1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
/*
* Copyright (c) 2018, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <tuple>
#include "gtest/gtest.h"
#include "aom/aom_integer.h"
#include "aom_ports/aom_timer.h"
#include "av1/encoder/ml.h"
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/av1_rtcd.h"
#include "test/util.h"
#include "test/register_state_check.h"
#include "test/acm_random.h"
namespace {
typedef void (*NnPredict_Func)(const float *const input_nodes,
const NN_CONFIG *const nn_config,
int reduce_prec, float *const output);
typedef std::tuple<const NnPredict_Func> NnPredictTestParam;
const float epsilon = 1e-3f; // Error threshold for functional equivalence
class NnPredictTest : public ::testing::TestWithParam<NnPredictTestParam> {
public:
void SetUp() override {
const int MAX_NODES2 = NN_MAX_NODES_PER_LAYER * NN_MAX_NODES_PER_LAYER;
// Allocate two massive buffers on the heap for edge weights and node bias
// Then set-up the double-dimension arrays pointing into the big buffers
weights_buf = (float *)aom_malloc(MAX_NODES2 * (NN_MAX_HIDDEN_LAYERS + 1) *
sizeof(*weights_buf));
bias_buf =
(float *)aom_malloc(NN_MAX_NODES_PER_LAYER *
(NN_MAX_HIDDEN_LAYERS + 1) * sizeof(*bias_buf));
ASSERT_NE(weights_buf, nullptr);
ASSERT_NE(bias_buf, nullptr);
for (int i = 0; i < NN_MAX_HIDDEN_LAYERS + 1; i++) {
weights[i] = &weights_buf[i * MAX_NODES2];
bias[i] = &bias_buf[i * NN_MAX_NODES_PER_LAYER];
}
target_func_ = GET_PARAM(0);
}
void TearDown() override {
aom_free(weights_buf);
aom_free(bias_buf);
}
void RunNnPredictTest(const NN_CONFIG *const shape);
void RunNnPredictSpeedTest(const NN_CONFIG *const shape, const int run_times);
void RunNnPredictTest_all(const NN_CONFIG *const shapes,
const int num_shapes);
void RunNnPredictSpeedTest_all(const NN_CONFIG *const shapes,
const int num_shapes, const int run_times);
private:
NnPredict_Func target_func_;
libaom_test::ACMRandom rng_;
float *weights[NN_MAX_HIDDEN_LAYERS + 1] = {};
float *bias[NN_MAX_HIDDEN_LAYERS + 1] = {};
float *weights_buf = nullptr, *bias_buf = nullptr;
};
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(NnPredictTest);
void NnPredictTest::RunNnPredictTest(const NN_CONFIG *const shape) {
float inputs[NN_MAX_NODES_PER_LAYER] = { 0 };
float outputs_test[NN_MAX_NODES_PER_LAYER] = { 0 };
float outputs_ref[NN_MAX_NODES_PER_LAYER] = { 0 };
NN_CONFIG nn_config = *shape;
char shape_str[32] = { 0 };
snprintf(shape_str, sizeof(shape_str), "%d", shape->num_inputs);
for (int layer = 0; layer < shape->num_hidden_layers; layer++)
snprintf(&shape_str[strlen(shape_str)],
sizeof(shape_str) - strlen(shape_str), "x%d",
shape->num_hidden_nodes[layer]);
snprintf(&shape_str[strlen(shape_str)], sizeof(shape_str) - strlen(shape_str),
"x%d", shape->num_outputs);
for (int i = 0; i < NN_MAX_HIDDEN_LAYERS + 1; i++) {
nn_config.weights[i] = weights[i];
nn_config.bias[i] = bias[i];
}
for (int iter = 0; iter < 10000 && !HasFatalFailure(); ++iter) {
for (int node = 0; node < shape->num_inputs; node++) {
inputs[node] = ((float)rng_.Rand31() - (1 << 30)) / (1u << 31);
}
for (int layer = 0; layer < shape->num_hidden_layers; layer++) {
for (int node = 0; node < NN_MAX_NODES_PER_LAYER; node++) {
bias[layer][node] = ((float)rng_.Rand31() - (1 << 30)) / (1u << 31);
}
for (int node = 0; node < NN_MAX_NODES_PER_LAYER * NN_MAX_NODES_PER_LAYER;
node++) {
weights[layer][node] = ((float)rng_.Rand31() - (1 << 30)) / (1u << 31);
}
}
// Now the outputs:
int layer = shape->num_hidden_layers;
for (int node = 0; node < NN_MAX_NODES_PER_LAYER; node++) {
bias[layer][node] = ((float)rng_.Rand31() - (1 << 30)) / (1u << 31);
}
for (int node = 0; node < NN_MAX_NODES_PER_LAYER * NN_MAX_NODES_PER_LAYER;
node++) {
weights[layer][node] = ((float)rng_.Rand31() - (1 << 30)) / (1u << 31);
}
av1_nn_predict_c(inputs, &nn_config, 0, outputs_ref);
target_func_(inputs, &nn_config, 0, outputs_test);
for (int node = 0; node < shape->num_outputs; node++) {
if (outputs_ref[node] < epsilon) {
ASSERT_LE(outputs_test[node], epsilon)
<< "Reference output was near-zero, test output was not ("
<< shape_str << ")";
} else {
const float error = outputs_ref[node] - outputs_test[node];
const float relative_error = fabsf(error / outputs_ref[node]);
ASSERT_LE(relative_error, epsilon)
<< "Excessive relative error between reference and test ("
<< shape_str << ")";
}
}
}
}
void NnPredictTest::RunNnPredictSpeedTest(const NN_CONFIG *const shape,
const int run_times) {
float inputs[NN_MAX_NODES_PER_LAYER] = { 0 };
float outputs_test[NN_MAX_NODES_PER_LAYER] = { 0 };
float outputs_ref[NN_MAX_NODES_PER_LAYER] = { 0 };
NN_CONFIG nn_config = *shape;
for (int i = 0; i < NN_MAX_HIDDEN_LAYERS; i++) {
nn_config.weights[i] = weights[i];
nn_config.bias[i] = bias[i];
}
// Don't bother actually changing the values for inputs/weights/bias: it
// shouldn't make any difference for a speed test.
