) {
for (int part_idx = 0; part_idx < 2; part_idx++) {
if (vt->part_variances.horz[part_idx].variance < (thresholds[0] >> 2))
part_info->variance_low[part_idx + 1] = 1;
}
} else if (xd->mi[0]->bsize == BLOCK_32X64) {
for (int part_idx = 0; part_idx < 2; part_idx++) {
if (vt->part_variances.vert[part_idx].variance < (thresholds[0] >> 2))
part_info->variance_low[part_idx + 3] = 1;
}
} else {
static const int idx[4][2] = { { 0, 0 }, { 0, 8 }, { 8, 0 }, { 8, 8 } };
for (int lvl1_idx = 0; lvl1_idx < 4; lvl1_idx++) {
const int idx_str = mi_params->mi_stride * (mi_row + idx[lvl1_idx][0]) +
mi_col + idx[lvl1_idx][1];
MB_MODE_INFO **this_mi = mi_params->mi_grid_base + idx_str;
if (mi_params->mi_cols <= mi_col + idx[lvl1_idx][1] ||
mi_params->mi_rows <= mi_row + idx[lvl1_idx][0])
continue;
if (*this_mi == NULL) continue;
if ((*this_mi)->bsize == BLOCK_32X32) {
int64_t threshold_32x32 = (5 * thresholds[1]) >> 3;
if (vt->split[lvl1_idx].part_variances.none.variance < threshold_32x32)
part_info->variance_low[lvl1_idx + 5] = 1;
} else {
// For 32x16 and 16x32 blocks, the flag is set on each 16x16 block
// inside.
if ((*this_mi)->bsize == BLOCK_16X16 ||
(*this_mi)->bsize == BLOCK_32X16 ||
(*this_mi)->bsize == BLOCK_16X32) {
for (int lvl2_idx = 0; lvl2_idx < 4; lvl2_idx++) {
if (vt->split[lvl1_idx]
.split[lvl2_idx]
.part_variances.none.variance < (thresholds[2] >> 8))
part_info->variance_low[(lvl1_idx << 2) + lvl2_idx + 9] = 1;
}
}
}
}
}
}
static inline void set_low_temp_var_flag_128x128(
CommonModeInfoParams *mi_params, PartitionSearchInfo *part_info,
MACROBLOCKD *xd, VP128x128 *vt, const int64_t thresholds[], int mi_col,
int mi_row) {
if (xd->mi[0]->bsize == BLOCK_128X128) {
if (vt->part_variances.none.variance < (thresholds[0] >> 1))
part_info->variance_low[0] = 1;
} else if (xd->mi[0]->bsize == BLOCK_128X64) {
for (int part_idx = 0; part_idx < 2; part_idx++) {
if (vt->part_variances.horz[part_idx].variance < (thresholds[0] >> 2))
part_info->variance_low[part_idx + 1] = 1;
}
} else if (xd->mi[0]->bsize == BLOCK_64X128) {
for (int part_idx = 0; part_idx < 2; part_idx++) {
if (vt->part_variances.vert[part_idx].variance < (thresholds[0] >> 2))
part_info->variance_low[part_idx + 3] = 1;
}
} else {
static const int idx64[4][2] = {
{ 0, 0 }, { 0, 16 }, { 16, 0 }, { 16, 16 }
};
static const int idx32[4][2] = { { 0, 0 }, { 0, 8 }, { 8, 0 }, { 8, 8 } };
for (int lvl1_idx = 0; lvl1_idx < 4; lvl1_idx++) {
const int idx_str = mi_params->mi_stride * (mi_row + idx64[lvl1_idx][0]) +
mi_col + idx64[lvl1_idx][1];
MB_MODE_INFO **mi_64 = mi_params->mi_grid_base + idx_str;
if (*mi_64 == NULL) continue;
if (mi_params->mi_cols <= mi_col + idx64[lvl1_idx][1] ||
mi_params->mi_rows <= mi_row + idx64[lvl1_idx][0])
continue;
const int64_t threshold_64x64 = (5 * thresholds[1]) >> 3;
if ((*mi_64)->bsize == BLOCK_64X64) {
if (vt->split[lvl1_idx].part_variances.none.variance < threshold_64x64)
part_info->variance_low[5 + lvl1_idx] = 1;
} else if ((*mi_64)->bsize == BLOCK_64X32) {
for (int part_idx = 0; part_idx < 2; part_idx++)
if (vt->split[lvl1_idx].part_variances.horz[part_idx].variance <
(threshold_64x64 >> 1))
part_info->variance_low[9 + (lvl1_idx << 1) + part_idx] = 1;
} else if ((*mi_64)->bsize == BLOCK_32X64) {
for (int part_idx = 0; part_idx < 2; part_idx++)
if (vt->split[lvl1_idx].part_variances.vert[part_idx].variance <
(threshold_64x64 >> 1))
part_info->variance_low[17 + (lvl1_idx << 1) + part_idx] = 1;
} else {
for (int lvl2_idx = 0; lvl2_idx < 4; lvl2_idx++) {
const int idx_str1 =
mi_params->mi_stride * idx32[lvl2_idx][0] + idx32[lvl2_idx][1];
MB_MODE_INFO **mi_32 = mi_params->mi_grid_base + idx_str + idx_str1;
if (*mi_32 == NULL) continue;
if (mi_params->mi_cols <=
mi_col + idx64[lvl1_idx][1] + idx32[lvl2_idx][1] ||
mi_params->mi_rows <=
mi_row + idx64[lvl1_idx][0] + idx32[lvl2_idx][0])
continue;
const int64_t threshold_32x32 = (5 * thresholds[2]) >> 3;
if ((*mi_32)->bsize == BLOCK_32X32) {
if (vt->split[lvl1_idx]
.split[lvl2_idx]
.part_variances.none.variance < threshold_32x32)
part_info->variance_low[25 + (lvl1_idx << 2) + lvl2_idx] = 1;
} else {
// For 32x16 and 16x32 blocks, the flag is set on each 16x16 block
// inside.
if ((*mi_32)->bsize == BLOCK_16X16 ||
(*mi_32)->bsize == BLOCK_32X16 ||
(*mi_32)->bsize == BLOCK_16X32) {
for (int lvl3_idx = 0; lvl3_idx < 4; lvl3_idx++) {
VPartVar *none_var = &vt->split[lvl1_idx]
.split[lvl2_idx]
.split[lvl3_idx]
.part_variances.none;
if (none_var->variance < (thresholds[3] >> 8))
part_info->variance_low[41 + (lvl1_idx << 4) +
(lvl2_idx << 2) + lvl3_idx] = 1;
}
}
}
}
}
}
}
}
static inline void set_low_temp_var_flag(
AV1_COMP *cpi, PartitionSearchInfo *part_info, MACROBLOCKD *xd,
VP128x128 *vt, int64_t thresholds[], MV_REFERENCE_FRAME ref_frame_partition,
int mi_col, int mi_row, const bool is_small_sb) {
AV1_COMMON *const cm = &cpi->common;
// Check temporal variance for bsize >= 16x16, if LAST_FRAME was selected.
