1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AOM_TEST_TRANSFORM_TEST_BASE_H_
#define AOM_TEST_TRANSFORM_TEST_BASE_H_
#include "gtest/gtest.h"
#include "aom/aom_codec.h"
#include "aom_dsp/txfm_common.h"
#include "aom_mem/aom_mem.h"
#include "test/acm_random.h"
namespace libaom_test {
// Note:
// Same constant are defined in av1/common/av1_entropy.h and
// av1/common/entropy.h. Goal is to make this base class
// to use for future codec transform testing. But including
// either of them would lead to compiling error when we do
// unit test for another codec. Suggest to move the definition
// to a aom header file.
const int kDctMaxValue = 16384;
template <typename OutputType>
using FhtFunc = void (*)(const int16_t *in, OutputType *out, int stride,
TxfmParam *txfm_param);
template <typename OutputType>
using IhtFunc = void (*)(const tran_low_t *in, uint8_t *out, int stride,
const TxfmParam *txfm_param);
template <typename OutType>
class TransformTestBase {
public:
virtual ~TransformTestBase() = default;
protected:
virtual void RunFwdTxfm(const int16_t *in, OutType *out, int stride) = 0;
virtual void RunInvTxfm(const OutType *out, uint8_t *dst, int stride) = 0;
void RunAccuracyCheck(uint32_t ref_max_error, double ref_avg_error) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
uint32_t max_error = 0;
int64_t total_error = 0;
const int count_test_block = 10000;
int16_t *test_input_block = reinterpret_cast<int16_t *>(
aom_memalign(16, sizeof(int16_t) * num_coeffs_));
ASSERT_NE(test_input_block, nullptr);
OutType *test_temp_block = reinterpret_cast<OutType *>(
aom_memalign(16, sizeof(test_temp_block[0]) * num_coeffs_));
ASSERT_NE(test_temp_block, nullptr);
uint8_t *dst = reinterpret_cast<uint8_t *>(
aom_memalign(16, sizeof(uint8_t) * num_coeffs_));
ASSERT_NE(dst, nullptr);
uint8_t *src = reinterpret_cast<uint8_t *>(
aom_memalign(16, sizeof(uint8_t) * num_coeffs_));
ASSERT_NE(src, nullptr);
uint16_t *dst16 = reinterpret_cast<uint16_t *>(
aom_memalign(16, sizeof(uint16_t) * num_coeffs_));
ASSERT_NE(dst16, nullptr);
uint16_t *src16 = reinterpret_cast<uint16_t *>(
aom_memalign(16, sizeof(uint16_t) * num_coeffs_));
ASSERT_NE(src16, nullptr);
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < num_coeffs_; ++j) {
if (bit_depth_ == AOM_BITS_8) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
test_input_block[j] = src[j] - dst[j];
} else {
src16[j] = rnd.Rand16() & mask_;
dst16[j] = rnd.Rand16() & mask_;
test_input_block[j] = src16[j] - dst16[j];
}
}
API_REGISTER_STATE_CHECK(
RunFwdTxfm(test_input_block, test_temp_block, pitch_));
if (bit_depth_ == AOM_BITS_8) {
API_REGISTER_STATE_CHECK(RunInvTxfm(test_temp_block, dst, pitch_));
} else {
API_REGISTER_STATE_CHECK(
RunInvTxfm(test_temp_block, CONVERT_TO_BYTEPTR(dst16), pitch_));
}
for (int j = 0; j < num_coeffs_; ++j) {
const int diff =
bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j];
const uint32_t error = diff * diff;
if (max_error < error) max_error = error;
total_error += error;
}
}
double avg_error = total_error * 1. / count_test_block / num_coeffs_;
EXPECT_GE(ref_max_error, max_error)
<< "Error: FHT/IHT has an individual round trip error > "
<< ref_max_error;
EXPECT_GE(ref_avg_error, avg_error)
<< "Error: FHT/IHT has average round trip error > " << ref_avg_error
<< " per block";
aom_free(test_input_block);
aom_free(test_temp_block);
aom_free(dst);
aom_free(src);
aom_free(dst16);
aom_free(src16);
}
void RunCoeffCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 5000;
// Use a stride value which is not the width of any transform, to catch
// cases where the transforms use the stride incorrectly.
