1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <memory>
#include <new>
#include <tuple>
#include "config/aom_dsp_rtcd.h"
#include "gtest/gtest.h"
#include "test/acm_random.h"
#include "test/util.h"
#include "test/register_state_check.h"
#include "aom_dsp/flow_estimation/corner_match.h"
namespace test_libaom {
namespace AV1CornerMatch {
using libaom_test::ACMRandom;
typedef bool (*ComputeMeanStddevFunc)(const unsigned char *frame, int stride,
int x, int y, double *mean,
double *one_over_stddev);
typedef double (*ComputeCorrFunc)(const unsigned char *frame1, int stride1,
int x1, int y1, double mean1,
double one_over_stddev1,
const unsigned char *frame2, int stride2,
int x2, int y2, double mean2,
double one_over_stddev2);
using std::make_tuple;
using std::tuple;
typedef tuple<int, ComputeMeanStddevFunc, ComputeCorrFunc> CornerMatchParam;
class AV1CornerMatchTest : public ::testing::TestWithParam<CornerMatchParam> {
public:
~AV1CornerMatchTest() override;
void SetUp() override;
protected:
void GenerateInput(uint8_t *input1, uint8_t *input2, int w, int h, int mode);
void RunCheckOutput();
void RunSpeedTest();
ComputeMeanStddevFunc target_compute_mean_stddev_func;
ComputeCorrFunc target_compute_corr_func;
libaom_test::ACMRandom rnd_;
};
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1CornerMatchTest);
AV1CornerMatchTest::~AV1CornerMatchTest() = default;
void AV1CornerMatchTest::SetUp() {
rnd_.Reset(ACMRandom::DeterministicSeed());
target_compute_mean_stddev_func = GET_PARAM(1);
target_compute_corr_func = GET_PARAM(2);
}
void AV1CornerMatchTest::GenerateInput(uint8_t *input1, uint8_t *input2, int w,
int h, int mode) {
if (mode == 0) {
for (int i = 0; i < h; ++i)
for (int j = 0; j < w; ++j) {
input1[i * w + j] = rnd_.Rand8();
input2[i * w + j] = rnd_.Rand8();
}
} else if (mode == 1) {
for (int i = 0; i < h; ++i)
for (int j = 0; j < w; ++j) {
int v = rnd_.Rand8();
input1[i * w + j] = v;
input2[i * w + j] = (v / 2) + (rnd_.Rand8() & 15);
}
}
}
void AV1CornerMatchTest::RunCheckOutput() {
const int w = 128, h = 128;
const int num_iters = 1000;
std::unique_ptr<uint8_t[]> input1(new (std::nothrow) uint8_t[w * h]);
std::unique_ptr<uint8_t[]> input2(new (std::nothrow) uint8_t[w * h]);
ASSERT_NE(input1, nullptr);
ASSERT_NE(input2, nullptr);
// Test the two extreme cases:
// i) Random data, should have correlation close to 0
// ii) Linearly related data + noise, should have correlation close to 1
int mode = GET_PARAM(0);
GenerateInput(&input1[0], &input2[0], w, h, mode);
for (int i = 0; i < num_iters; ++i) {
int x1 = MATCH_SZ_BY2 + rnd_.PseudoUniform(w + 1 - MATCH_SZ);
int y1 = MATCH_SZ_BY2 + rnd_.PseudoUniform(h + 1 - MATCH_SZ);
int x2 = MATCH_SZ_BY2 + rnd_.PseudoUniform(w + 1 - MATCH_SZ);
int y2 = MATCH_SZ_BY2 + rnd_.PseudoUniform(h + 1 - MATCH_SZ);
double c_mean1, c_one_over_stddev1, c_mean2, c_one_over_stddev2;
bool c_valid1 = aom_compute_mean_stddev_c(input1.get(), w, x1, y1, &c_mean1,
&c_one_over_stddev1);
bool c_valid2 = aom_compute_mean_stddev_c(input2.get(), w, x2, y2, &c_mean2,
&c_one_over_stddev2);
double simd_mean1, simd_one_over_stddev1, simd_mean2, simd_one_over_stddev2;
bool simd_valid1 = target_compute_mean_stddev_func(
input1.get(), w, x1, y1, &simd_mean1, &simd_one_over_stddev1);
bool simd_valid2 = target_compute_mean_stddev_func(
input2.get(), w, x2, y2, &simd_mean2, &simd_one_over_stddev2);
// Run the correlation calculation even if one of the "valid" flags is
// false, i.e. if one of the patches doesn't have enough variance. This is
// safe because any potential division by 0 is caught in
// aom_compute_mean_stddev(), and one_over_stddev is set to 0 instead.
