1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <vector>
#include "gtest/gtest.h"
#include "test/acm_random.h"
#include "config/aom_config.h"
#include "aom/aomcx.h"
#include "aom/aomdx.h"
#include "aom/aom_encoder.h"
#include "aom/aom_decoder.h"
#define NELEMENTS(x) static_cast<int>(sizeof(x) / sizeof(x[0]))
using libaom_test::ACMRandom;
namespace {
class CompressedSource {
public:
explicit CompressedSource(int seed) : rnd_(seed), frame_count_(0) {
aom_codec_iface_t *algo = aom_codec_av1_cx();
aom_codec_enc_cfg_t cfg;
#if CONFIG_REALTIME_ONLY
aom_codec_enc_config_default(algo, &cfg, 1);
#else
aom_codec_enc_config_default(algo, &cfg, 0);
#endif
// force the quantizer, to reduce the sensitivity on encoding choices.
// e.g, we don't want this test to break when the rate control is modified.
{
const int max_q = cfg.rc_max_quantizer;
const int min_q = cfg.rc_min_quantizer;
const int q = rnd_.PseudoUniform(max_q - min_q + 1) + min_q;
cfg.rc_end_usage = AOM_Q;
cfg.rc_max_quantizer = q;
cfg.rc_min_quantizer = q;
}
// choose the picture size
{
width_ = rnd_.PseudoUniform(kWidth - 8) + 8;
height_ = rnd_.PseudoUniform(kHeight - 8) + 8;
}
// choose the chroma subsampling
{
const aom_img_fmt_t fmts[] = {
AOM_IMG_FMT_I420,
AOM_IMG_FMT_I422,
AOM_IMG_FMT_I444,
};
format_ = fmts[rnd_.PseudoUniform(NELEMENTS(fmts))];
}
cfg.g_w = width_;
cfg.g_h = height_;
cfg.g_lag_in_frames = 0;
if (format_ == AOM_IMG_FMT_I420)
cfg.g_profile = 0;
else if (format_ == AOM_IMG_FMT_I444)
cfg.g_profile = 1;
else if (format_ == AOM_IMG_FMT_I422)
cfg.g_profile = 2;
aom_codec_enc_init(&enc_, algo, &cfg, 0);
}
~CompressedSource() { aom_codec_destroy(&enc_); }
const aom_codec_cx_pkt_t *ReadFrame() {
uint8_t buf[kWidth * kHeight * 3] = { 0 };
// render regular pattern
const int period = rnd_.Rand8() % 32 + 1;
const int phase = rnd_.Rand8() % period;
const int val_a = rnd_.Rand8();
const int val_b = rnd_.Rand8();
for (int i = 0; i < (int)sizeof buf; ++i)
buf[i] = (i + phase) % period < period / 2 ? val_a : val_b;
aom_image_t img;
aom_img_wrap(&img, format_, width_, height_, 0, buf);
aom_codec_encode(&enc_, &img, frame_count_++, 1, 0);
aom_codec_iter_t iter = nullptr;
const aom_codec_cx_pkt_t *pkt = nullptr;
do {
pkt = aom_codec_get_cx_data(&enc_, &iter);
} while (pkt && pkt->kind != AOM_CODEC_CX_FRAME_PKT);
return pkt;
}
private:
static const int kWidth = 128;
static const int kHeight = 128;
ACMRandom rnd_;
aom_img_fmt_t format_;
aom_codec_ctx_t enc_;
int frame_count_;
int width_, height_;
};
// lowers an aom_image_t to an easily comparable/printable form
std::vector<uint16_t> Serialize(const aom_image_t *img) {
std::vector<uint16_t> bytes;
bytes.reserve(img->d_w * img->d_h * 3);
for (int plane = 0; plane < 3; ++plane) {
const int w = aom_img_plane_width(img, plane);
const int h = aom_img_plane_height(img, plane);
for (int r = 0; r < h; ++r) {
for (int c = 0; c < w; ++c) {
const unsigned char *row = img->planes[plane] + r * img->stride[plane];
if (img->fmt & AOM_IMG_FMT_HIGHBITDEPTH) {
const uint16_t *row16 = reinterpret_cast<const uint16_t *>(row);
bytes.push_back(row16[c]);
} else {
bytes.push_back(row[c]);
}
}
}
}
return bytes;
}
class Decoder {
public:
explicit Decoder(int allowLowbitdepth) {
aom_codec_iface_t *algo = aom_codec_av1_dx();
aom_codec_dec_cfg_t cfg = aom_codec_dec_cfg_t();
cfg.allow_lowbitdepth = allowLowbitdepth;
aom_codec_dec_init(&dec_, algo, &cfg, 0);
}
~Decoder() { aom_codec_destroy(&dec_); }
std::vector<uint16_t> decode(const aom_codec_cx_pkt_t *pkt) {
aom_codec_decode(&dec_, static_cast<uint8_t *>(pkt->data.frame.buf),
pkt->data.frame.sz, nullptr);
aom_codec_iter_t iter = nullptr;
return Serialize(aom_codec_get_frame(&dec_, &iter));
}
private:
aom_codec_ctx_t dec_;
};
// Try to reveal a mismatch between LBD and HBD coding paths.
TEST(CodingPathSync, SearchForHbdLbdMismatch) {
const int count_tests = 10;
for (int i = 0; i < count_tests; ++i) {
Decoder dec_hbd(0);
Decoder dec_lbd(1);
CompressedSource enc(i);
for (int k = 0; k < 3; ++k) {
const aom_codec_cx_pkt_t *frame = enc.ReadFrame();
std::vector<uint16_t> lbd_yuv = dec_lbd.decode(frame);
std::vector<uint16_t> hbd_yuv = dec_hbd.decode(frame);
ASSERT_EQ(lbd_yuv, hbd_yuv);
}
}
}
TEST(CodingPathSyncLarge, SearchForHbdLbdMismatchLarge) {
const int count_tests = 100;
const int seed = 1234;
for (int i = 0; i < count_tests; ++i) {
Decoder dec_hbd(0);
Decoder dec_lbd(1);
CompressedSource enc(seed + i);
for (int k = 0; k < 5; ++k) {
const aom_codec_cx_pkt_t *frame = enc.ReadFrame();
std::vector<uint16_t> lbd_yuv = dec_lbd.decode(frame);
std::vector<uint16_t> hbd_yuv = dec_hbd.decode(frame);
ASSERT_EQ(lbd_yuv, hbd_yuv);
}
}
}
} // namespace
|