int stride = 96;
int16_t *input_block = reinterpret_cast<int16_t *>(
aom_memalign(16, sizeof(int16_t) * stride * height_));
ASSERT_NE(input_block, nullptr);
OutType *output_ref_block = reinterpret_cast<OutType *>(
aom_memalign(16, sizeof(output_ref_block[0]) * num_coeffs_));
ASSERT_NE(output_ref_block, nullptr);
OutType *output_block = reinterpret_cast<OutType *>(
aom_memalign(16, sizeof(output_block[0]) * num_coeffs_));
ASSERT_NE(output_block, nullptr);
for (int i = 0; i < count_test_block; ++i) {
int j, k;
for (j = 0; j < height_; ++j) {
for (k = 0; k < pitch_; ++k) {
int in_idx = j * stride + k;
int out_idx = j * pitch_ + k;
input_block[in_idx] = (rnd.Rand16() & mask_) - (rnd.Rand16() & mask_);
if (bit_depth_ == AOM_BITS_8) {
output_block[out_idx] = output_ref_block[out_idx] = rnd.Rand8();
} else {
output_block[out_idx] = output_ref_block[out_idx] =
rnd.Rand16() & mask_;
}
}
}
fwd_txfm_ref(input_block, output_ref_block, stride, &txfm_param_);
API_REGISTER_STATE_CHECK(RunFwdTxfm(input_block, output_block, stride));
// The minimum quant value is 4.
for (j = 0; j < height_; ++j) {
for (k = 0; k < pitch_; ++k) {
int out_idx = j * pitch_ + k;
ASSERT_EQ(output_block[out_idx], output_ref_block[out_idx])
<< "Error: not bit-exact result at index: " << out_idx
<< " at test block: " << i;
}
}
}
aom_free(input_block);
aom_free(output_ref_block);
aom_free(output_block);
}
void RunInvCoeffCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 5000;
// Use a stride value which is not the width of any transform, to catch
// cases where the transforms use the stride incorrectly.
int stride = 96;
int16_t *input_block = reinterpret_cast<int16_t *>(
aom_memalign(16, sizeof(int16_t) * num_coeffs_));
ASSERT_NE(input_block, nullptr);
OutType *trans_block = reinterpret_cast<OutType *>(
aom_memalign(16, sizeof(trans_block[0]) * num_coeffs_));
ASSERT_NE(trans_block, nullptr);
uint8_t *output_block = reinterpret_cast<uint8_t *>(
aom_memalign(16, sizeof(uint8_t) * stride * height_));
ASSERT_NE(output_block, nullptr);
uint8_t *output_ref_block = reinterpret_cast<uint8_t *>(
aom_memalign(16, sizeof(uint8_t) * stride * height_));
ASSERT_NE(output_ref_block, nullptr);
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-mask_, mask_].
int j, k;
for (j = 0; j < height_; ++j) {
for (k = 0; k < pitch_; ++k) {
int in_idx = j * pitch_ + k;
int out_idx = j * stride + k;
input_block[in_idx] = (rnd.Rand16() & mask_) - (rnd.Rand16() & mask_);
output_ref_block[out_idx] = rnd.Rand16() & mask_;
output_block[out_idx] = output_ref_block[out_idx];
}
}
fwd_txfm_ref(input_block, trans_block, pitch_, &txfm_param_);
inv_txfm_ref(trans_block, output_ref_block, stride, &txfm_param_);
API_REGISTER_STATE_CHECK(RunInvTxfm(trans_block, output_block, stride));
for (j = 0; j < height_; ++j) {
for (k = 0; k < pitch_; ++k) {
int out_idx = j * stride + k;
ASSERT_EQ(output_block[out_idx], output_ref_block[out_idx])
<< "Error: not bit-exact result at index: " << out_idx
<< " j = " << j << " k = " << k << " at test block: " << i;
}
}
}
aom_free(input_block);
aom_free(trans_block);
aom_free(output_ref_block);
aom_free(output_block);
}
void RunMemCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 5000;
int16_t *input_extreme_block = reinterpret_cast<int16_t *>(
aom_memalign(16, sizeof(int16_t) * num_coeffs_));
ASSERT_NE(input_extreme_block, nullptr);
OutType *output_ref_block = reinterpret_cast<OutType *>(
aom_memalign(16, sizeof(output_ref_block[0]) * num_coeffs_));
ASSERT_NE(output_ref_block, nullptr);
OutType *output_block = reinterpret_cast<OutType *>(
aom_memalign(16, sizeof(output_block[0]) * num_coeffs_));
ASSERT_NE(output_block, nullptr);
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-mask_, mask_].