// If the temporal variance is small set the flag
// variance_low for the block. The variance threshold can be adjusted, the
// higher the more aggressive.
if (ref_frame_partition == LAST_FRAME) {
if (is_small_sb)
set_low_temp_var_flag_64x64(&cm->mi_params, part_info, xd,
&(vt->split[0]), thresholds, mi_col, mi_row);
else
set_low_temp_var_flag_128x128(&cm->mi_params, part_info, xd, vt,
thresholds, mi_col, mi_row);
}
}
static const int pos_shift_16x16[4][4] = {
{ 9, 10, 13, 14 }, { 11, 12, 15, 16 }, { 17, 18, 21, 22 }, { 19, 20, 23, 24 }
};
int av1_get_force_skip_low_temp_var_small_sb(const uint8_t *variance_low,
int mi_row, int mi_col,
BLOCK_SIZE bsize) {
// Relative indices of MB inside the superblock.
const int mi_x = mi_row & 0xF;
const int mi_y = mi_col & 0xF;
// Relative indices of 16x16 block inside the superblock.
const int i = mi_x >> 2;
const int j = mi_y >> 2;
int force_skip_low_temp_var = 0;
// Set force_skip_low_temp_var based on the block size and block offset.
switch (bsize) {
case BLOCK_64X64: force_skip_low_temp_var = variance_low[0]; break;
case BLOCK_64X32:
if (!mi_y && !mi_x) {
force_skip_low_temp_var = variance_low[1];
} else if (!mi_y && mi_x) {
force_skip_low_temp_var = variance_low[2];
}
break;
case BLOCK_32X64:
if (!mi_y && !mi_x) {
force_skip_low_temp_var = variance_low[3];
} else if (mi_y && !mi_x) {
force_skip_low_temp_var = variance_low[4];
}
break;
case BLOCK_32X32:
if (!mi_y && !mi_x) {
force_skip_low_temp_var = variance_low[5];
} else if (mi_y && !mi_x) {
force_skip_low_temp_var = variance_low[6];
} else if (!mi_y && mi_x) {
force_skip_low_temp_var = variance_low[7];
} else if (mi_y && mi_x) {
force_skip_low_temp_var = variance_low[8];
}
break;
case BLOCK_32X16:
case BLOCK_16X32:
case BLOCK_16X16:
force_skip_low_temp_var = variance_low[pos_shift_16x16[i][j]];
break;
default: break;
}
return force_skip_low_temp_var;
}
int av1_get_force_skip_low_temp_var(const uint8_t *variance_low, int mi_row,
int mi_col, BLOCK_SIZE bsize) {
int force_skip_low_temp_var = 0;
int x, y;
x = (mi_col & 0x1F) >> 4;
// y = (mi_row & 0x1F) >> 4;
// const int idx64 = (y << 1) + x;
y = (mi_row & 0x17) >> 3;
const int idx64 = y + x;
x = (mi_col & 0xF) >> 3;
// y = (mi_row & 0xF) >> 3;
// const int idx32 = (y << 1) + x;
y = (mi_row & 0xB) >> 2;
const int idx32 = y + x;
x = (mi_col & 0x7) >> 2;
// y = (mi_row & 0x7) >> 2;
// const int idx16 = (y << 1) + x;
y = (mi_row & 0x5) >> 1;
const int idx16 = y + x;
// Set force_skip_low_temp_var based on the block size and block offset.
switch (bsize) {
case BLOCK_128X128: force_skip_low_temp_var = variance_low[0]; break;
case BLOCK_128X64:
assert((mi_col & 0x1F) == 0);
force_skip_low_temp_var = variance_low[1 + ((mi_row & 0x1F) != 0)];
break;
case BLOCK_64X128:
assert((mi_row & 0x1F) == 0);
force_skip_low_temp_var = variance_low[3 + ((mi_col & 0x1F) != 0)];
break;
case BLOCK_64X64:
// Location of this 64x64 block inside the 128x128 superblock
force_skip_low_temp_var = variance_low[5 + idx64];
break;
case BLOCK_64X32:
x = (mi_col & 0x1F) >> 4;
y = (mi_row & 0x1F) >> 3;
/*
.---------------.---------------.
| x=0,y=0,idx=0 | x=0,y=0,idx=2 |
:---------------+---------------:
| x=0,y=1,idx=1 | x=1,y=1,idx=3 |
:---------------+---------------:
| x=0,y=2,idx=4 | x=1,y=2,idx=6 |
:---------------+---------------:
| x=0,y=3,idx=5 | x=1,y=3,idx=7 |
'---------------'---------------'
*/
const int idx64x32 = (x << 1) + (y % 2) + ((y >> 1) << 2);
force_skip_low_temp_var = variance_low[9 + idx64x32];
break;
case BLOCK_32X64:
x = (mi_col & 0x1F) >> 3;
y = (mi_row & 0x1F) >> 4;
const int idx32x64 = (y << 2) + x;
force_skip_low_temp_var = variance_low[17 + idx32x64];
break;
case BLOCK_32X32:
force_skip_low_temp_var = variance_low[25 + (idx64 << 2) + idx32];
break;
case BLOCK_32X16:
case BLOCK_16X32:
case BLOCK_16X16:
force_skip_low_temp_var =
variance_low[41 + (idx64 << 4) + (idx32 << 2) + idx16];
break;
default: break;
}
return force_skip_low_temp_var;
}
void av1_set_variance_partition_thresholds(AV1_COMP *cpi, int qindex,
int content_lowsumdiff) {
SPEED_FEATURES *const sf = &cpi->sf;
if (sf->part_sf.partition_search_type != VAR_BASED_PARTITION) {
return;
} else {
set_vbp_thresholds(cpi, cpi->vbp_info.thresholds, 0, qindex,
content_lowsumdiff, 0, 0, 0, 0);
// The threshold below is not changed locally.
cpi->vbp_info.threshold_minmax = 15 + (qindex >> 3);
}
}
static inline void chroma_check(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
unsigned int y_sad, unsigned int y_sad_g,
unsigned int y_sad_alt, bool is_key_frame,
bool zero_motion, unsigned int *uv_sad) {
MACROBLOCKD *xd = &x->e_mbd;
const int source_sad_nonrd = x->content_state_sb.source_sad_nonrd;
int shift_upper_limit = 1;
int shift_lower_limit = 3;
int fac_uv = 6;
if (is_key_frame || cpi->oxcf.tool_cfg.enable_monochrome) return;
// Use lower threshold (more conservative in setting color flag) for
// higher resolutions non-screen, which tend to have more camera noise.
// Since this may be used to skip compound mode in nonrd pickmode, which
// is generally more effective for higher resolutions, better to be more
// conservative.
