File: psize.py

package info (click to toggle)
apbs 3.4.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 199,188 kB
  • sloc: ansic: 284,988; cpp: 60,416; fortran: 44,896; xml: 13,895; sh: 13,838; python: 8,105; yacc: 2,922; makefile: 1,428; f90: 989; objc: 448; lex: 294; awk: 266; sed: 205; java: 134; csh: 79
file content (541 lines) | stat: -rw-r--r-- 18,315 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
#!/usr/bin/env python3
"""
psize.py
Get dimensions and other interesting information from a PQR file

Originally written by Dave Sept
Additional APBS-specific features added by Nathan Baker
Ported to Python/Psize class by Todd Dolinsky and subsequently hacked by
Nathan Baker

Version:  $Id$


"""

import sys
import getopt
from math import log


class Psize:
    """Master class for parsing input files and suggesting settings"""

    def __init__(self):
        self.constants = {
            "cfac": 1.7,
            "fadd": 20,
            "space": 0.50,
            "gmemfac": 200,
            "gmemceil": 400,
            "ofrac": 0.1,
            "redfac": 0.25,
        }
        self.minlen = [None, None, None]
        self.maxlen = [None, None, None]
        self.q = 0.0
        self.gotatom = 0
        self.gothet = 0
        self.olen = [0.0, 0.0, 0.0]
        self.cen = [0.0, 0.0, 0.0]
        self.clen = [0.0, 0.0, 0.0]
        self.flen = [0.0, 0.0, 0.0]
        self.n = [0, 0, 0]
        self.np = [0.0, 0.0, 0.0]
        self.nsmall = [0, 0, 0]
        self.nfocus = 0

    def parse_string(self, structure):
        """ Parse the input structure as a string in PDB or PQR format """
        lines = structure.split("\n")
        self.parse_lines(lines)

    def parse_input(self, filename):
        """ Parse input structure file in PDB or PQR format """
        file = open(filename, "r")
        self.parse_lines(file.readlines())

    def parse_lines(self, lines):
        """ Parse the lines """
        for line in lines:
            if line.find("ATOM") == 0:
                subline = line[30:].replace("-", " -")
                words = subline.split()
                if len(words) < 4:
                    continue
                self.gotatom = self.gotatom + 1
                self.q = self.q + float(words[3])
                rad = float(words[4])
                center = []
                for word in words[0:3]:
                    center.append(float(word))
                for i in range(3):
                    if (
                        self.minlen[i] is None
                        or center[i] - rad < self.minlen[i]
                    ):
                        self.minlen[i] = center[i] - rad
                    if (
                        self.maxlen[i] is None
                        or center[i] + rad > self.maxlen[i]
                    ):
                        self.maxlen[i] = center[i] + rad
            elif line.find("HETATM") == 0:
                self.gothet = self.gothet + 1
                # Special handling for no ATOM entries in the pqr file,
                # only HETATM entries
                if self.gotatom == 0:
                    subline = line[30:].replace("-", " -")
                    words = subline.split()
                    if len(words) < 4:
                        continue
                    self.q = self.q + float(words[3])
                    rad = float(words[4])
                    center = []
                    for word in words[0:3]:
                        center.append(float(word))
                    for i in range(3):
                        if (
                            self.minlen[i] is None
                            or center[i] - rad < self.minlen[i]
                        ):
                            self.minlen[i] = center[i] - rad
                        if (
                            self.maxlen[i] is None
                            or center[i] + rad > self.maxlen[i]
                        ):
                            self.maxlen[i] = center[i] + rad

    def setConstant(self, name, value):
        """ Set a constant to a value; returns 0 if constant not found """
        try:
            self.constants[name] = value
            return 1
        except KeyError:
            return 0

    def getConstant(self, name):
        """ Get a constant value; raises KeyError if constant not found """
        return self.constants[name]

    def setLength(self, maxlen, minlen):
        """ Compute molecule dimensions """
        for i in range(3):
            self.olen[i] = maxlen[i] - minlen[i]
            if self.olen[i] < 0.1:
                self.olen[i] = 0.1
        return self.olen

    def setCoarseGridDims(self, olen):
        """ Compute coarse mesh dimensions """
        for i in range(3):
            self.clen[i] = self.constants["cfac"] * olen[i]
        return self.clen

    def setFineGridDims(self, olen, clen):
        """ Compute fine mesh dimensions """
        for i in range(3):
            self.flen[i] = olen[i] + self.constants["fadd"]
            if self.flen[i] > clen[i]:
                self.flen[i] = clen[i]
        return self.flen