for (int j = 0; j < num_coeffs_; ++j) {
input_extreme_block[j] = rnd.Rand8() % 2 ? mask_ : -mask_;
}
if (i == 0) {
for (int j = 0; j < num_coeffs_; ++j) input_extreme_block[j] = mask_;
} else if (i == 1) {
for (int j = 0; j < num_coeffs_; ++j) input_extreme_block[j] = -mask_;
}
fwd_txfm_ref(input_extreme_block, output_ref_block, pitch_, &txfm_param_);
API_REGISTER_STATE_CHECK(
RunFwdTxfm(input_extreme_block, output_block, pitch_));
int row_length = FindRowLength();
// The minimum quant value is 4.
for (int j = 0; j < num_coeffs_; ++j) {
ASSERT_EQ(output_block[j], output_ref_block[j])
<< "Not bit-exact at test index: " << i << ", "
<< "j = " << j << std::endl;
EXPECT_GE(row_length * kDctMaxValue << (bit_depth_ - 8),
abs(output_block[j]))
<< "Error: NxN FDCT has coefficient larger than N*DCT_MAX_VALUE";
}
}
aom_free(input_extreme_block);
aom_free(output_ref_block);
aom_free(output_block);
}
void RunInvAccuracyCheck(int limit) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
int16_t *in = reinterpret_cast<int16_t *>(
aom_memalign(16, sizeof(int16_t) * num_coeffs_));
ASSERT_NE(in, nullptr);
OutType *coeff = reinterpret_cast<OutType *>(
aom_memalign(16, sizeof(coeff[0]) * num_coeffs_));
ASSERT_NE(coeff, nullptr);
uint8_t *dst = reinterpret_cast<uint8_t *>(
aom_memalign(16, sizeof(uint8_t) * num_coeffs_));
ASSERT_NE(dst, nullptr);
uint8_t *src = reinterpret_cast<uint8_t *>(
aom_memalign(16, sizeof(uint8_t) * num_coeffs_));
ASSERT_NE(src, nullptr);
uint16_t *dst16 = reinterpret_cast<uint16_t *>(
aom_memalign(16, sizeof(uint16_t) * num_coeffs_));
ASSERT_NE(dst16, nullptr);
uint16_t *src16 = reinterpret_cast<uint16_t *>(
aom_memalign(16, sizeof(uint16_t) * num_coeffs_));
ASSERT_NE(src16, nullptr);
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-mask_, mask_].
for (int j = 0; j < num_coeffs_; ++j) {
if (bit_depth_ == AOM_BITS_8) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
in[j] = src[j] - dst[j];
} else {
src16[j] = rnd.Rand16() & mask_;
dst16[j] = rnd.Rand16() & mask_;
in[j] = src16[j] - dst16[j];
}
}
fwd_txfm_ref(in, coeff, pitch_, &txfm_param_);
if (bit_depth_ == AOM_BITS_8) {
API_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, pitch_));
} else {
API_REGISTER_STATE_CHECK(
RunInvTxfm(coeff, CONVERT_TO_BYTEPTR(dst16), pitch_));
}
for (int j = 0; j < num_coeffs_; ++j) {
const int diff =
bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j];
const uint32_t error = diff * diff;
ASSERT_GE(static_cast<uint32_t>(limit), error)
<< "Error: 4x4 IDCT has error " << error << " at index " << j;
}
}
aom_free(in);
aom_free(coeff);
aom_free(dst);
aom_free(src);
aom_free(src16);
aom_free(dst16);
}
int pitch_;
int height_;
FhtFunc<OutType> fwd_txfm_ref;
IhtFunc<OutType> inv_txfm_ref;
aom_bit_depth_t bit_depth_;
int mask_;
int num_coeffs_;
TxfmParam txfm_param_;
private:
// Assume transform size is 4x4, 8x8, 16x16,...
int FindRowLength() const {
int row = 4;
if (16 == num_coeffs_) {
row = 4;
} else if (64 == num_coeffs_) {
row = 8;
} else if (256 == num_coeffs_) {
row = 16;
} else if (1024 == num_coeffs_) {
row = 32;
}
return row;
}
};
} // namespace libaom_test
#endif // AOM_TEST_TRANSFORM_TEST_BASE_H_
|