if (cpi->oxcf.tune_cfg.content != AOM_CONTENT_SCREEN) {
if (cpi->common.width * cpi->common.height >= RESOLUTION_1080P)
fac_uv = 3;
else
fac_uv = 5;
}
if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN &&
cpi->rc.high_source_sad) {
shift_lower_limit = 7;
} else if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN &&
cpi->rc.percent_blocks_with_motion > 90 &&
cpi->rc.frame_source_sad > 10000 && source_sad_nonrd > kLowSad) {
shift_lower_limit = 8;
shift_upper_limit = 3;
} else if (source_sad_nonrd >= kMedSad && x->source_variance > 500 &&
cpi->common.width * cpi->common.height >= 640 * 360) {
shift_upper_limit = 2;
shift_lower_limit = source_sad_nonrd > kMedSad ? 5 : 4;
}
MB_MODE_INFO *mi = xd->mi[0];
const AV1_COMMON *const cm = &cpi->common;
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, LAST_FRAME);
const YV12_BUFFER_CONFIG *yv12_g = get_ref_frame_yv12_buf(cm, GOLDEN_FRAME);
const YV12_BUFFER_CONFIG *yv12_alt = get_ref_frame_yv12_buf(cm, ALTREF_FRAME);
const struct scale_factors *const sf =
get_ref_scale_factors_const(cm, LAST_FRAME);
struct buf_2d dst;
unsigned int uv_sad_g = 0;
unsigned int uv_sad_alt = 0;
for (int plane = AOM_PLANE_U; plane < MAX_MB_PLANE; ++plane) {
struct macroblock_plane *p = &x->plane[plane];
struct macroblockd_plane *pd = &xd->plane[plane];
const BLOCK_SIZE bs =
get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
if (bs != BLOCK_INVALID) {
// For last:
if (zero_motion) {
if (mi->ref_frame[0] == LAST_FRAME) {
uv_sad[plane - 1] = cpi->ppi->fn_ptr[bs].sdf(
p->src.buf, p->src.stride, pd->pre[0].buf, pd->pre[0].stride);
} else {
uint8_t *src = (plane == 1) ? yv12->u_buffer : yv12->v_buffer;
setup_pred_plane(&dst, xd->mi[0]->bsize, src, yv12->uv_crop_width,
yv12->uv_crop_height, yv12->uv_stride, xd->mi_row,
xd->mi_col, sf, xd->plane[plane].subsampling_x,
xd->plane[plane].subsampling_y);
uv_sad[plane - 1] = cpi->ppi->fn_ptr[bs].sdf(
p->src.buf, p->src.stride, dst.buf, dst.stride);
}
} else {
uv_sad[plane - 1] = cpi->ppi->fn_ptr[bs].sdf(
p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride);
}
// For golden:
if (y_sad_g != UINT_MAX) {
uint8_t *src = (plane == 1) ? yv12_g->u_buffer : yv12_g->v_buffer;
setup_pred_plane(&dst, xd->mi[0]->bsize, src, yv12_g->uv_crop_width,
yv12_g->uv_crop_height, yv12_g->uv_stride, xd->mi_row,
xd->mi_col, sf, xd->plane[plane].subsampling_x,
xd->plane[plane].subsampling_y);
uv_sad_g = cpi->ppi->fn_ptr[bs].sdf(p->src.buf, p->src.stride, dst.buf,
dst.stride);
}
// For altref:
if (y_sad_alt != UINT_MAX) {
uint8_t *src = (plane == 1) ? yv12_alt->u_buffer : yv12_alt->v_buffer;
setup_pred_plane(&dst, xd->mi[0]->bsize, src, yv12_alt->uv_crop_width,
yv12_alt->uv_crop_height, yv12_alt->uv_stride,
xd->mi_row, xd->mi_col, sf,
xd->plane[plane].subsampling_x,
xd->plane[plane].subsampling_y);
uv_sad_alt = cpi->ppi->fn_ptr[bs].sdf(p->src.buf, p->src.stride,
dst.buf, dst.stride);
}
}
if (uv_sad[plane - 1] > (y_sad >> shift_upper_limit))
x->color_sensitivity_sb[COLOR_SENS_IDX(plane)] = 1;
else if (uv_sad[plane - 1] < (y_sad >> shift_lower_limit))
x->color_sensitivity_sb[COLOR_SENS_IDX(plane)] = 0;
// Borderline case: to be refined at coding block level in nonrd_pickmode,
// for coding block size < sb_size.
else
x->color_sensitivity_sb[COLOR_SENS_IDX(plane)] = 2;
x->color_sensitivity_sb_g[COLOR_SENS_IDX(plane)] =
uv_sad_g > y_sad_g / fac_uv;
x->color_sensitivity_sb_alt[COLOR_SENS_IDX(plane)] =
uv_sad_alt > y_sad_alt / fac_uv;
}
}
static void fill_variance_tree_leaves(
AV1_COMP *cpi, MACROBLOCK *x, VP128x128 *vt, PART_EVAL_STATUS *force_split,
int avg_16x16[][4], int maxvar_16x16[][4], int minvar_16x16[][4],
int64_t *thresholds, const uint8_t *src_buf, int src_stride,
const uint8_t *dst_buf, int dst_stride, bool is_key_frame,
const bool is_small_sb) {
MACROBLOCKD *xd = &x->e_mbd;
const int num_64x64_blocks = is_small_sb ? 1 : 4;
// TODO(kyslov) Bring back compute_minmax_variance with content type detection
const int compute_minmax_variance = 0;
const int segment_id = xd->mi[0]->segment_id;
int pixels_wide = 128, pixels_high = 128;
int border_offset_4x4 = 0;
int temporal_denoising = cpi->sf.rt_sf.use_rtc_tf;
// dst_buf pointer is not used for is_key_frame, so it should be NULL.
assert(IMPLIES(is_key_frame, dst_buf == NULL));
if (is_small_sb) {
pixels_wide = 64;
pixels_high = 64;
}
if (xd->mb_to_right_edge < 0) pixels_wide += (xd->mb_to_right_edge >> 3);
if (xd->mb_to_bottom_edge < 0) pixels_high += (xd->mb_to_bottom_edge >> 3);
#if CONFIG_AV1_TEMPORAL_DENOISING
temporal_denoising |= cpi->oxcf.noise_sensitivity;
#endif
// For temporal filtering or temporal denoiser enabled: since the source
// is modified we need to avoid 4x4 avg along superblock boundary, since
// simd code will load 8 pixels for 4x4 avg and so can access source
// data outside superblock (while its being modified by temporal filter).
// Temporal filtering is never done on key frames.
if (!is_key_frame && temporal_denoising) border_offset_4x4 = 4;
for (int blk64_idx = 0; blk64_idx < num_64x64_blocks; blk64_idx++) {
const int x64_idx = GET_BLK_IDX_X(blk64_idx, 6);
const int y64_idx = GET_BLK_IDX_Y(blk64_idx, 6);
const int blk64_scale_idx = blk64_idx << 2;
force_split[blk64_idx + 1] = PART_EVAL_ALL;
for (int lvl1_idx = 0; lvl1_idx < 4; lvl1_idx++) {
const int x32_idx = x64_idx + GET_BLK_IDX_X(lvl1_idx, 5);
const int y32_idx = y64_idx + GET_BLK_IDX_Y(lvl1_idx, 5);
const int lvl1_scale_idx = (blk64_scale_idx + lvl1_idx) << 2;
force_split[5 + blk64_scale_idx + lvl1_idx] = PART_EVAL_ALL;
avg_16x16[blk64_idx][lvl1_idx] = 0;
maxvar_16x16[blk64_idx][lvl1_idx] = 0;
minvar_16x16[blk64_idx][lvl1_idx] = INT_MAX;
for (int lvl2_idx = 0; lvl2_idx < 4; lvl2_idx++) {
const int x16_idx = x32_idx + GET_BLK_IDX_X(lvl2_idx, 4);
const int y16_idx = y32_idx + GET_BLK_IDX_Y(lvl2_idx, 4);
const int split_index = 21 + lvl1_scale_idx + lvl2_idx;
VP16x16 *vst = &vt->split[blk64_idx].split[lvl1_idx].split[lvl2_idx];
force_split[split_index] = PART_EVAL_ALL;
if (is_key_frame) {
// Go down to 4x4 down-sampling for variance.
for (int lvl3_idx = 0; lvl3_idx < 4; lvl3_idx++) {
const int x8_idx = x16_idx + GET_BLK_IDX_X(lvl3_idx, 3);
const int y8_idx = y16_idx + GET_BLK_IDX_Y(lvl3_idx, 3);
VP8x8 *vst2 = &vst->split[lvl3_idx];
fill_variance_4x4avg(src_buf, src_stride, x8_idx, y8_idx, vst2,
#if CONFIG_AV1_HIGHBITDEPTH
xd->cur_buf->flags,
#endif
pixels_wide, pixels_high, border_offset_4x4);
}
} else {
fill_variance_8x8avg(src_buf, src_stride, dst_buf, dst_stride,
x16_idx, y16_idx, vst, is_cur_buf_hbd(xd),
pixels_wide, pixels_high);
fill_variance_tree(vst, BLOCK_16X16);
VPartVar *none_var = &vt->split[blk64_idx]
.split[lvl1_idx]
.split[lvl2_idx]
.part_variances.none;
get_variance(none_var);
const int val_none_var = none_var->variance;
avg_16x16[blk64_idx][lvl1_idx] += val_none_var;
minvar_16x16[blk64_idx][lvl1_idx] =
AOMMIN(minvar_16x16[blk64_idx][lvl1_idx], val_none_var);
maxvar_16x16[blk64_idx][lvl1_idx] =
AOMMAX(maxvar_16x16[blk64_idx][lvl1_idx], val_none_var);
if (val_none_var > thresholds[3]) {
// 16X16 variance is above threshold for split, so force split to
// 8x8 for this 16x16 block (this also forces splits for upper
// levels).
