1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
|
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <cstdlib>
#include <memory>
#include <new>
#include <vector>
#include "av1/encoder/cost.h"
#include "av1/encoder/tpl_model.h"
#include "av1/encoder/encoder.h"
#include "gtest/gtest.h"
namespace {
#if CONFIG_BITRATE_ACCURACY
constexpr double epsilon = 0.0000001;
#endif
double laplace_prob(double q_step, double b, double zero_bin_ratio,
int qcoeff) {
int abs_qcoeff = abs(qcoeff);
double z0 = fmax(exp(-zero_bin_ratio / 2 * q_step / b), TPL_EPSILON);
if (abs_qcoeff == 0) {
double p0 = 1 - z0;
return p0;
} else {
assert(abs_qcoeff > 0);
double z = fmax(exp(-q_step / b), TPL_EPSILON);
double p = z0 / 2 * (1 - z) * pow(z, abs_qcoeff - 1);
return p;
}
}
TEST(TplModelTest, ExponentialEntropyBoundaryTest1) {
double b = 0;
double q_step = 1;
double entropy = av1_exponential_entropy(q_step, b);
EXPECT_NEAR(entropy, 0, 0.00001);
}
TEST(TplModelTest, TransformCoeffEntropyTest1) {
// Check the consistency between av1_estimate_coeff_entropy() and
// laplace_prob()
double b = 1;
double q_step = 1;
double zero_bin_ratio = 2;
for (int qcoeff = -256; qcoeff < 256; ++qcoeff) {
double rate = av1_estimate_coeff_entropy(q_step, b, zero_bin_ratio, qcoeff);
double prob = laplace_prob(q_step, b, zero_bin_ratio, qcoeff);
double ref_rate = -log2(prob);
EXPECT_DOUBLE_EQ(rate, ref_rate);
}
}
TEST(TplModelTest, TransformCoeffEntropyTest2) {
// Check the consistency between av1_estimate_coeff_entropy(), laplace_prob()
// and av1_laplace_entropy()
double b = 1;
double q_step = 1;
double zero_bin_ratio = 2;
double est_expected_rate = 0;
for (int qcoeff = -20; qcoeff < 20; ++qcoeff) {
double rate = av1_estimate_coeff_entropy(q_step, b, zero_bin_ratio, qcoeff);
double prob = laplace_prob(q_step, b, zero_bin_ratio, qcoeff);
est_expected_rate += prob * rate;
}
double expected_rate = av1_laplace_entropy(q_step, b, zero_bin_ratio);
EXPECT_NEAR(expected_rate, est_expected_rate, 0.001);
}
TEST(TplModelTest, InitTplStats1) {
// We use heap allocation instead of stack allocation here to avoid
// -Wstack-usage warning.
std::unique_ptr<TplParams> tpl_data(new (std::nothrow) TplParams);
ASSERT_NE(tpl_data, nullptr);
av1_zero(*tpl_data);
tpl_data->ready = 1;
EXPECT_EQ(sizeof(tpl_data->tpl_stats_buffer),
MAX_LENGTH_TPL_FRAME_STATS * sizeof(tpl_data->tpl_stats_buffer[0]));
for (int i = 0; i < MAX_LENGTH_TPL_FRAME_STATS; ++i) {
// Set it to a random non-zero number
tpl_data->tpl_stats_buffer[i].is_valid = i + 1;
}
av1_init_tpl_stats(tpl_data.get());
EXPECT_EQ(tpl_data->ready, 0);
for (int i = 0; i < MAX_LENGTH_TPL_FRAME_STATS; ++i) {
EXPECT_EQ(tpl_data->tpl_stats_buffer[i].is_valid, 0);
}
}
TEST(TplModelTest, DeltaRateCostZeroFlow) {
// When srcrf_dist equal to recrf_dist, av1_delta_rate_cost should return 0
int64_t srcrf_dist = 256;
int64_t recrf_dist = 256;
int64_t delta_rate = 512;
int pixel_num = 256;
int64_t rate_cost =
av1_delta_rate_cost(delta_rate, recrf_dist, srcrf_dist, pixel_num);
EXPECT_EQ(rate_cost, 0);
}
// a reference function of av1_delta_rate_cost() with delta_rate using bit as
// basic unit
double ref_delta_rate_cost(int64_t delta_rate, double src_rec_ratio,
