1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
% memory allocation for arrays
fc=zeros(dime(1)-1,dime(2)-1,dime(3)-1);
AxB=zeros(dime(1)-1,dime(2)-1,dime(3)-1);
AyB=zeros(dime(1)-1,dime(2)-1,dime(3)-1);
AzB=zeros(dime(1)-1,dime(2)-1,dime(3)-1);
AAMain=zeros(prod(dime-2),1);
AAxB=zeros(prod(dime-2),1);
AAyB=zeros(prod(dime-2),1);
AAzB=zeros(prod(dime-2),1);
bb=zeros(prod(dime-2),1);
%step size
ch=prod(h)./(h.^2);
if bx==1
%boundary components are brought to the right-hand-side of the equation
for i=2:2
for j=2:dime(2)-1
for k=2:dime(3)-1
fc(i,j,k)=fc(i,j,k)+dielx(i-1,j,k)*ch(1)*gxcf(j,k,1);
end
end
end
end
if by==1
%boundary components are brought to the right-hand-side of the equation if
%Dirichlet boundary condition is required
for i=2:dime(1)-1
for j=2:2
for k=2:dime(3)-1
fc(i,j,k)=fc(i,j,k)+diely(i,j-1,k)*ch(2)*gycf(i,k,1);
end
end
end
end
if bz==1
%boundary components are brought to the right-hand-side of the equation if
%Dirichlet boundary condition is required
for i=2:dime(1)-1
for j=2:dime(2)-1
for k=2:2
fc(i,j,k)=fc(i,j,k)+dielz(i,j,k-1)*ch(3)*gzcf(i,j,1);
end
end
end
if bx==1
%boundary components are brought to the right-hand-side of the equation if
%Dirichlet boundary condition is required
for i=dime(1)-1:dime(1)-1
for j=2:dime(2)-1
for k=2:dime(3)-1
fc(i,j,k)=fc(i,j,k)+dielx(i,j,k)*ch(1)*gxcf(j,k,2);
end
end
end
end
end
if by==1
%boundary components are brought to the right-hand-side of the equation if
%Dirichlet boundary condition is required
for i=2:dime(1)-1
for j=dime(2)-1:dime(2)-1
for k=2:dime(3)-1
fc(i,j,k)=fc(i,j,k)+diely(i,j,k)*ch(2)*gycf(i,k,2);
end
end
end
end
if bz==1
%boundary components are brought to the right-hand-side of the equation if
%Dirichlet boundary condition is required
for i=2:dime(1)-1
for j=2:dime(2)-1
for k=dime(3)-1:dime(3)-1
fc(i,j,k)=fc(i,j,k)+dielz(i,j,k)*ch(3)*gzcf(i,j,2);
end
end
end
end
%first band, x-backward direction AxB
for i=2:dime(1)-1
for j=1:dime(2)-1
for k=1:dime(3)-1
AxB(i-1,j,k)=-dielx(i-1,j,k)*ch(1);
end
end
end
%second band, y-backward direction AyB
for i=1:dime(1)-1
for j=2:dime(2)-1
for k=1:dime(3)-1
AyB(i,j-1,k)=-diely(i,j-1,k)*ch(2);
end
end
end
%third band, z-backward direction AzB
for i=1:dime(1)-1
for j=1:dime(2)-1
for k=2:dime(3)-1
AzB(i,j,k-1)=-dielz(i,j,k-1)*ch(3);
end
end
end
%ka=8.486902807*2.*78.54;
%array to column converter
for i=2:dime(1)-1
for j=2:dime(2)-1
for k=2:dime(3)-1
pe=(k-2)*(dime(1)-2)*(dime(2)-2)+(j-2)*(dime(1)-2)+i-1;
AAxB(pe)=AxB(i,j,k);
AAyB(pe)=AyB(i,j,k);
AAzB(pe)=AzB(i,j,k);
AAMain(pe)=(dielx(i,j,k)+dielx(i-1,j,k))*ch(1)+(diely(i,j,k)+diely(i,j-1,k))*ch(2)...
+(dielz(i,j,k)+dielz(i,j,k-1))*ch(3)+ prod(ch)*kappa(i,j,k)*Squared_Debye_Huckel;
bb(pe)=charge(i,j,k)*prod(ch)*zmagic+fc(i,j,k);
end
end
end
% additional diagonals are added if periodic boundary condition is required
if bx==2
AAxPeriod=zeros(prod(dime-2),1);
for k=2:dime(3)-1
for j=2:dime(2)-1
pe=(k-2)*(dime(1)-2)*(dime(2)-2)+(j-2)*(dime(1)-2)+1;
AAxPeriod(pe)=-dielx(dime(1),j,k)*ch(1);
end
end
end
if by==2
AAyPeriod=zeros(prod(dime-2),1);
for k=2:dime(3)-1
for i=2:dime(1)-1
pe=(k-2)*(dime(1)-2)*(dime(2)-2)+i-1;
AAyPeriod(pe)=-diely(i,dime(2),k)*ch(2);
end
end
end
if bz==2
AAzPeriod=zeros(prod(dime-2),1);
for j=2:dime(2)-1
for i=2:dime(1)-1
pe=(j-2)*(dime(1)-2)+i-1;
AAzPeriod(pe)=-dielz(i,j,dime(3))*ch(3);
end
end
end
% Generating array by placing each diagonal column in the following order
% the number of diagonals depends on the required boundary conditions
% if Dirichlet along the three Cartesian axis
dcdiag=0;
dcx=-1;
dcy=-(dime(1)-2);
%dcy=-((dime(1)-2)-1);
dcz=-(dime(1)-2)*(dime(2)-2);
%dcz=-((dime(1)-2)*(dime(2)-2)-1);
pcx=-(dime(1)-3);
pcy=-((dime(1)-2)*(dime(2)-3));
pcz=-((dime(1)-2)*(dime(2)-2)*(dime(3)-3));
if bx==1 && by==1 && bz==1
diagonals=horzcat(AAMain,AAxB,AAyB,AAzB);
% Diagonal displacement vector corresponding to the pevious array
d=[dcdiag dcx dcy dcz];
end
% Periodicity along x and y axis and Dirichlet along z axis
if bx==2 && by==2 && bz==1
diagonals=horzcat(AAMain,AAxB,AAxPeriod,AAyB,AAyPeriod,AAzB);
% Diagonal displacement vector corresponding to the pevious array
d=[dcdiag dcx pcx dcy pcy dcz];
end
% Periodic conditions along the x , y and z axis
if bx==2 && by==2 && bz==2
diagonals=horzcat(AAMain,AAxB,AAxPeriod,AAyB,AAyPeriod,AAzB,AAzPeriod);
% Diagonal displacement vector corresponding to the pevious array
d=[dcdiag dcx pcx dcy pcy dcz pcz];
end
% Generating lower Sparse Matrix AA
AA=spdiags(diagonals, d, prod(dime-2), prod(dime-2));
% Generating the transpose Sparse Matrix AA
B=AA';
%Generating the symmetric A Matrix
A=tril(AA,0)+triu(B,1);
|