force_split[split_index] = PART_EVAL_ONLY_SPLIT;
force_split[5 + blk64_scale_idx + lvl1_idx] = PART_EVAL_ONLY_SPLIT;
force_split[blk64_idx + 1] = PART_EVAL_ONLY_SPLIT;
force_split[0] = PART_EVAL_ONLY_SPLIT;
} else if (!cyclic_refresh_segment_id_boosted(segment_id) &&
compute_minmax_variance && val_none_var > thresholds[2]) {
// We have some nominal amount of 16x16 variance (based on average),
// compute the minmax over the 8x8 sub-blocks, and if above
// threshold, force split to 8x8 block for this 16x16 block.
int minmax = compute_minmax_8x8(src_buf, src_stride, dst_buf,
dst_stride, x16_idx, y16_idx,
#if CONFIG_AV1_HIGHBITDEPTH
xd->cur_buf->flags,
#endif
pixels_wide, pixels_high);
const int thresh_minmax = (int)cpi->vbp_info.threshold_minmax;
if (minmax > thresh_minmax) {
force_split[split_index] = PART_EVAL_ONLY_SPLIT;
force_split[5 + blk64_scale_idx + lvl1_idx] =
PART_EVAL_ONLY_SPLIT;
force_split[blk64_idx + 1] = PART_EVAL_ONLY_SPLIT;
force_split[0] = PART_EVAL_ONLY_SPLIT;
}
}
}
}
}
}
}
static inline void set_ref_frame_for_partition(
AV1_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd,
MV_REFERENCE_FRAME *ref_frame_partition, MB_MODE_INFO *mi,
unsigned int *y_sad, unsigned int *y_sad_g, unsigned int *y_sad_alt,
const YV12_BUFFER_CONFIG *yv12_g, const YV12_BUFFER_CONFIG *yv12_alt,
int mi_row, int mi_col, int num_planes) {
AV1_COMMON *const cm = &cpi->common;
const double fac =
(cpi->svc.spatial_layer_id > 0 && cpi->svc.has_lower_quality_layer) ? 1.0
: 0.9;
const bool is_set_golden_ref_frame =
*y_sad_g < fac * *y_sad && *y_sad_g < *y_sad_alt;
const bool is_set_altref_ref_frame =
*y_sad_alt < fac * *y_sad && *y_sad_alt < *y_sad_g;
if (is_set_golden_ref_frame) {
av1_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
get_ref_scale_factors(cm, GOLDEN_FRAME), num_planes);
mi->ref_frame[0] = GOLDEN_FRAME;
mi->mv[0].as_int = 0;
*y_sad = *y_sad_g;
*ref_frame_partition = GOLDEN_FRAME;
x->nonrd_prune_ref_frame_search = 0;
x->sb_me_partition = 0;
} else if (is_set_altref_ref_frame) {
av1_setup_pre_planes(xd, 0, yv12_alt, mi_row, mi_col,
get_ref_scale_factors(cm, ALTREF_FRAME), num_planes);
mi->ref_frame[0] = ALTREF_FRAME;
mi->mv[0].as_int = 0;
*y_sad = *y_sad_alt;
*ref_frame_partition = ALTREF_FRAME;
x->nonrd_prune_ref_frame_search = 0;
x->sb_me_partition = 0;
} else {
*ref_frame_partition = LAST_FRAME;
x->nonrd_prune_ref_frame_search =
cpi->sf.rt_sf.nonrd_prune_ref_frame_search;
}
}
static AOM_FORCE_INLINE int mv_distance(const FULLPEL_MV *mv0,
const FULLPEL_MV *mv1) {
return abs(mv0->row - mv1->row) + abs(mv0->col - mv1->col);
}
static inline void evaluate_neighbour_mvs(AV1_COMP *cpi, MACROBLOCK *x,
unsigned int *y_sad, bool is_small_sb,
int est_motion) {
const int source_sad_nonrd = x->content_state_sb.source_sad_nonrd;
// TODO(yunqingwang@google.com): test if this condition works with other
// speeds.
if (est_motion > 2 && source_sad_nonrd > kMedSad) return;
MACROBLOCKD *xd = &x->e_mbd;
BLOCK_SIZE bsize = is_small_sb ? BLOCK_64X64 : BLOCK_128X128;
MB_MODE_INFO *mi = xd->mi[0];
unsigned int above_y_sad = UINT_MAX;
unsigned int left_y_sad = UINT_MAX;
FULLPEL_MV above_mv = kZeroFullMv;
FULLPEL_MV left_mv = kZeroFullMv;
SubpelMvLimits subpel_mv_limits;
const MV dummy_mv = { 0, 0 };
av1_set_subpel_mv_search_range(&subpel_mv_limits, &x->mv_limits, &dummy_mv);
// Current best MV
FULLPEL_MV best_mv = get_fullmv_from_mv(&mi->mv[0].as_mv);
const int multi = (est_motion > 2 && source_sad_nonrd > kLowSad) ? 7 : 8;
if (xd->up_available) {
const MB_MODE_INFO *above_mbmi = xd->above_mbmi;
if (above_mbmi->mode >= INTRA_MODE_END &&
above_mbmi->ref_frame[0] == LAST_FRAME) {
MV temp = above_mbmi->mv[0].as_mv;
clamp_mv(&temp, &subpel_mv_limits);
above_mv = get_fullmv_from_mv(&temp);
if (mv_distance(&best_mv, &above_mv) > 0) {
uint8_t const *ref_buf =
get_buf_from_fullmv(&xd->plane[0].pre[0], &above_mv);
above_y_sad = cpi->ppi->fn_ptr[bsize].sdf(
x->plane[0].src.buf, x->plane[0].src.stride, ref_buf,
xd->plane[0].pre[0].stride);
}
}
}
if (xd->left_available) {
const MB_MODE_INFO *left_mbmi = xd->left_mbmi;
if (left_mbmi->mode >= INTRA_MODE_END &&
left_mbmi->ref_frame[0] == LAST_FRAME) {
MV temp = left_mbmi->mv[0].as_mv;
clamp_mv(&temp, &subpel_mv_limits);
left_mv = get_fullmv_from_mv(&temp);
if (mv_distance(&best_mv, &left_mv) > 0 &&
mv_distance(&above_mv, &left_mv) > 0) {
uint8_t const *ref_buf =
get_buf_from_fullmv(&xd->plane[0].pre[0], &left_mv);
left_y_sad = cpi->ppi->fn_ptr[bsize].sdf(
x->plane[0].src.buf, x->plane[0].src.stride, ref_buf,
xd->plane[0].pre[0].stride);
}
}
}
if (above_y_sad < ((multi * *y_sad) >> 3) && above_y_sad < left_y_sad) {
*y_sad = above_y_sad;
mi->mv[0].as_mv = get_mv_from_fullmv(&above_mv);
clamp_mv(&mi->mv[0].as_mv, &subpel_mv_limits);
}
if (left_y_sad < ((multi * *y_sad) >> 3) && left_y_sad < above_y_sad) {
*y_sad = left_y_sad;
mi->mv[0].as_mv = get_mv_from_fullmv(&left_mv);
clamp_mv(&mi->mv[0].as_mv, &subpel_mv_limits);
}
}
static void do_int_pro_motion_estimation(AV1_COMP *cpi, MACROBLOCK *x,
unsigned int *y_sad, int mi_row,
int mi_col, int source_sad_nonrd) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mi = xd->mi[0];
const int is_screen = cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN;
const int increase_col_sw = source_sad_nonrd > kMedSad &&
!cpi->rc.high_motion_content_screen_rtc &&
(cpi->svc.temporal_layer_id == 0 ||
cpi->rc.num_col_blscroll_last_tl0 > 2);
int me_search_size_col = is_screen
? increase_col_sw ? 512 : 96
: block_size_wide[cm->seq_params->sb_size] >> 1;
// For screen use larger search size row motion to capture
// vertical scroll, which can be larger motion.
