1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
|
/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mpm_fdqueue.h"
#if APR_HAS_THREADS
#include <apr_atomic.h>
static const apr_uint32_t zero_pt = APR_UINT32_MAX/2;
struct recycled_pool
{
apr_pool_t *pool;
struct recycled_pool *next;
};
struct fd_queue_info_t
{
apr_uint32_t volatile idlers; /**
* >= zero_pt: number of idle worker threads
* < zero_pt: number of threads blocked,
* waiting for an idle worker
*/
apr_thread_mutex_t *idlers_mutex;
apr_thread_cond_t *wait_for_idler;
int terminated;
int max_idlers;
int max_recycled_pools;
apr_uint32_t recycled_pools_count;
struct recycled_pool *volatile recycled_pools;
};
struct fd_queue_elem_t
{
apr_socket_t *sd;
void *sd_baton;
apr_pool_t *p;
};
static apr_status_t queue_info_cleanup(void *data_)
{
fd_queue_info_t *qi = data_;
apr_thread_cond_destroy(qi->wait_for_idler);
apr_thread_mutex_destroy(qi->idlers_mutex);
/* Clean up any pools in the recycled list */
for (;;) {
struct recycled_pool *first_pool = qi->recycled_pools;
if (first_pool == NULL) {
break;
}
if (apr_atomic_casptr((void *)&qi->recycled_pools, first_pool->next,
first_pool) == first_pool) {
apr_pool_destroy(first_pool->pool);
}
}
return APR_SUCCESS;
}
apr_status_t ap_queue_info_create(fd_queue_info_t **queue_info,
apr_pool_t *pool, int max_idlers,
int max_recycled_pools)
{
apr_status_t rv;
fd_queue_info_t *qi;
qi = apr_pcalloc(pool, sizeof(*qi));
rv = apr_thread_mutex_create(&qi->idlers_mutex, APR_THREAD_MUTEX_DEFAULT,
pool);
if (rv != APR_SUCCESS) {
return rv;
}
rv = apr_thread_cond_create(&qi->wait_for_idler, pool);
if (rv != APR_SUCCESS) {
return rv;
}
qi->recycled_pools = NULL;
qi->max_recycled_pools = max_recycled_pools;
qi->max_idlers = max_idlers;
qi->idlers = zero_pt;
apr_pool_cleanup_register(pool, qi, queue_info_cleanup,
apr_pool_cleanup_null);
*queue_info = qi;
return APR_SUCCESS;
}
apr_status_t ap_queue_info_set_idle(fd_queue_info_t *queue_info,
apr_pool_t *pool_to_recycle)
{
apr_status_t rv;
ap_queue_info_push_pool(queue_info, pool_to_recycle);
/* If other threads are waiting on a worker, wake one up */
if (apr_atomic_inc32(&queue_info->idlers) < zero_pt) {
rv = apr_thread_mutex_lock(queue_info->idlers_mutex);
if (rv != APR_SUCCESS) {
AP_DEBUG_ASSERT(0);
return rv;
}
rv = apr_thread_cond_signal(queue_info->wait_for_idler);
if (rv != APR_SUCCESS) {
apr_thread_mutex_unlock(queue_info->idlers_mutex);
return rv;
}
rv = apr_thread_mutex_unlock(queue_info->idlers_mutex);
if (rv != APR_SUCCESS) {
return rv;
}
}
return APR_SUCCESS;
}
apr_status_t ap_queue_info_try_get_idler(fd_queue_info_t *queue_info)
{
/* Don't block if there isn't any idle worker. */
for (;;) {
apr_uint32_t idlers = queue_info->idlers;
if (idlers <= zero_pt) {
return APR_EAGAIN;
}
if (apr_atomic_cas32(&queue_info->idlers, idlers - 1,
idlers) == idlers) {
return APR_SUCCESS;
}
}
}
apr_status_t ap_queue_info_wait_for_idler(fd_queue_info_t *queue_info,
int *had_to_block)
{
apr_status_t rv;
/* Block if there isn't any idle worker.
* apr_atomic_add32(x, -1) does the same as dec32(x), except
* that it returns the previous value (unlike dec32's bool).
*/
if (apr_atomic_add32(&queue_info->idlers, -1) <= zero_pt) {
rv = apr_thread_mutex_lock(queue_info->idlers_mutex);
if (rv != APR_SUCCESS) {
AP_DEBUG_ASSERT(0);
apr_atomic_inc32(&(queue_info->idlers)); /* back out dec */
return rv;
}
/* Re-check the idle worker count to guard against a
* race condition. Now that we're in the mutex-protected
* region, one of two things may have happened:
* - If the idle worker count is still negative, the
* workers are all still busy, so it's safe to
* block on a condition variable.
* - If the idle worker count is non-negative, then a
* worker has become idle since the first check
* of queue_info->idlers above. It's possible
* that the worker has also signaled the condition
* variable--and if so, the listener missed it
* because it wasn't yet blocked on the condition
* variable. But if the idle worker count is
* now non-negative, it's safe for this function to
* return immediately.