    def setCenter(self, maxlen, minlen):
        """ Compute molecule center """
        for i in range(3):
            self.cen[i] = (maxlen[i] + minlen[i]) / 2
        return self.cen

    def setFineGridPoints(self, flen):
        """ Compute mesh grid points, assuming 4 levels in MG hierarchy """
        tn = [0, 0, 0]
        for i in range(3):
            tn[i] = int(flen[i] / self.constants["space"] + 0.5)
            self.n[i] = 32 * (int((tn[i] - 1) / 32.0 + 0.5)) + 1
            if self.n[i] < 33:
                self.n[i] = 33
        return self.n

    def setSmallest(self, n):
        """ Compute parallel division in case memory requirement above
        ceiling Find the smallest dimension and see if the number of
        grid points in that dimension will fit below the memory ceiling
        Reduce nsmall until an nsmall^3 domain will fit into memory """
        nsmall = []
        for i in range(3):
            nsmall.append(n[i])
        while 1:
            nsmem = 200.0 * nsmall[0] * nsmall[1] * nsmall[2] / 1024 / 1024
            if nsmem < self.constants["gmemceil"]:
                break
            else:
                i = nsmall.index(max(nsmall))
                nsmall[i] = 32 * ((nsmall[i] - 1) / 32 - 1) + 1
                if nsmall <= 0:
                    sys.stdout.write(
                        "You picked a memory ceiling that is too small\n"
                    )
                    sys.exit(0)

        self.nsmall = nsmall
        return nsmall

    def setProcGrid(self, n, nsmall):
        """ Calculate the number of processors required to span each
        dimension """

        zofac = 1 + 2 * self.constants["ofrac"]
        for i in range(3):
            self.np[i] = n[i] / float(nsmall[i])
            if self.np[i] > 1:
                self.np[i] = int(zofac * n[i] / nsmall[i] + 1.0)
        return self.np

    def setFocus(self, flen, np, clen):
        """ Calculate the number of levels of focusing required for
        each processor subdomain """

        nfoc = [0, 0, 0]
        for i in range(3):
            nfoc[i] = int(
                log((flen[i] / np[i]) / clen[i])
                / log(self.constants["redfac"])
                + 1.0
            )
        nfocus = nfoc[0]
        if nfoc[1] > nfocus:
            nfocus = nfoc[1]
        if nfoc[2] > nfocus:
            nfocus = nfoc[2]
        if nfocus > 0:
            nfocus = nfocus + 1
        self.nfocus = nfocus

    def set_all(self):
        """ Set up all of the things calculated individually above """
        maxlen = self.getMax()
        minlen = self.getMin()
        self.setLength(maxlen, minlen)
        olen = self.getLength()

        self.setCoarseGridDims(olen)
        clen = self.getCoarseGridDims()

        self.setFineGridDims(olen, clen)
        flen = self.getFineGridDims()

        self.setCenter(maxlen, minlen)
        cen = self.getCenter()  # noqa F841

        self.setFineGridPoints(flen)
        n = self.getFineGridPoints()

        self.setSmallest(n)
        nsmall = self.getSmallest()

        self.setProcGrid(n, nsmall)
        np = self.getProcGrid()

        self.setFocus(flen, np, clen)
        nfocus = self.getFocus()  # noqa F841

    def getMax(self):
        """Get Max"""
        return self.maxlen

    def getMin(self):
        """Get Min"""
        return self.minlen

    def getCharge(self):
        """Get Charge"""
        return self.q

    def getLength(self):
        """Get Length"""
        return self.olen

    def getCoarseGridDims(self):
        """Get Course Grid Dimension"""
        return self.clen

    def getFineGridDims(self):
        """Get Fine Grid Dimension"""
        return self.flen

    def getCenter(self):
        """Get Center"""
        return self.cen

    def getFineGridPoints(self):
        """Get Grid Points"""
        return self.n

    def getSmallest(self):
        """Get Smallest"""
        return self.nsmall

    def getProcGrid(self):
        """Get Proc Grid"""
        return self.np

    def getFocus(self):
        """Get Focus"""
        return self.nfocus

    def runPsize(self, filename):
        """ Parse input PQR file and set parameters """
        self.parse_input(filename)
        self.set_all()

    def printResults(self):
        """ Return a string with the formatted results """

        msg = "\n"

        if self.gotatom > 0:
            maxlen = self.getMax()
            minlen = self.getMin()
            q = self.getCharge()
            olen = self.getLength()
            clen = self.getCoarseGridDims()
            flen = self.getFineGridDims()
            cen = self.getCenter()
            n = self.getFineGridPoints()
            nsmall = self.getSmallest()
            np = self.getProcGrid()
            nfocus = self.getFocus()