int me_search_size_row = is_screen
? source_sad_nonrd > kMedSad ? 512 : 192
: block_size_high[cm->seq_params->sb_size] >> 1;
if (cm->width * cm->height >= 3840 * 2160 &&
cpi->svc.temporal_layer_id == 0 && cpi->svc.number_temporal_layers > 1) {
me_search_size_row = me_search_size_row << 1;
me_search_size_col = me_search_size_col << 1;
}
unsigned int y_sad_zero;
*y_sad = av1_int_pro_motion_estimation(
cpi, x, cm->seq_params->sb_size, mi_row, mi_col, &kZeroMv, &y_sad_zero,
me_search_size_col, me_search_size_row);
// The logic below selects whether the motion estimated in the
// int_pro_motion() will be used in nonrd_pickmode. Only do this
// for screen for now.
if (is_screen) {
unsigned int thresh_sad =
(cm->seq_params->sb_size == BLOCK_128X128) ? 50000 : 20000;
if (*y_sad < (y_sad_zero >> 1) && *y_sad < thresh_sad) {
x->sb_me_partition = 1;
x->sb_me_mv.as_int = mi->mv[0].as_int;
if (cpi->svc.temporal_layer_id == 0) {
if (abs(mi->mv[0].as_mv.col) > 16 && abs(mi->mv[0].as_mv.row) == 0)
x->sb_col_scroll = 1;
else if (abs(mi->mv[0].as_mv.row) > 16 && abs(mi->mv[0].as_mv.col) == 0)
x->sb_row_scroll = 1;
}
} else {
x->sb_me_partition = 0;
// Fall back to using zero motion.
*y_sad = y_sad_zero;
mi->mv[0].as_int = 0;
}
}
}
static void setup_planes(AV1_COMP *cpi, MACROBLOCK *x, unsigned int *y_sad,
unsigned int *y_sad_g, unsigned int *y_sad_alt,
unsigned int *y_sad_last,
MV_REFERENCE_FRAME *ref_frame_partition,
struct scale_factors *sf_no_scale, int mi_row,
int mi_col, bool is_small_sb, bool scaled_ref_last) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
const int num_planes = av1_num_planes(cm);
bool scaled_ref_golden = false;
bool scaled_ref_alt = false;
BLOCK_SIZE bsize = is_small_sb ? BLOCK_64X64 : BLOCK_128X128;
MB_MODE_INFO *mi = xd->mi[0];
const YV12_BUFFER_CONFIG *yv12 =
scaled_ref_last ? av1_get_scaled_ref_frame(cpi, LAST_FRAME)
: get_ref_frame_yv12_buf(cm, LAST_FRAME);
assert(yv12 != NULL);
const YV12_BUFFER_CONFIG *yv12_g = NULL;
const YV12_BUFFER_CONFIG *yv12_alt = NULL;
// Check if LAST is a reference. For spatial layers always use it as
// reference scaling.
int use_last_ref = (cpi->ref_frame_flags & AOM_LAST_FLAG) ||
cpi->svc.number_spatial_layers > 1;
int use_golden_ref = cpi->ref_frame_flags & AOM_GOLD_FLAG;
int use_alt_ref = cpi->ppi->rtc_ref.set_ref_frame_config ||
cpi->sf.rt_sf.use_nonrd_altref_frame ||
(cpi->sf.rt_sf.use_comp_ref_nonrd &&
cpi->sf.rt_sf.ref_frame_comp_nonrd[2] == 1);
// Check if GOLDEN should be used as reference for partitioning.
// Allow for spatial layers if lower layer has same resolution.
if ((cpi->svc.number_spatial_layers == 1 ||
cpi->svc.has_lower_quality_layer) &&
use_golden_ref &&
(x->content_state_sb.source_sad_nonrd != kZeroSad || !use_last_ref)) {
yv12_g = get_ref_frame_yv12_buf(cm, GOLDEN_FRAME);
if (yv12_g && (yv12_g->y_crop_height != cm->height ||
yv12_g->y_crop_width != cm->width)) {
yv12_g = av1_get_scaled_ref_frame(cpi, GOLDEN_FRAME);
scaled_ref_golden = true;
}
if (yv12_g && (yv12_g != yv12 || !use_last_ref)) {
av1_setup_pre_planes(
xd, 0, yv12_g, mi_row, mi_col,
scaled_ref_golden ? NULL : get_ref_scale_factors(cm, GOLDEN_FRAME),
num_planes);
*y_sad_g = cpi->ppi->fn_ptr[bsize].sdf(
x->plane[AOM_PLANE_Y].src.buf, x->plane[AOM_PLANE_Y].src.stride,
xd->plane[AOM_PLANE_Y].pre[0].buf,
xd->plane[AOM_PLANE_Y].pre[0].stride);
}
}
// Check if ALTREF should be used as reference for partitioning.
// Allow for spatial layers if lower layer has same resolution.
if ((cpi->svc.number_spatial_layers == 1 ||
cpi->svc.has_lower_quality_layer) &&
use_alt_ref && (cpi->ref_frame_flags & AOM_ALT_FLAG) &&
(x->content_state_sb.source_sad_nonrd != kZeroSad || !use_last_ref)) {
yv12_alt = get_ref_frame_yv12_buf(cm, ALTREF_FRAME);
if (yv12_alt && (yv12_alt->y_crop_height != cm->height ||
yv12_alt->y_crop_width != cm->width)) {
yv12_alt = av1_get_scaled_ref_frame(cpi, ALTREF_FRAME);
scaled_ref_alt = true;
}
if (yv12_alt && (yv12_alt != yv12 || !use_last_ref)) {
av1_setup_pre_planes(
xd, 0, yv12_alt, mi_row, mi_col,
scaled_ref_alt ? NULL : get_ref_scale_factors(cm, ALTREF_FRAME),
num_planes);
*y_sad_alt = cpi->ppi->fn_ptr[bsize].sdf(
x->plane[AOM_PLANE_Y].src.buf, x->plane[AOM_PLANE_Y].src.stride,
xd->plane[AOM_PLANE_Y].pre[0].buf,
xd->plane[AOM_PLANE_Y].pre[0].stride);
}
}
if (use_last_ref) {
const int source_sad_nonrd = x->content_state_sb.source_sad_nonrd;
av1_setup_pre_planes(
xd, 0, yv12, mi_row, mi_col,
scaled_ref_last ? NULL : get_ref_scale_factors(cm, LAST_FRAME),
num_planes);
mi->ref_frame[0] = LAST_FRAME;
mi->ref_frame[1] = NONE_FRAME;
mi->bsize = cm->seq_params->sb_size;
mi->mv[0].as_int = 0;
mi->interp_filters = av1_broadcast_interp_filter(BILINEAR);
int est_motion = cpi->sf.rt_sf.estimate_motion_for_var_based_partition;
// TODO(b/290596301): Look into adjusting this condition.