*
* A "negative value" (relative to zero_pt) in
* queue_info->idlers tells how many
* threads are waiting on an idle worker.
*/
if (queue_info->idlers < zero_pt) {
if (had_to_block) {
*had_to_block = 1;
}
rv = apr_thread_cond_wait(queue_info->wait_for_idler,
queue_info->idlers_mutex);
if (rv != APR_SUCCESS) {
AP_DEBUG_ASSERT(0);
apr_thread_mutex_unlock(queue_info->idlers_mutex);
return rv;
}
}
rv = apr_thread_mutex_unlock(queue_info->idlers_mutex);
if (rv != APR_SUCCESS) {
return rv;
}
}
if (queue_info->terminated) {
return APR_EOF;
}
else {
return APR_SUCCESS;
}
}
apr_uint32_t ap_queue_info_num_idlers(fd_queue_info_t *queue_info)
{
apr_uint32_t val;
val = apr_atomic_read32(&queue_info->idlers);
return (val > zero_pt) ? val - zero_pt : 0;
}
void ap_queue_info_push_pool(fd_queue_info_t *queue_info,
apr_pool_t *pool_to_recycle)
{
struct recycled_pool *new_recycle;
/* If we have been given a pool to recycle, atomically link
* it into the queue_info's list of recycled pools
*/
if (!pool_to_recycle)
return;
if (queue_info->max_recycled_pools >= 0) {
apr_uint32_t n = apr_atomic_read32(&queue_info->recycled_pools_count);
if (n >= queue_info->max_recycled_pools) {
apr_pool_destroy(pool_to_recycle);
return;
}
apr_atomic_inc32(&queue_info->recycled_pools_count);
}
apr_pool_clear(pool_to_recycle);
new_recycle = apr_palloc(pool_to_recycle, sizeof *new_recycle);
new_recycle->pool = pool_to_recycle;
for (;;) {
/*
* Save queue_info->recycled_pool in local variable next because
* new_recycle->next can be changed after apr_atomic_casptr
* function call. For gory details see PR 44402.
*/
struct recycled_pool *next = queue_info->recycled_pools;
new_recycle->next = next;
if (apr_atomic_casptr((void *)&queue_info->recycled_pools,
new_recycle, next) == next)
break;
}
}
void ap_queue_info_pop_pool(fd_queue_info_t *queue_info,
apr_pool_t **recycled_pool)
{
/* Atomically pop a pool from the recycled list */
/* This function is safe only as long as it is single threaded because
* it reaches into the queue and accesses "next" which can change.
* We are OK today because it is only called from the listener thread.
* cas-based pushes do not have the same limitation - any number can
* happen concurrently with a single cas-based pop.
*/
*recycled_pool = NULL;
/* Atomically pop a pool from the recycled list */
for (;;) {
struct recycled_pool *first_pool = queue_info->recycled_pools;
if (first_pool == NULL) {
break;
}
if (apr_atomic_casptr((void *)&queue_info->recycled_pools,
first_pool->next, first_pool) == first_pool) {
*recycled_pool = first_pool->pool;
if (queue_info->max_recycled_pools >= 0)
apr_atomic_dec32(&queue_info->recycled_pools_count);
break;
}
}
}
void ap_queue_info_free_idle_pools(fd_queue_info_t *queue_info)
{
apr_pool_t *p;
queue_info->max_recycled_pools = 0;
for (;;) {
ap_queue_info_pop_pool(queue_info, &p);
if (p == NULL)
break;
apr_pool_destroy(p);
}
apr_atomic_set32(&queue_info->recycled_pools_count, 0);
}
apr_status_t ap_queue_info_term(fd_queue_info_t *queue_info)
{
apr_status_t rv;
rv = apr_thread_mutex_lock(queue_info->idlers_mutex);
if (rv != APR_SUCCESS) {
return rv;
}
queue_info->terminated = 1;
apr_thread_cond_broadcast(queue_info->wait_for_idler);
return apr_thread_mutex_unlock(queue_info->idlers_mutex);
}
/**
* Detects when the fd_queue_t is full. This utility function is expected
* to be called from within critical sections, and is not threadsafe.
*/
#define ap_queue_full(queue) ((queue)->nelts == (queue)->bounds)
/**
* Detects when the fd_queue_t is empty. This utility function is expected
* to be called from within critical sections, and is not threadsafe.
*/
#define ap_queue_empty(queue) ((queue)->nelts == 0 && \
APR_RING_EMPTY(&queue->timers, \
timer_event_t, link))
/**
* Callback routine that is called to destroy this
* fd_queue_t when its pool is destroyed.
*/
static apr_status_t ap_queue_destroy(void *data)
{
fd_queue_t *queue = data;
/* Ignore errors here, we can't do anything about them anyway.
* XXX: We should at least try to signal an error here, it is
* indicative of a programmer error. -aaron */
apr_thread_cond_destroy(queue->not_empty);
apr_thread_mutex_destroy(queue->one_big_mutex);
return APR_SUCCESS;
}
/**
* Initialize the fd_queue_t.