int pixel_count) {
assert(src_rec_ratio <= 1 && src_rec_ratio >= 0);
double bits_per_pixel = (double)delta_rate / pixel_count;
double p = pow(2, bits_per_pixel);
double flow_rate_per_pixel =
sqrt(p * p / (src_rec_ratio * p * p + (1 - src_rec_ratio)));
double rate_cost = pixel_count * log2(flow_rate_per_pixel);
return rate_cost;
}
TEST(TplModelTest, DeltaRateCostReference) {
const int64_t scale = TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT;
std::vector<int64_t> srcrf_dist_arr = { 256, 257, 312 };
std::vector<int64_t> recrf_dist_arr = { 512, 288, 620 };
std::vector<int64_t> delta_rate_arr = { 10, 278, 100 };
for (size_t t = 0; t < srcrf_dist_arr.size(); ++t) {
int64_t srcrf_dist = srcrf_dist_arr[t];
int64_t recrf_dist = recrf_dist_arr[t];
int64_t delta_rate = delta_rate_arr[t];
int64_t scaled_delta_rate = delta_rate << scale;
int pixel_count = 256;
int64_t rate_cost = av1_delta_rate_cost(scaled_delta_rate, recrf_dist,
srcrf_dist, pixel_count);
rate_cost >>= scale;
double src_rec_ratio = (double)srcrf_dist / recrf_dist;
double ref_rate_cost =
ref_delta_rate_cost(delta_rate, src_rec_ratio, pixel_count);
EXPECT_NEAR((double)rate_cost, ref_rate_cost, 1);
}
}
TEST(TplModelTest, GetOverlapAreaHasOverlap) {
// The block a's area is [10, 17) x [18, 24).
// The block b's area is [8, 15) x [17, 23).
// The overlapping area between block a and block b is [10, 15) x [18, 23).
// Therefore, the size of the area is (15 - 10) * (23 - 18) = 25.
int row_a = 10;
int col_a = 18;
int row_b = 8;
int col_b = 17;
int height = 7;
int width = 6;
int overlap_area =
av1_get_overlap_area(row_a, col_a, row_b, col_b, width, height);
EXPECT_EQ(overlap_area, 25);
}
TEST(TplModelTest, GetOverlapAreaNoOverlap) {
// The block a's area is [10, 14) x [18, 22).
// The block b's area is [5, 9) x [5, 9).
// Threre is no overlapping area between block a and block b.
// Therefore, the return value should be zero.
int row_a = 10;
int col_a = 18;
int row_b = 5;
int col_b = 5;
int height = 4;
int width = 4;
int overlap_area =
av1_get_overlap_area(row_a, col_a, row_b, col_b, width, height);
EXPECT_EQ(overlap_area, 0);
}
TEST(TplModelTest, GetQIndexFromQstepRatio) {
const aom_bit_depth_t bit_depth = AOM_BITS_8;
// When qstep_ratio is 1, the output q_index should be equal to leaf_qindex.
double qstep_ratio = 1.0;
for (int leaf_qindex = 1; leaf_qindex <= 255; ++leaf_qindex) {
const int q_index =
av1_get_q_index_from_qstep_ratio(leaf_qindex, qstep_ratio, bit_depth);
EXPECT_EQ(q_index, leaf_qindex);
}
// When qstep_ratio is very low, the output q_index should be 1.
qstep_ratio = 0.0001;
for (int leaf_qindex = 1; leaf_qindex <= 255; ++leaf_qindex) {
const int q_index =
av1_get_q_index_from_qstep_ratio(leaf_qindex, qstep_ratio, bit_depth);
EXPECT_EQ(q_index, 0);
}
}
TEST(TplModelTest, TxfmStatsInitTest) {
TplTxfmStats tpl_txfm_stats;
av1_init_tpl_txfm_stats(&tpl_txfm_stats);
EXPECT_EQ(tpl_txfm_stats.coeff_num, 256);
EXPECT_EQ(tpl_txfm_stats.txfm_block_count, 0);
for (int i = 0; i < tpl_txfm_stats.coeff_num; ++i) {
EXPECT_DOUBLE_EQ(tpl_txfm_stats.abs_coeff_sum[i], 0);
}
}
#if CONFIG_BITRATE_ACCURACY
TEST(TplModelTest, TxfmStatsAccumulateTest) {
TplTxfmStats sub_stats;