// There is regression on color content when
// estimate_motion_for_var_based_partition = 3 and high motion,
// so for now force it to 2 based on superblock sad.
if (est_motion > 2 && source_sad_nonrd > kMedSad) est_motion = 2;
if ((est_motion == 1 || est_motion == 2) && xd->mb_to_right_edge >= 0 &&
xd->mb_to_bottom_edge >= 0 && x->source_variance > 100 &&
source_sad_nonrd > kLowSad) {
do_int_pro_motion_estimation(cpi, x, y_sad, mi_row, mi_col,
source_sad_nonrd);
}
if (*y_sad == UINT_MAX) {
*y_sad = cpi->ppi->fn_ptr[bsize].sdf(
x->plane[AOM_PLANE_Y].src.buf, x->plane[AOM_PLANE_Y].src.stride,
xd->plane[AOM_PLANE_Y].pre[0].buf,
xd->plane[AOM_PLANE_Y].pre[0].stride);
}
// Evaluate if neighbours' MVs give better predictions. Zero MV is tested
// already, so only non-zero MVs are tested here. Here the neighbour blocks
// are the first block above or left to this superblock.
if (est_motion >= 2 && (xd->up_available || xd->left_available))
evaluate_neighbour_mvs(cpi, x, y_sad, is_small_sb, est_motion);
*y_sad_last = *y_sad;
}
// Pick the ref frame for partitioning, use golden or altref frame only if
// its lower sad, bias to LAST with factor 0.9.
set_ref_frame_for_partition(cpi, x, xd, ref_frame_partition, mi, y_sad,
y_sad_g, y_sad_alt, yv12_g, yv12_alt, mi_row,
mi_col, num_planes);
// Only calculate the predictor for non-zero MV.
if (mi->mv[0].as_int != 0) {
if (!scaled_ref_last) {
set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);
} else {
xd->block_ref_scale_factors[0] = sf_no_scale;
xd->block_ref_scale_factors[1] = sf_no_scale;
}
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL,
cm->seq_params->sb_size, AOM_PLANE_Y,
num_planes - 1);
}
}
// Decides whether to split or merge a 16x16 partition block in variance based
// partitioning based on the 8x8 sub-block variances.
static inline PART_EVAL_STATUS get_part_eval_based_on_sub_blk_var(
VP16x16 *var_16x16_info, int64_t threshold16) {
int max_8x8_var = 0, min_8x8_var = INT_MAX;
for (int split_idx = 0; split_idx < 4; split_idx++) {
get_variance(&var_16x16_info->split[split_idx].part_variances.none);
int this_8x8_var =
var_16x16_info->split[split_idx].part_variances.none.variance;
max_8x8_var = AOMMAX(this_8x8_var, max_8x8_var);
min_8x8_var = AOMMIN(this_8x8_var, min_8x8_var);
}
// If the difference between maximum and minimum sub-block variances is high,
// then only evaluate PARTITION_SPLIT for the 16x16 block. Otherwise, evaluate
// only PARTITION_NONE. The shift factor for threshold16 has been derived
// empirically.
return ((max_8x8_var - min_8x8_var) > (threshold16 << 2))
? PART_EVAL_ONLY_SPLIT
: PART_EVAL_ONLY_NONE;
}
static inline bool is_set_force_zeromv_skip_based_on_src_sad(
int set_zeromv_skip_based_on_source_sad, SOURCE_SAD source_sad_nonrd) {
if (set_zeromv_skip_based_on_source_sad == 0) return false;
if (set_zeromv_skip_based_on_source_sad >= 3)
return source_sad_nonrd <= kLowSad;
else if (set_zeromv_skip_based_on_source_sad >= 2)
return source_sad_nonrd <= kVeryLowSad;
else if (set_zeromv_skip_based_on_source_sad >= 1)
return source_sad_nonrd == kZeroSad;
return false;
}
static inline bool set_force_zeromv_skip_for_sb(
AV1_COMP *cpi, MACROBLOCK *x, const TileInfo *const tile, VP128x128 *vt,
unsigned int *uv_sad, int mi_row, int mi_col, unsigned int y_sad,
BLOCK_SIZE bsize) {
AV1_COMMON *const cm = &cpi->common;
if (!is_set_force_zeromv_skip_based_on_src_sad(
cpi->sf.rt_sf.set_zeromv_skip_based_on_source_sad,
x->content_state_sb.source_sad_nonrd))
return false;
int shift = cpi->sf.rt_sf.increase_source_sad_thresh ? 1 : 0;
const int block_width = mi_size_wide[cm->seq_params->sb_size];
const int block_height = mi_size_high[cm->seq_params->sb_size];
const unsigned int thresh_exit_part_y =
cpi->zeromv_skip_thresh_exit_part[bsize] << shift;
unsigned int thresh_exit_part_uv =
CALC_CHROMA_THRESH_FOR_ZEROMV_SKIP(thresh_exit_part_y) << shift;
// Be more aggressive in UV threshold if source_sad >= VeryLowSad
// to suppreess visual artifact caused by the speed feature:
// set_zeromv_skip_based_on_source_sad = 2. For now only for
// part_early_exit_zeromv = 1.
if (x->content_state_sb.source_sad_nonrd >= kVeryLowSad &&
cpi->sf.rt_sf.part_early_exit_zeromv == 1)
thresh_exit_part_uv = thresh_exit_part_uv >> 3;
if (mi_col + block_width <= tile->mi_col_end &&
mi_row + block_height <= tile->mi_row_end && y_sad < thresh_exit_part_y &&
uv_sad[0] < thresh_exit_part_uv && uv_sad[1] < thresh_exit_part_uv) {
set_block_size(cpi, mi_row, mi_col, bsize);
x->force_zeromv_skip_for_sb = 1;
aom_free(vt);
// Partition shape is set here at SB level.
// Exit needs to happen from av1_choose_var_based_partitioning().
return true;
} else if (x->content_state_sb.source_sad_nonrd == kZeroSad &&
cpi->sf.rt_sf.part_early_exit_zeromv >= 2)
x->force_zeromv_skip_for_sb = 2;
return false;
}
int av1_choose_var_based_partitioning(AV1_COMP *cpi, const TileInfo *const tile,
ThreadData *td, MACROBLOCK *x, int mi_row,
int mi_col) {
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, choose_var_based_partitioning_time);
#endif
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
const int64_t *const vbp_thresholds = cpi->vbp_info.thresholds;
PART_EVAL_STATUS force_split[85];
int avg_64x64;
int max_var_32x32[4];
int min_var_32x32[4];
int var_32x32;
int var_64x64;
int min_var_64x64 = INT_MAX;
int max_var_64x64 = 0;
int avg_16x16[4][4];
int maxvar_16x16[4][4];
int minvar_16x16[4][4];
const uint8_t *src_buf;
const uint8_t *dst_buf;
int dst_stride;
unsigned int uv_sad[MAX_MB_PLANE - 1];
NOISE_LEVEL noise_level = kLow;
bool is_zero_motion = true;
bool scaled_ref_last = false;
struct scale_factors sf_no_scale;
av1_setup_scale_factors_for_frame(&sf_no_scale, cm->width, cm->height,
cm->width, cm->height);
bool is_key_frame =
(frame_is_intra_only(cm) ||
(cpi->ppi->use_svc &&
cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame));
assert(cm->seq_params->sb_size == BLOCK_64X64 ||
cm->seq_params->sb_size == BLOCK_128X128);
const bool is_small_sb = (cm->seq_params->sb_size == BLOCK_64X64);
const int num_64x64_blocks = is_small_sb ? 1 : 4;
unsigned int y_sad = UINT_MAX;
unsigned int y_sad_g = UINT_MAX;
unsigned int y_sad_alt = UINT_MAX;
unsigned int y_sad_last = UINT_MAX;
BLOCK_SIZE bsize = is_small_sb ? BLOCK_64X64 : BLOCK_128X128;
// Force skip encoding for all superblocks on slide change for
// non_reference_frames.
if (cpi->sf.rt_sf.skip_encoding_non_reference_slide_change &&
cpi->rc.high_source_sad && cpi->ppi->rtc_ref.non_reference_frame) {
MB_MODE_INFO **mi = cm->mi_params.mi_grid_base +
get_mi_grid_idx(&cm->mi_params, mi_row, mi_col);
av1_set_fixed_partitioning(cpi, tile, mi, mi_row, mi_col, bsize);
x->force_zeromv_skip_for_sb = 1;
return 0;
}
// Ref frame used in partitioning.