            # Compute memory requirements
            nsmem = 200.0 * nsmall[0] * nsmall[1] * nsmall[2] / 1024 / 1024
            gmem = 200.0 * n[0] * n[1] * n[2] / 1024 / 1024

            # Print the calculated entries
            msg += "################# MOLECULE INFO ####################\n"
            msg += "Number of ATOM entries = %i\n" % self.gotatom
            msg += "Number of HETATM entries (ignored) = %i\n" % self.gothet
            msg += "Total charge = %.3f e\n" % q
            msg += "Dimensions = %.3f x %.3f x %.3f A\n" % (
                olen[0],
                olen[1],
                olen[2],
            )
            msg += "Center = %.3f x %.3f x %.3f A\n" % (
                cen[0],
                cen[1],
                cen[2],
            )
            msg += "Lower corner = %.3f x %.3f x %.3f A\n" % (
                float(minlen[0]),
                float(minlen[1]),
                float(minlen[2]),
            )
            msg += "Upper corner = %.3f x %.3f x %.3f A\n" % (
                float(maxlen[0]),
                float(maxlen[1]),
                float(maxlen[2]),
            )
            msg += "\n"
            msg += "############## GENERAL CALCULATION INFO #############\n"
            msg += "Coarse grid dims = %.3f x %.3f x %.3f A\n" % (
                clen[0],
                clen[1],
                clen[2],
            )
            msg += "Fine grid dims = %.3f x %.3f x %.3f A\n" % (
                flen[0],
                flen[1],
                flen[2],
            )
            msg += "Num. fine grid pts. = %i x %i x %i\n" % (n[0], n[1], n[2])

            if gmem > self.constants["gmemceil"]:
                msg += "Parallel solve required (%.3f MB > %.3f MB)\n" % (
                    gmem,
                    self.constants["gmemceil"],
                )
                msg += "Total processors required = %i\n" % (
                    np[0] * np[1] * np[2]
                )
                msg += "Proc. grid = %i x %i x %i\n" % (
                    int(np[0]),
                    int(np[1]),
                    int(np[2]),
                )
                msg += "Grid pts. on each proc. = %i x %i x %i\n" % (
                    nsmall[0],
                    nsmall[1],
                    nsmall[2],
                )
                xglob = np[0] * round(
                    nsmall[0] / (1 + 2 * self.constants["ofrac"]) - 0.001
                )
                yglob = np[1] * round(
                    nsmall[1] / (1 + 2 * self.constants["ofrac"]) - 0.001
                )
                zglob = np[2] * round(
                    nsmall[2] / (1 + 2 * self.constants["ofrac"]) - 0.001
                )
                if np[0] == 1:
                    xglob = nsmall[0]
                if np[1] == 1:
                    yglob = nsmall[1]
                if np[2] == 1:
                    zglob = nsmall[2]
                msg += "Fine mesh spacing = %g x %g x %g A\n" % (
                    flen[0] / (xglob - 1),
                    flen[1] / (yglob - 1),
                    flen[2] / (zglob - 1),
                )
                msg += "Estimated mem. required for parallel solve "
                msg += "%.3f MB/proc.\n" % nsmem
                ntot = nsmall[0] * nsmall[1] * nsmall[2]
            else:
                msg += "Fine mesh spacing = %g x %g x %g A\n" % (
                    flen[0] / (n[0] - 1),
                    flen[1] / (n[1] - 1),
                    flen[2] / (n[2] - 1),
                )
                msg += (
                    "Estimated mem. required for sequential solve = %.3f MB\n"
                    % gmem
                )
                ntot = n[0] * n[1] * n[2]

            msg += "Number of focusing operations = %i\n" % nfocus
            msg += "\n"
            msg += "#################"
            msg += " ESTIMATED REQUIREMENTS "
            msg += "####################\n"
            msg += "Memory per processor                   = %.3f MB\n" % (
                200.0 * ntot / 1024 / 1024
            )
            msg += "Grid storage requirements (ASCII)      = %.3f MB\n" % (
                8.0 * 12 * np[0] * np[1] * np[2] * ntot / 1024 / 1024
            )
            msg += "\n"

        else:
            msg += "No ATOM entires in file!\n\n"