av1_init_tpl_txfm_stats(&sub_stats);
sub_stats.txfm_block_count = 17;
for (int i = 0; i < sub_stats.coeff_num; ++i) {
sub_stats.abs_coeff_sum[i] = i;
}
TplTxfmStats accumulated_stats;
av1_init_tpl_txfm_stats(&accumulated_stats);
accumulated_stats.txfm_block_count = 13;
for (int i = 0; i < accumulated_stats.coeff_num; ++i) {
accumulated_stats.abs_coeff_sum[i] = 5 * i;
}
av1_accumulate_tpl_txfm_stats(&sub_stats, &accumulated_stats);
EXPECT_DOUBLE_EQ(accumulated_stats.txfm_block_count, 30);
for (int i = 0; i < accumulated_stats.coeff_num; ++i) {
EXPECT_DOUBLE_EQ(accumulated_stats.abs_coeff_sum[i], 6 * i);
}
}
TEST(TplModelTest, TxfmStatsRecordTest) {
TplTxfmStats stats1;
TplTxfmStats stats2;
av1_init_tpl_txfm_stats(&stats1);
av1_init_tpl_txfm_stats(&stats2);
tran_low_t coeff[256];
for (int i = 0; i < 256; ++i) {
coeff[i] = i;
}
av1_record_tpl_txfm_block(&stats1, coeff);
EXPECT_EQ(stats1.txfm_block_count, 1);
// we record the same transform block twice for testing purpose
av1_record_tpl_txfm_block(&stats2, coeff);
av1_record_tpl_txfm_block(&stats2, coeff);
EXPECT_EQ(stats2.txfm_block_count, 2);
EXPECT_EQ(stats1.coeff_num, 256);
EXPECT_EQ(stats2.coeff_num, 256);
for (int i = 0; i < 256; ++i) {
EXPECT_DOUBLE_EQ(stats2.abs_coeff_sum[i], 2 * stats1.abs_coeff_sum[i]);
}
}
#endif // CONFIG_BITRATE_ACCURACY
TEST(TplModelTest, ComputeMVDifferenceTest) {
TplDepFrame tpl_frame_small;
tpl_frame_small.is_valid = true;
tpl_frame_small.mi_rows = 4;
tpl_frame_small.mi_cols = 4;
tpl_frame_small.stride = 1;
uint8_t right_shift_small = 1;
int step_small = 1 << right_shift_small;
// Test values for motion vectors.
int mv_vals_small[4] = { 1, 2, 3, 4 };
int index = 0;
// 4x4 blocks means we need to allocate a 4 size array.
// According to av1_tpl_ptr_pos:
// (row >> right_shift) * stride + (col >> right_shift)
// (4 >> 1) * 1 + (4 >> 1) = 4
TplDepStats stats_buf_small[4];
tpl_frame_small.tpl_stats_ptr = stats_buf_small;
for (int row = 0; row < tpl_frame_small.mi_rows; row += step_small) {
for (int col = 0; col < tpl_frame_small.mi_cols; col += step_small) {
TplDepStats tpl_stats;
tpl_stats.ref_frame_index[0] = 0;
int_mv mv;
mv.as_mv.row = mv_vals_small[index];
mv.as_mv.col = mv_vals_small[index];
index++;
tpl_stats.mv[0] = mv;
tpl_frame_small.tpl_stats_ptr[av1_tpl_ptr_pos(
row, col, tpl_frame_small.stride, right_shift_small)] = tpl_stats;
}
}
int_mv result_mv =
av1_compute_mv_difference(&tpl_frame_small, 1, 1, step_small,
tpl_frame_small.stride, right_shift_small);
// Expect the result to be exactly equal to 1 because this is the difference
// between neighboring motion vectors in this instance.
EXPECT_EQ(result_mv.as_mv.row, 1);
EXPECT_EQ(result_mv.as_mv.col, 1);
}
TEST(TplModelTest, ComputeMVBitsTest) {
TplDepFrame tpl_frame;
tpl_frame.is_valid = true;
tpl_frame.mi_rows = 16;
tpl_frame.mi_cols = 16;
tpl_frame.stride = 24;
uint8_t right_shift = 2;
int step = 1 << right_shift;
// Test values for motion vectors.
int mv_vals_ordered[16] = { 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16 };
int mv_vals[16] = { 1, 16, 2, 15, 3, 14, 4, 13, 5, 12, 6, 11, 7, 10, 8, 9 };
int index = 0;
// 16x16 blocks means we need to allocate a 100 size array.