aom_usec_timer timer;
aom_usec_timer_start(&timer);
for (int i = 0; i < run_times; ++i) {
av1_nn_predict_c(inputs, &nn_config, 0, outputs_ref);
}
aom_usec_timer_mark(&timer);
const double time1 = static_cast<double>(aom_usec_timer_elapsed(&timer));
aom_usec_timer_start(&timer);
for (int i = 0; i < run_times; ++i) {
target_func_(inputs, &nn_config, 0, outputs_test);
}
aom_usec_timer_mark(&timer);
const double time2 = static_cast<double>(aom_usec_timer_elapsed(&timer));
printf("%d", shape->num_inputs);
for (int layer = 0; layer < shape->num_hidden_layers; layer++)
printf("x%d", shape->num_hidden_nodes[layer]);
printf("x%d: ", shape->num_outputs);
printf("%7.2f/%7.2fns (%3.2f)\n", time1, time2, time1 / time2);
}
// This is all the neural network shapes observed executed in a few different
// runs of the encoder. It also conveniently covers all the kernels
// implemented.
static const NN_CONFIG kShapes[] = {
{ 37, 1, 2, { 16, 24 }, {}, {} }, { 24, 24, 1, { 12 }, {}, {} },
{ 10, 16, 1, { 64 }, {}, {} }, { 12, 1, 1, { 12 }, {}, {} },
{ 12, 1, 1, { 24 }, {}, {} }, { 12, 1, 1, { 32 }, {}, {} },
{ 18, 4, 1, { 24 }, {}, {} }, { 18, 4, 1, { 32 }, {}, {} },
{ 4, 1, 1, { 16 }, {}, {} }, { 8, 1, 0, { 0 }, {}, {} },
{ 8, 4, 1, { 16 }, {}, {} }, { 8, 1, 1, { 32 }, {}, {} },
{ 9, 3, 1, { 32 }, {}, {} }, { 8, 4, 0, { 0 }, {}, {} },
{ 8, 8, 0, { 0 }, {}, {} }, { 4, 4, 1, { 8 }, {}, {} },
{ 4, 3, 0, { 64 }, {}, {} },
};
void NnPredictTest::RunNnPredictTest_all(const NN_CONFIG *const shapes,
const int num_shapes) {
for (int i = 0; i < num_shapes; i++) RunNnPredictTest(&shapes[i]);
}
void NnPredictTest::RunNnPredictSpeedTest_all(const NN_CONFIG *const shapes,
const int num_shapes,
const int run_times) {
for (int i = 0; i < num_shapes; i++)
NnPredictTest::RunNnPredictSpeedTest(&shapes[i], run_times);
}
TEST_P(NnPredictTest, RandomValues) {
RunNnPredictTest_all(kShapes, sizeof(kShapes) / sizeof(kShapes[0]));
}
TEST_P(NnPredictTest, DISABLED_Speed) {
RunNnPredictSpeedTest_all(kShapes, sizeof(kShapes) / sizeof(kShapes[0]),
10000000);
}
#if !CONFIG_EXCLUDE_SIMD_MISMATCH
#if HAVE_SSE3
INSTANTIATE_TEST_SUITE_P(SSE3, NnPredictTest,
::testing::Values(av1_nn_predict_sse3));
#endif
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(AVX2, NnPredictTest,
::testing::Values(av1_nn_predict_avx2));
#endif
#if HAVE_NEON
INSTANTIATE_TEST_SUITE_P(NEON, NnPredictTest,
::testing::Values(av1_nn_predict_neon));
#endif
#endif // !CONFIG_EXCLUDE_SIMD_MISMATCH
} // namespace
|