        return msg


def usage(rc):
    """ Print usage information and exit with error code rc """
    psize = Psize()
    msg = "\n"
    msg += "Psize script (part of APBS)\n\n"
    msg += "Usage: psize.py [opts] <filename>\n\n"
    msg += "Optional Arguments:\n"
    msg += "    --help, -h\n"
    msg += "        Display this text\n"
    msg += "    --cfac=<value> [default = %g]\n" % psize.getConstant("cfac")
    msg += "\
        Factor by which to expand molecular dimensions to get coarse\n\
        grid dimensions.  This value might need to be increased if\n\
        very simple boundary conditions or very highly charged molecules\n\
        are used.\n"
    msg += "    --fadd=<value> [default = %g]\n" % psize.getConstant("fadd")
    msg += "\
        Amount (in A) to add to molecular dimensions to get fine grid\n\
        dimensions. This value might need to be increased in the\n\
        visualization of highly charged molecules to prevent isocontours\n\
        from being truncated/clipped.\n"
    msg += "    --space=<value>    [default = %g]\n" % psize.getConstant(
        "space"
    )
    msg += "\
        The desired fine mesh spacing (in A).  This should be 0.5 A or\n\
        less for quantitative calculations but can be increased for\n\
        coarse visualization.\n"
    msg += "    --gmemceil=<value> [default = %g]\n" % psize.getConstant(
        "gmemceil"
    )
    msg += "\
        Maximum memory (in MB) available per-processor for a calculation.\n\
        This should be adjusted to fit your machine.  If the calculation\n\
        exceeds this value, psize will recommend settings for parallel\n\
        focusing.\n"
    msg += "    --ofrac=<value> [default = %g]\n" % psize.getConstant("ofrac")
    msg += "\
        Desired overlap between parallel focusing grids.  Although the\n\
        default value works for many calculations, the best setting can\n\
        be somewhat system-dependent.  Users are encouraged to check\n\
        multiple values of ofrac for quantitative calcualtions.\n"
    msg += "    --gmemfac=<value> [default = %g]\n" % psize.getConstant(
        "gmemfac"
    )
    msg += "\
        APBS memory usage (in bytes per grid point) for a sequential\n\
        multigrid calculatiaon.  This value should not need to be\n\
        adjusted unless the program has been modified.\n"
    msg += "    --redfac=<value> [default = %g]\n" % psize.getConstant(
        "redfac"
    )
    msg += "\
        APBS maximum reduction of grid spacing during focusing.  This\n\
        value should not need to be adjusted unless the program has\n\
        been modified.\n"

    sys.stderr.write(msg)
    sys.exit(rc)


def main():
    """ Main driver for this script """
    filename = ""
    short_opt_list = "h"
    long_opt_list = [
        "help",
        "cfac=",
        "fadd=",
        "space=",
        "gmemfac=",
        "gmemceil=",
        "ofrac=",
        "redfac=",
    ]
    try:
        opts, args = getopt.getopt(sys.argv[1:], short_opt_list, long_opt_list)
    except getopt.GetoptError as err:
        sys.stderr.write("Option error (%s)!\n" % err)
        usage(2)
    if len(args) != 1:
        sys.stderr.write("Invalid argument list!\n")
        usage(2)
    else:
        filename = args[0]

    psize = Psize()

    for opt, arg in opts:
        if (opt.lower() == "--help") or (opt == "-h"):
            usage(0)
        if opt.lower() == "--cfac":
            psize.setConstant("cfac", float(arg))
        if opt.lower() == "--fadd":
            psize.setConstant("fadd", int(arg))
        if opt.lower() == "--space":
            psize.setConstant("space", float(arg))
        if opt.lower() == "--gmemfac":
            psize.setConstant("gmemfac", int(arg))
        if opt.lower() == "--gmemceil":
            psize.setConstant("gmemceil", int(arg))
        if opt.lower() == "--ofrac":
            psize.setConstant("ofrac", float(arg))
        if opt.lower() == "--redfac":
            psize.setConstant("redfac", float(arg))

    psize.runPsize(filename)
    sys.stdout.write("# Constants used: \n")
    for key in psize.constants.keys():
        sys.stdout.write("# \t%s: %s\n" % (key, psize.constants[key]))
    sys.stdout.write("# Run:\n")
    sys.stdout.write("#    `%s --help`\n" % sys.argv[0])
    sys.stdout.write("# for more information on these default values\n")
    sys.stdout.write(psize.printResults())


if __name__ == "__main__":
    main()