// According to av1_tpl_ptr_pos:
// (row >> right_shift) * stride + (col >> right_shift)
// (16 >> 2) * 24 + (16 >> 2) = 100
TplDepStats stats_buf[100];
tpl_frame.tpl_stats_ptr = stats_buf;
for (int row = 0; row < tpl_frame.mi_rows; row += step) {
for (int col = 0; col < tpl_frame.mi_cols; col += step) {
TplDepStats tpl_stats;
tpl_stats.ref_frame_index[0] = 0;
int_mv mv;
mv.as_mv.row = mv_vals_ordered[index];
mv.as_mv.col = mv_vals_ordered[index];
index++;
tpl_stats.mv[0] = mv;
tpl_frame.tpl_stats_ptr[av1_tpl_ptr_pos(row, col, tpl_frame.stride,
right_shift)] = tpl_stats;
}
}
double result = av1_tpl_compute_frame_mv_entropy(&tpl_frame, right_shift);
// Expect the result to be low because the motion vectors are ordered.
// The estimation algorithm takes this into account and reduces the cost.
EXPECT_NEAR(result, 20, 5);
index = 0;
for (int row = 0; row < tpl_frame.mi_rows; row += step) {
for (int col = 0; col < tpl_frame.mi_cols; col += step) {
TplDepStats tpl_stats;
tpl_stats.ref_frame_index[0] = 0;
int_mv mv;
mv.as_mv.row = mv_vals[index];
mv.as_mv.col = mv_vals[index];
index++;
tpl_stats.mv[0] = mv;
tpl_frame.tpl_stats_ptr[av1_tpl_ptr_pos(row, col, tpl_frame.stride,
right_shift)] = tpl_stats;
}
}
result = av1_tpl_compute_frame_mv_entropy(&tpl_frame, right_shift);
// Expect the result to be higher because the vectors are not ordered.
// Neighboring vectors will have different values, increasing the cost.
EXPECT_NEAR(result, 70, 5);
}
#if CONFIG_BITRATE_ACCURACY
TEST(TplModelTest, VbrRcInfoSetGopBitBudget) {
VBR_RATECTRL_INFO vbr_rc_info;
const double total_bit_budget = 2000;
const int show_frame_count = 8;
const int gop_show_frame_count = 4;
av1_vbr_rc_init(&vbr_rc_info, total_bit_budget, show_frame_count);
av1_vbr_rc_set_gop_bit_budget(&vbr_rc_info, gop_show_frame_count);
EXPECT_NEAR(vbr_rc_info.gop_bit_budget, 1000, epsilon);
}
void init_toy_gf_group(GF_GROUP *gf_group) {
av1_zero(*gf_group);
gf_group->size = 4;
const FRAME_UPDATE_TYPE update_type[4] = { KF_UPDATE, ARF_UPDATE,
INTNL_ARF_UPDATE, LF_UPDATE };
for (int i = 0; i < gf_group->size; ++i) {
gf_group->update_type[i] = update_type[i];
}
}
void init_toy_vbr_rc_info(VBR_RATECTRL_INFO *vbr_rc_info, int gop_size) {
int total_bit_budget = 2000;
int show_frame_count = 8;
av1_vbr_rc_init(vbr_rc_info, total_bit_budget, show_frame_count);
for (int i = 0; i < gop_size; ++i) {
vbr_rc_info->qstep_ratio_list[i] = 1;
}
}
void init_toy_tpl_txfm_stats(std::vector<TplTxfmStats> *stats_list) {
for (size_t i = 0; i < stats_list->size(); i++) {
TplTxfmStats *txfm_stats = &stats_list->at(i);
av1_init_tpl_txfm_stats(txfm_stats);
txfm_stats->txfm_block_count = 8;
for (int j = 0; j < txfm_stats->coeff_num; j++) {
txfm_stats->abs_coeff_sum[j] = 1000 + j;
}
av1_tpl_txfm_stats_update_abs_coeff_mean(txfm_stats);
}
}
/*
* Helper method to brute-force search for the closest q_index
* that achieves the specified bit budget.
*/
int find_gop_q_iterative(double bit_budget, aom_bit_depth_t bit_depth,
const double *update_type_scale_factors,
int frame_count,
const FRAME_UPDATE_TYPE *update_type_list,
const double *qstep_ratio_list,
const TplTxfmStats *stats_list, int *q_index_list,
double *estimated_bitrate_byframe) {
int best_q = 255;
double curr_estimate = av1_vbr_rc_info_estimate_gop_bitrate(
best_q, bit_depth, update_type_scale_factors, frame_count,
update_type_list, qstep_ratio_list, stats_list, q_index_list,
estimated_bitrate_byframe);
double min_bits_diff = fabs(curr_estimate - bit_budget);
// Start at q = 254 because we already have an estimate for q = 255.