// This causes aom_compute_correlation() to return 0, without causing a
// division by 0.
const double c_corr = aom_compute_correlation_c(
input1.get(), w, x1, y1, c_mean1, c_one_over_stddev1, input2.get(), w,
x2, y2, c_mean2, c_one_over_stddev2);
const double simd_corr = target_compute_corr_func(
input1.get(), w, x1, y1, c_mean1, c_one_over_stddev1, input2.get(), w,
x2, y2, c_mean2, c_one_over_stddev2);
ASSERT_EQ(simd_valid1, c_valid1);
ASSERT_EQ(simd_valid2, c_valid2);
ASSERT_EQ(simd_mean1, c_mean1);
ASSERT_EQ(simd_one_over_stddev1, c_one_over_stddev1);
ASSERT_EQ(simd_mean2, c_mean2);
ASSERT_EQ(simd_one_over_stddev2, c_one_over_stddev2);
ASSERT_EQ(simd_corr, c_corr);
}
}
void AV1CornerMatchTest::RunSpeedTest() {
const int w = 16, h = 16;
const int num_iters = 1000000;
aom_usec_timer ref_timer, test_timer;
std::unique_ptr<uint8_t[]> input1(new (std::nothrow) uint8_t[w * h]);
std::unique_ptr<uint8_t[]> input2(new (std::nothrow) uint8_t[w * h]);
ASSERT_NE(input1, nullptr);
ASSERT_NE(input2, nullptr);
// Test the two extreme cases:
// i) Random data, should have correlation close to 0
// ii) Linearly related data + noise, should have correlation close to 1
int mode = GET_PARAM(0);
GenerateInput(&input1[0], &input2[0], w, h, mode);
// Time aom_compute_mean_stddev()
double c_mean1, c_one_over_stddev1, c_mean2, c_one_over_stddev2;
aom_usec_timer_start(&ref_timer);
for (int i = 0; i < num_iters; i++) {
aom_compute_mean_stddev_c(input1.get(), w, 0, 0, &c_mean1,
&c_one_over_stddev1);
aom_compute_mean_stddev_c(input2.get(), w, 0, 0, &c_mean2,
&c_one_over_stddev2);
}
aom_usec_timer_mark(&ref_timer);
int elapsed_time_c = static_cast<int>(aom_usec_timer_elapsed(&ref_timer));
double simd_mean1, simd_one_over_stddev1, simd_mean2, simd_one_over_stddev2;
aom_usec_timer_start(&test_timer);
for (int i = 0; i < num_iters; i++) {
target_compute_mean_stddev_func(input1.get(), w, 0, 0, &simd_mean1,
&simd_one_over_stddev1);
target_compute_mean_stddev_func(input2.get(), w, 0, 0, &simd_mean2,
&simd_one_over_stddev2);
}
aom_usec_timer_mark(&test_timer);
int elapsed_time_simd = static_cast<int>(aom_usec_timer_elapsed(&test_timer));
printf(
"aom_compute_mean_stddev(): c_time=%6d simd_time=%6d "
"gain=%.3f\n",
elapsed_time_c, elapsed_time_simd,
(elapsed_time_c / (double)elapsed_time_simd));
// Time aom_compute_correlation
aom_usec_timer_start(&ref_timer);
for (int i = 0; i < num_iters; i++) {
aom_compute_correlation_c(input1.get(), w, 0, 0, c_mean1,
c_one_over_stddev1, input2.get(), w, 0, 0,
c_mean2, c_one_over_stddev2);
}
aom_usec_timer_mark(&ref_timer);
elapsed_time_c = static_cast<int>(aom_usec_timer_elapsed(&ref_timer));
aom_usec_timer_start(&test_timer);
for (int i = 0; i < num_iters; i++) {
target_compute_corr_func(input1.get(), w, 0, 0, c_mean1, c_one_over_stddev1,
input2.get(), w, 0, 0, c_mean2,
c_one_over_stddev2);
}
aom_usec_timer_mark(&test_timer);
elapsed_time_simd = static_cast<int>(aom_usec_timer_elapsed(&test_timer));
printf(
"aom_compute_correlation(): c_time=%6d simd_time=%6d "
"gain=%.3f\n",
elapsed_time_c, elapsed_time_simd,
(elapsed_time_c / (double)elapsed_time_simd));
}
TEST_P(AV1CornerMatchTest, CheckOutput) { RunCheckOutput(); }
TEST_P(AV1CornerMatchTest, DISABLED_Speed) { RunSpeedTest(); }
#if HAVE_SSE4_1
INSTANTIATE_TEST_SUITE_P(
SSE4_1, AV1CornerMatchTest,
::testing::Values(make_tuple(0, &aom_compute_mean_stddev_sse4_1,
&aom_compute_correlation_sse4_1),
make_tuple(1, &aom_compute_mean_stddev_sse4_1,
&aom_compute_correlation_sse4_1)));
#endif
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(
AVX2, AV1CornerMatchTest,
::testing::Values(make_tuple(0, &aom_compute_mean_stddev_avx2,
&aom_compute_correlation_avx2),
make_tuple(1, &aom_compute_mean_stddev_avx2,
&aom_compute_correlation_avx2)));
#endif
} // namespace AV1CornerMatch
} // namespace test_libaom
|