*/
apr_status_t ap_queue_create(fd_queue_t **pqueue, int capacity, apr_pool_t *p)
{
apr_status_t rv;
fd_queue_t *queue;
queue = apr_pcalloc(p, sizeof *queue);
if ((rv = apr_thread_mutex_create(&queue->one_big_mutex,
APR_THREAD_MUTEX_DEFAULT,
p)) != APR_SUCCESS) {
return rv;
}
if ((rv = apr_thread_cond_create(&queue->not_empty, p)) != APR_SUCCESS) {
return rv;
}
APR_RING_INIT(&queue->timers, timer_event_t, link);
queue->data = apr_pcalloc(p, capacity * sizeof(fd_queue_elem_t));
queue->bounds = capacity;
apr_pool_cleanup_register(p, queue, ap_queue_destroy,
apr_pool_cleanup_null);
*pqueue = queue;
return APR_SUCCESS;
}
/**
* Push a new socket onto the queue.
*
* precondition: ap_queue_info_wait_for_idler has already been called
* to reserve an idle worker thread
*/
apr_status_t ap_queue_push_socket(fd_queue_t *queue,
apr_socket_t *sd, void *sd_baton,
apr_pool_t *p)
{
fd_queue_elem_t *elem;
apr_status_t rv;
if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) {
return rv;
}
AP_DEBUG_ASSERT(!queue->terminated);
AP_DEBUG_ASSERT(!ap_queue_full(queue));
elem = &queue->data[queue->in++];
if (queue->in >= queue->bounds)
queue->in -= queue->bounds;
elem->sd = sd;
elem->sd_baton = sd_baton;
elem->p = p;
queue->nelts++;
apr_thread_cond_signal(queue->not_empty);
return apr_thread_mutex_unlock(queue->one_big_mutex);
}
apr_status_t ap_queue_push_timer(fd_queue_t *queue, timer_event_t *te)
{
apr_status_t rv;
if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) {
return rv;
}
AP_DEBUG_ASSERT(!queue->terminated);
APR_RING_INSERT_TAIL(&queue->timers, te, timer_event_t, link);
apr_thread_cond_signal(queue->not_empty);
return apr_thread_mutex_unlock(queue->one_big_mutex);
}
/**
* Retrieves the next available socket from the queue. If there are no
* sockets available, it will block until one becomes available.
* Once retrieved, the socket is placed into the address specified by
* 'sd'.
*/
apr_status_t ap_queue_pop_something(fd_queue_t *queue,
apr_socket_t **sd, void **sd_baton,
apr_pool_t **p, timer_event_t **te_out)
{
fd_queue_elem_t *elem;
timer_event_t *te;
apr_status_t rv;
if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) {
return rv;
}
/* Keep waiting until we wake up and find that the queue is not empty. */
if (ap_queue_empty(queue)) {
if (!queue->terminated) {
apr_thread_cond_wait(queue->not_empty, queue->one_big_mutex);
}
/* If we wake up and it's still empty, then we were interrupted */
if (ap_queue_empty(queue)) {
rv = apr_thread_mutex_unlock(queue->one_big_mutex);
if (rv != APR_SUCCESS) {
return rv;
}
if (queue->terminated) {
return APR_EOF; /* no more elements ever again */
}
else {
return APR_EINTR;
}
}
}
te = NULL;
if (te_out) {
if (!APR_RING_EMPTY(&queue->timers, timer_event_t, link)) {
te = APR_RING_FIRST(&queue->timers);
APR_RING_REMOVE(te, link);
}
*te_out = te;
}
if (!te) {
elem = &queue->data[queue->out++];
if (queue->out >= queue->bounds)
queue->out -= queue->bounds;
queue->nelts--;
*sd = elem->sd;
if (sd_baton) {
*sd_baton = elem->sd_baton;
}
*p = elem->p;
#ifdef AP_DEBUG
elem->sd = NULL;
elem->p = NULL;
#endif /* AP_DEBUG */
}
return apr_thread_mutex_unlock(queue->one_big_mutex);
}
static apr_status_t queue_interrupt(fd_queue_t *queue, int all, int term)
{
apr_status_t rv;
if (queue->terminated) {
return APR_EOF;
}
if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) {
return rv;
}
/* we must hold one_big_mutex when setting this... otherwise,
* we could end up setting it and waking everybody up just after a
* would-be popper checks it but right before they block
*/
if (term) {
queue->terminated = 1;
}
if (all)
apr_thread_cond_broadcast(queue->not_empty);
else
apr_thread_cond_signal(queue->not_empty);
return apr_thread_mutex_unlock(queue->one_big_mutex);
}
apr_status_t ap_queue_interrupt_all(fd_queue_t *queue)
{
return queue_interrupt(queue, 1, 0);
}
apr_status_t ap_queue_interrupt_one(fd_queue_t *queue)
{
return queue_interrupt(queue, 0, 0);
}
apr_status_t ap_queue_term(fd_queue_t *queue)
{
return queue_interrupt(queue, 1, 1);
}
#endif /* APR_HAS_THREADS */
|