for (int q = 254; q >= 0; q--) {
curr_estimate = av1_vbr_rc_info_estimate_gop_bitrate(
q, bit_depth, update_type_scale_factors, frame_count, update_type_list,
qstep_ratio_list, stats_list, q_index_list, estimated_bitrate_byframe);
double bits_diff = fabs(curr_estimate - bit_budget);
if (bits_diff <= min_bits_diff) {
min_bits_diff = bits_diff;
best_q = q;
}
}
return best_q;
}
TEST(TplModelTest, EstimateFrameRateTest) {
GF_GROUP gf_group;
init_toy_gf_group(&gf_group);
VBR_RATECTRL_INFO vbr_rc_info;
init_toy_vbr_rc_info(&vbr_rc_info, gf_group.size);
std::vector<TplTxfmStats> stats_list(gf_group.size);
init_toy_tpl_txfm_stats(&stats_list);
std::vector<double> est_bitrate_list(gf_group.size);
init_toy_tpl_txfm_stats(&stats_list);
const aom_bit_depth_t bit_depth = AOM_BITS_8;
const int q = 125;
// Case1: all scale factors are 0
double scale_factors[FRAME_UPDATE_TYPES] = { 0 };
double estimate = av1_vbr_rc_info_estimate_gop_bitrate(
q, bit_depth, scale_factors, gf_group.size, gf_group.update_type,
vbr_rc_info.qstep_ratio_list, stats_list.data(), vbr_rc_info.q_index_list,
est_bitrate_list.data());
EXPECT_NEAR(estimate, 0, epsilon);
// Case2: all scale factors are 1
for (int i = 0; i < FRAME_UPDATE_TYPES; i++) {
scale_factors[i] = 1;
}
estimate = av1_vbr_rc_info_estimate_gop_bitrate(
q, bit_depth, scale_factors, gf_group.size, gf_group.update_type,
vbr_rc_info.qstep_ratio_list, stats_list.data(), vbr_rc_info.q_index_list,
est_bitrate_list.data());
double ref_estimate = 0;
for (int i = 0; i < gf_group.size; i++) {
ref_estimate += est_bitrate_list[i];
}
EXPECT_NEAR(estimate, ref_estimate, epsilon);
// Case3: Key frame scale factor is 0 and others are 1
for (int i = 0; i < FRAME_UPDATE_TYPES; i++) {
if (i == KF_UPDATE) {
scale_factors[i] = 0;
} else {
scale_factors[i] = 1;
}
}
estimate = av1_vbr_rc_info_estimate_gop_bitrate(
q, bit_depth, scale_factors, gf_group.size, gf_group.update_type,
vbr_rc_info.qstep_ratio_list, stats_list.data(), vbr_rc_info.q_index_list,
est_bitrate_list.data());
ref_estimate = 0;
for (int i = 0; i < gf_group.size; i++) {
if (gf_group.update_type[i] != KF_UPDATE) {
ref_estimate += est_bitrate_list[i];
}
}
EXPECT_NEAR(estimate, ref_estimate, epsilon);
}
TEST(TplModelTest, VbrRcInfoEstimateBaseQTest) {
GF_GROUP gf_group;
init_toy_gf_group(&gf_group);
VBR_RATECTRL_INFO vbr_rc_info;
init_toy_vbr_rc_info(&vbr_rc_info, gf_group.size);
std::vector<TplTxfmStats> stats_list(gf_group.size);
init_toy_tpl_txfm_stats(&stats_list);
const aom_bit_depth_t bit_depth = AOM_BITS_8;
// Test multiple bit budgets.
const std::vector<double> bit_budgets = { 0, 2470, 19200, 30750,
41315, 65017, DBL_MAX };
for (double bit_budget : bit_budgets) {
// Binary search method to find the optimal q.
const int base_q = av1_vbr_rc_info_estimate_base_q(
bit_budget, bit_depth, vbr_rc_info.scale_factors, gf_group.size,
gf_group.update_type, vbr_rc_info.qstep_ratio_list, stats_list.data(),
vbr_rc_info.q_index_list, nullptr);
const int ref_base_q = find_gop_q_iterative(
bit_budget, bit_depth, vbr_rc_info.scale_factors, gf_group.size,
gf_group.update_type, vbr_rc_info.qstep_ratio_list, stats_list.data(),
vbr_rc_info.q_index_list, nullptr);
if (bit_budget == 0) {
EXPECT_EQ(base_q, 255);
} else if (bit_budget == DBL_MAX) {
EXPECT_EQ(base_q, 0);
}
EXPECT_EQ(base_q, ref_base_q);
}
}
#endif // CONFIG_BITRATE_ACCURACY
} // namespace
|