MV_REFERENCE_FRAME ref_frame_partition = LAST_FRAME;
int64_t thresholds[5] = { vbp_thresholds[0], vbp_thresholds[1],
vbp_thresholds[2], vbp_thresholds[3],
vbp_thresholds[4] };
const int segment_id = xd->mi[0]->segment_id;
uint64_t blk_sad = 0;
if (cpi->src_sad_blk_64x64 != NULL &&
cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) {
const int sb_size_by_mb = (cm->seq_params->sb_size == BLOCK_128X128)
? (cm->seq_params->mib_size >> 1)
: cm->seq_params->mib_size;
const int sb_cols =
(cm->mi_params.mi_cols + sb_size_by_mb - 1) / sb_size_by_mb;
const int sbi_col = mi_col / sb_size_by_mb;
const int sbi_row = mi_row / sb_size_by_mb;
blk_sad = cpi->src_sad_blk_64x64[sbi_col + sbi_row * sb_cols];
}
const bool is_segment_id_boosted =
cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled &&
cyclic_refresh_segment_id_boosted(segment_id);
const int sb_qindex =
clamp(cm->delta_q_info.delta_q_present_flag
? cm->quant_params.base_qindex + x->delta_qindex
: cm->quant_params.base_qindex,
0, QINDEX_RANGE - 1);
const int qindex = is_segment_id_boosted || cpi->roi.delta_qp_enabled
? av1_get_qindex(&cm->seg, segment_id, sb_qindex)
: sb_qindex;
set_vbp_thresholds(
cpi, thresholds, blk_sad, qindex, x->content_state_sb.low_sumdiff,
x->content_state_sb.source_sad_nonrd, x->content_state_sb.source_sad_rd,
is_segment_id_boosted, x->content_state_sb.lighting_change);
src_buf = x->plane[AOM_PLANE_Y].src.buf;
int src_stride = x->plane[AOM_PLANE_Y].src.stride;
// Index for force_split: 0 for 64x64, 1-4 for 32x32 blocks,
// 5-20 for the 16x16 blocks.
force_split[0] = PART_EVAL_ALL;
memset(x->part_search_info.variance_low, 0,
sizeof(x->part_search_info.variance_low));
// Check if LAST frame is NULL, and if so, treat this frame
// as a key frame, for the purpose of the superblock partitioning.
// LAST == NULL can happen in cases where enhancement spatial layers are
// enabled dyanmically and the only reference is the spatial(GOLDEN).
// If LAST frame has a different resolution: set the scaled_ref_last flag
// and check if ref_scaled is NULL.
if (!frame_is_intra_only(cm)) {
const YV12_BUFFER_CONFIG *ref = get_ref_frame_yv12_buf(cm, LAST_FRAME);
if (ref == NULL) {
is_key_frame = true;
} else if (ref->y_crop_height != cm->height ||
ref->y_crop_width != cm->width) {
scaled_ref_last = true;
const YV12_BUFFER_CONFIG *ref_scaled =
av1_get_scaled_ref_frame(cpi, LAST_FRAME);
if (ref_scaled == NULL) is_key_frame = true;
}
}
x->source_variance = UINT_MAX;
// For nord_pickmode: compute source_variance, only for superblocks with
// some motion for now. This input can then be used to bias the partitioning
// or the chroma_check.
if (cpi->sf.rt_sf.use_nonrd_pick_mode &&
x->content_state_sb.source_sad_nonrd > kLowSad)
x->source_variance = av1_get_perpixel_variance_facade(
cpi, xd, &x->plane[0].src, cm->seq_params->sb_size, AOM_PLANE_Y);
if (!is_key_frame) {
setup_planes(cpi, x, &y_sad, &y_sad_g, &y_sad_alt, &y_sad_last,
&ref_frame_partition, &sf_no_scale, mi_row, mi_col,
is_small_sb, scaled_ref_last);
MB_MODE_INFO *mi = xd->mi[0];
// Use reference SB directly for zero mv.
if (mi->mv[0].as_int != 0) {
dst_buf = xd->plane[AOM_PLANE_Y].dst.buf;
dst_stride = xd->plane[AOM_PLANE_Y].dst.stride;
is_zero_motion = false;
} else {
dst_buf = xd->plane[AOM_PLANE_Y].pre[0].buf;
dst_stride = xd->plane[AOM_PLANE_Y].pre[0].stride;
}
} else {
dst_buf = NULL;
dst_stride = 0;
}
// check and set the color sensitivity of sb.
av1_zero(uv_sad);
chroma_check(cpi, x, bsize, y_sad_last, y_sad_g, y_sad_alt, is_key_frame,
is_zero_motion, uv_sad);
x->force_zeromv_skip_for_sb = 0;
VP128x128 *vt;
AOM_CHECK_MEM_ERROR(xd->error_info, vt, aom_malloc(sizeof(*vt)));
vt->split = td->vt64x64;
// If the superblock is completely static (zero source sad) and
// the y_sad (relative to LAST ref) is very small, take the sb_size partition
// and exit, and force zeromv_last skip mode for nonrd_pickmode.
// Only do this on the base segment (so the QP-boosted segment, if applied,
// can still continue cleaning/ramping up the quality).
// Condition on color uv_sad is also added.
if (!is_key_frame && cpi->sf.rt_sf.part_early_exit_zeromv &&
cpi->rc.frames_since_key > 30 && segment_id == CR_SEGMENT_ID_BASE &&
ref_frame_partition == LAST_FRAME && xd->mi[0]->mv[0].as_int == 0) {
// Exit here, if zero mv skip flag is set at SB level.
if (set_force_zeromv_skip_for_sb(cpi, x, tile, vt, uv_sad, mi_row, mi_col,
y_sad, bsize))
return 0;
}
if (cpi->noise_estimate.enabled)
noise_level = av1_noise_estimate_extract_level(&cpi->noise_estimate);
// Fill in the entire tree of 8x8 (for inter frames) or 4x4 (for key frames)
// variances for splits.
fill_variance_tree_leaves(cpi, x, vt, force_split, avg_16x16, maxvar_16x16,
minvar_16x16, thresholds, src_buf, src_stride,
dst_buf, dst_stride, is_key_frame, is_small_sb);
avg_64x64 = 0;
for (int blk64_idx = 0; blk64_idx < num_64x64_blocks; ++blk64_idx) {
max_var_32x32[blk64_idx] = 0;
min_var_32x32[blk64_idx] = INT_MAX;
const int blk64_scale_idx = blk64_idx << 2;
for (int lvl1_idx = 0; lvl1_idx < 4; lvl1_idx++) {
const int lvl1_scale_idx = (blk64_scale_idx + lvl1_idx) << 2;
for (int lvl2_idx = 0; lvl2_idx < 4; lvl2_idx++) {
if (!is_key_frame) continue;
VP16x16 *vtemp = &vt->split[blk64_idx].split[lvl1_idx].split[lvl2_idx];
for (int lvl3_idx = 0; lvl3_idx < 4; lvl3_idx++)
fill_variance_tree(&vtemp->split[lvl3_idx], BLOCK_8X8);
fill_variance_tree(vtemp, BLOCK_16X16);
// If variance of this 16x16 block is above the threshold, force block
// to split. This also forces a split on the upper levels.
get_variance(&vtemp->part_variances.none);
if (vtemp->part_variances.none.variance > thresholds[3]) {
const int split_index = 21 + lvl1_scale_idx + lvl2_idx;
force_split[split_index] =
cpi->sf.rt_sf.vbp_prune_16x16_split_using_min_max_sub_blk_var
? get_part_eval_based_on_sub_blk_var(vtemp, thresholds[3])
: PART_EVAL_ONLY_SPLIT;
force_split[5 + blk64_scale_idx + lvl1_idx] = PART_EVAL_ONLY_SPLIT;
force_split[blk64_idx + 1] = PART_EVAL_ONLY_SPLIT;
force_split[0] = PART_EVAL_ONLY_SPLIT;
}
}
fill_variance_tree(&vt->split[blk64_idx].split[lvl1_idx], BLOCK_32X32);
// If variance of this 32x32 block is above the threshold, or if its above
// (some threshold of) the average variance over the sub-16x16 blocks,
// then force this block to split. This also forces a split on the upper
// (64x64) level.
