1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "apr_general.h"
#include "mod_cache.h"
#include "cache_hash.h"
#if APR_HAVE_STDLIB_H
#include <stdlib.h>
#endif
#if APR_HAVE_STRING_H
#include <string.h>
#endif
/*
* The internal form of a hash table.
*
* The table is an array indexed by the hash of the key; collisions
* are resolved by hanging a linked list of hash entries off each
* element of the array. Although this is a really simple design it
* isn't too bad given that pools have a low allocation overhead.
*/
typedef struct cache_hash_entry_t cache_hash_entry_t;
struct cache_hash_entry_t {
cache_hash_entry_t *next;
unsigned int hash;
const void *key;
apr_ssize_t klen;
const void *val;
};
/*
* Data structure for iterating through a hash table.
*
* We keep a pointer to the next hash entry here to allow the current
* hash entry to be freed or otherwise mangled between calls to
* cache_hash_next().
*/
struct cache_hash_index_t {
cache_hash_t *ht;
cache_hash_entry_t *this, *next;
int index;
};
/*
* The size of the array is always a power of two. We use the maximum
* index rather than the size so that we can use bitwise-AND for
* modular arithmetic.
* The count of hash entries may be greater depending on the chosen
* collision rate.
*/
struct cache_hash_t {
cache_hash_entry_t **array;
cache_hash_index_t iterator; /* For cache_hash_first(NULL, ...) */
int count, max;
};
/*
* Hash creation functions.
*/
static cache_hash_entry_t **alloc_array(cache_hash_t *ht, int max)
{
return calloc(1, sizeof(*ht->array) * (max + 1));
}
CACHE_DECLARE(cache_hash_t *) cache_hash_make(apr_size_t size)
{
cache_hash_t *ht;
ht = malloc(sizeof(cache_hash_t));
if (!ht) {
return NULL;
}
ht->count = 0;
ht->max = size;
ht->array = alloc_array(ht, ht->max);
if (!ht->array) {
free(ht);
return NULL;
}
return ht;
}
CACHE_DECLARE(void) cache_hash_free(cache_hash_t *ht)
{
if (ht) {
if (ht->array) {
free (ht->array);
}
free (ht);
}
}
/*
* Hash iteration functions.
*/
CACHE_DECLARE(cache_hash_index_t *) cache_hash_next(cache_hash_index_t *hi)
{
hi->this = hi->next;
while (!hi->this) {
if (hi->index > hi->ht->max)
return NULL;
hi->this = hi->ht->array[hi->index++];
}
hi->next = hi->this->next;
return hi;
}
CACHE_DECLARE(cache_hash_index_t *) cache_hash_first(cache_hash_t *ht)
{
cache_hash_index_t *hi;
hi = &ht->iterator;
hi->ht = ht;
hi->index = 0;
hi->this = NULL;
hi->next = NULL;
return cache_hash_next(hi);
}
CACHE_DECLARE(void) cache_hash_this(cache_hash_index_t *hi,
const void **key,
apr_ssize_t *klen,
void **val)
{
if (key) *key = hi->this->key;
if (klen) *klen = hi->this->klen;
if (val) *val = (void *)hi->this->val;
}
/*
* This is where we keep the details of the hash function and control
* the maximum collision rate.
*
* If val is non-NULL it creates and initializes a new hash entry if
* there isn't already one there; it returns an updatable pointer so
* that hash entries can be removed.
*/
static cache_hash_entry_t **find_entry(cache_hash_t *ht,
const void *key,
apr_ssize_t klen,
const void *val)
{
cache_hash_entry_t **hep, *he;
const unsigned char *p;
unsigned int hash;
apr_ssize_t i;
/*
* This is the popular `times 33' hash algorithm which is used by
* perl and also appears in Berkeley DB. This is one of the best
* known hash functions for strings because it is both computed
* very fast and distributes very well.
*
* The originator may be Dan Bernstein but the code in Berkeley DB
* cites Chris Torek as the source. The best citation I have found
* is "Chris Torek, Hash function for text in C, Usenet message
* <27038@mimsy.umd.edu> in comp.lang.c , October, 1990." in Rich
* Salz's USENIX 1992 paper about INN which can be found at
* <http://citeseer.nj.nec.com/salz92internetnews.html>.
*
* The magic of number 33, i.e. why it works better than many other
* constants, prime or not, has never been adequately explained by
* anyone. So I try an explanation: if one experimentally tests all
* multipliers between 1 and 256 (as I did while writing a low-level
* data structure library some time ago) one detects that even
* numbers are not useable at all. The remaining 128 odd numbers
* (except for the number 1) work more or less all equally well.
* They all distribute in an acceptable way and this way fill a hash
* table with an average percent of approx. 86%.
*
* If one compares the chi^2 values of the variants (see
* Bob Jenkins ``Hashing Frequently Asked Questions'' at
* http://burtleburtle.net/bob/hash/hashfaq.html for a description
* of chi^2), the number 33 not even has the best value. But the
* number 33 and a few other equally good numbers like 17, 31, 63,
* 127 and 129 have nevertheless a great advantage to the remaining
* numbers in the large set of possible multipliers: their multiply
* operation can be replaced by a faster operation based on just one
* shift plus either a single addition or subtraction operation. And
* because a hash function has to both distribute good _and_ has to
* be very fast to compute, those few numbers should be preferred.
*
* -- Ralf S. Engelschall <rse@engelschall.com>
*/
hash = 0;
if (klen == CACHE_HASH_KEY_STRING) {
for (p = key; *p; p++) {
hash = hash * 33 + *p;
}
klen = p - (const unsigned char *)key;
}
else {
for (p = key, i = klen; i; i--, p++) {
hash = hash * 33 + *p;
}
}
/* scan linked list */
for (hep = &ht->array[hash % ht->max], he = *hep;
he;
hep = &he->next, he = *hep) {
if (he->hash == hash &&
he->klen == klen &&
memcmp(he->key, key, klen) == 0)
break;
}
if (he || !val)
return hep;
/* add a new entry for non-NULL values */
he = malloc(sizeof(*he));
if (!he) {
return NULL;
}
he->next = NULL;
he->hash = hash;
he->key = key;
he->klen = klen;
he->val = val;
*hep = he;
ht->count++;
return hep;
}
CACHE_DECLARE(void *) cache_hash_get(cache_hash_t *ht,
const void *key,
apr_ssize_t klen)
{
cache_hash_entry_t *he;
he = *find_entry(ht, key, klen, NULL);
if (he)
return (void *)he->val;
else
return NULL;
}
CACHE_DECLARE(void *) cache_hash_set(cache_hash_t *ht,
const void *key,
apr_ssize_t klen,
const void *val)
{
cache_hash_entry_t **hep, *tmp;
const void *tval;
hep = find_entry(ht, key, klen, val);
/* If hep == NULL, then the malloc() in find_entry failed */
if (hep && *hep) {
if (!val) {
/* delete entry */
tval = (*hep)->val;
tmp = *hep;
*hep = (*hep)->next;
free(tmp);
--ht->count;
}
else {
/* replace entry */
tval = (*hep)->val;
(*hep)->val = val;
}
/* Return the object just removed from the cache to let the
* caller clean it up. Cast the constness away upon return.
*/
return (void *) tval;
}
/* else key not present and val==NULL */
return NULL;
}
CACHE_DECLARE(int) cache_hash_count(cache_hash_t *ht)
{
return ht->count;
}
|