uint64_t frame_sad_thresh = 20000;
const int is_360p_or_smaller = cm->width * cm->height <= RESOLUTION_360P;
if (cpi->svc.number_temporal_layers > 2 &&
cpi->svc.temporal_layer_id == 0)
frame_sad_thresh = frame_sad_thresh << 1;
if (force_split[5 + blk64_scale_idx + lvl1_idx] == PART_EVAL_ALL) {
get_variance(&vt->split[blk64_idx].split[lvl1_idx].part_variances.none);
var_32x32 =
vt->split[blk64_idx].split[lvl1_idx].part_variances.none.variance;
max_var_32x32[blk64_idx] = AOMMAX(var_32x32, max_var_32x32[blk64_idx]);
min_var_32x32[blk64_idx] = AOMMIN(var_32x32, min_var_32x32[blk64_idx]);
const int max_min_var_16X16_diff = (maxvar_16x16[blk64_idx][lvl1_idx] -
minvar_16x16[blk64_idx][lvl1_idx]);
if (var_32x32 > thresholds[2] ||
(!is_key_frame && var_32x32 > (thresholds[2] >> 1) &&
var_32x32 > (avg_16x16[blk64_idx][lvl1_idx] >> 1))) {
force_split[5 + blk64_scale_idx + lvl1_idx] = PART_EVAL_ONLY_SPLIT;
force_split[blk64_idx + 1] = PART_EVAL_ONLY_SPLIT;
force_split[0] = PART_EVAL_ONLY_SPLIT;
} else if (!is_key_frame && is_360p_or_smaller &&
((max_min_var_16X16_diff > (thresholds[2] >> 1) &&
maxvar_16x16[blk64_idx][lvl1_idx] > thresholds[2]) ||
(cpi->sf.rt_sf.prefer_large_partition_blocks &&
x->content_state_sb.source_sad_nonrd > kLowSad &&
cpi->rc.frame_source_sad < frame_sad_thresh &&
maxvar_16x16[blk64_idx][lvl1_idx] > (thresholds[2] >> 4) &&
maxvar_16x16[blk64_idx][lvl1_idx] >
(minvar_16x16[blk64_idx][lvl1_idx] << 2)))) {
force_split[5 + blk64_scale_idx + lvl1_idx] = PART_EVAL_ONLY_SPLIT;
force_split[blk64_idx + 1] = PART_EVAL_ONLY_SPLIT;
force_split[0] = PART_EVAL_ONLY_SPLIT;
}
}
}
if (force_split[1 + blk64_idx] == PART_EVAL_ALL) {
fill_variance_tree(&vt->split[blk64_idx], BLOCK_64X64);
get_variance(&vt->split[blk64_idx].part_variances.none);
var_64x64 = vt->split[blk64_idx].part_variances.none.variance;
max_var_64x64 = AOMMAX(var_64x64, max_var_64x64);
min_var_64x64 = AOMMIN(var_64x64, min_var_64x64);
// If the difference of the max-min variances of sub-blocks or max
// variance of a sub-block is above some threshold of then force this
// block to split. Only checking this for noise level >= medium, if
// encoder is in SVC or if we already forced large blocks.
const int max_min_var_32x32_diff =
max_var_32x32[blk64_idx] - min_var_32x32[blk64_idx];
const int check_max_var = max_var_32x32[blk64_idx] > thresholds[1] >> 1;
const bool check_noise_lvl = noise_level >= kMedium ||
cpi->ppi->use_svc ||
cpi->sf.rt_sf.prefer_large_partition_blocks;
const int64_t set_threshold = 3 * (thresholds[1] >> 3);
if (!is_key_frame && max_min_var_32x32_diff > set_threshold &&
check_max_var && check_noise_lvl) {
force_split[1 + blk64_idx] = PART_EVAL_ONLY_SPLIT;
force_split[0] = PART_EVAL_ONLY_SPLIT;
}
avg_64x64 += var_64x64;
}
if (is_small_sb) force_split[0] = PART_EVAL_ONLY_SPLIT;
}
if (force_split[0] == PART_EVAL_ALL) {
fill_variance_tree(vt, BLOCK_128X128);
get_variance(&vt->part_variances.none);
const int set_avg_64x64 = (9 * avg_64x64) >> 5;
if (!is_key_frame && vt->part_variances.none.variance > set_avg_64x64)
force_split[0] = PART_EVAL_ONLY_SPLIT;
if (!is_key_frame &&
(max_var_64x64 - min_var_64x64) > 3 * (thresholds[0] >> 3) &&
max_var_64x64 > thresholds[0] >> 1)
force_split[0] = PART_EVAL_ONLY_SPLIT;
}
if (mi_col + 32 > tile->mi_col_end || mi_row + 32 > tile->mi_row_end ||
!set_vt_partitioning(cpi, xd, tile, vt, BLOCK_128X128, mi_row, mi_col,
thresholds[0], BLOCK_16X16, force_split[0])) {
for (int blk64_idx = 0; blk64_idx < num_64x64_blocks; ++blk64_idx) {
const int x64_idx = GET_BLK_IDX_X(blk64_idx, 4);
const int y64_idx = GET_BLK_IDX_Y(blk64_idx, 4);
const int blk64_scale_idx = blk64_idx << 2;
// Now go through the entire structure, splitting every block size until
// we get to one that's got a variance lower than our threshold.
if (set_vt_partitioning(cpi, xd, tile, &vt->split[blk64_idx], BLOCK_64X64,
mi_row + y64_idx, mi_col + x64_idx, thresholds[1],
BLOCK_16X16, force_split[1 + blk64_idx]))
continue;
for (int lvl1_idx = 0; lvl1_idx < 4; ++lvl1_idx) {
const int x32_idx = GET_BLK_IDX_X(lvl1_idx, 3);
const int y32_idx = GET_BLK_IDX_Y(lvl1_idx, 3);
const int lvl1_scale_idx = (blk64_scale_idx + lvl1_idx) << 2;
if (set_vt_partitioning(
cpi, xd, tile, &vt->split[blk64_idx].split[lvl1_idx],
BLOCK_32X32, (mi_row + y64_idx + y32_idx),
(mi_col + x64_idx + x32_idx), thresholds[2], BLOCK_16X16,
force_split[5 + blk64_scale_idx + lvl1_idx]))
continue;
for (int lvl2_idx = 0; lvl2_idx < 4; ++lvl2_idx) {
const int x16_idx = GET_BLK_IDX_X(lvl2_idx, 2);
const int y16_idx = GET_BLK_IDX_Y(lvl2_idx, 2);
const int split_index = 21 + lvl1_scale_idx + lvl2_idx;
VP16x16 *vtemp =
&vt->split[blk64_idx].split[lvl1_idx].split[lvl2_idx];
if (set_vt_partitioning(cpi, xd, tile, vtemp, BLOCK_16X16,
mi_row + y64_idx + y32_idx + y16_idx,
mi_col + x64_idx + x32_idx + x16_idx,
thresholds[3], BLOCK_8X8,
force_split[split_index]))
continue;
for (int lvl3_idx = 0; lvl3_idx < 4; ++lvl3_idx) {
const int x8_idx = GET_BLK_IDX_X(lvl3_idx, 1);
const int y8_idx = GET_BLK_IDX_Y(lvl3_idx, 1);
set_block_size(cpi, (mi_row + y64_idx + y32_idx + y16_idx + y8_idx),
(mi_col + x64_idx + x32_idx + x16_idx + x8_idx),
BLOCK_8X8);
}
}
}
}
}
if (cpi->sf.rt_sf.short_circuit_low_temp_var) {
set_low_temp_var_flag(cpi, &x->part_search_info, xd, vt, thresholds,
ref_frame_partition, mi_col, mi_row, is_small_sb);
}
aom_free(vt);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, choose_var_based_partitioning_time);
#endif
return 0;
}
|