File: BuildA.m

package info (click to toggle)
apbs 3.4.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 199,188 kB
  • sloc: ansic: 284,988; cpp: 60,416; fortran: 44,896; xml: 13,895; sh: 13,838; python: 8,105; yacc: 2,922; makefile: 1,428; f90: 989; objc: 448; lex: 294; awk: 266; sed: 205; java: 134; csh: 79
file content (189 lines) | stat: -rw-r--r-- 5,208 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
% memory allocation for arrays

fc=zeros(dime(1)-1,dime(2)-1,dime(3)-1);
AxB=zeros(dime(1)-1,dime(2)-1,dime(3)-1);
AyB=zeros(dime(1)-1,dime(2)-1,dime(3)-1);
AzB=zeros(dime(1)-1,dime(2)-1,dime(3)-1);
AAMain=zeros(prod(dime-2),1);
AAxB=zeros(prod(dime-2),1);
AAyB=zeros(prod(dime-2),1);
AAzB=zeros(prod(dime-2),1);
bb=zeros(prod(dime-2),1);
%step size

ch=prod(h)./(h.^2);

if bx==1
%boundary components are brought to the right-hand-side of the equation
for i=2:2
    for j=2:dime(2)-1
        for k=2:dime(3)-1
             fc(i,j,k)=fc(i,j,k)+dielx(i-1,j,k)*ch(1)*gxcf(j,k,1);
         end
    end
end
end
if by==1
%boundary components are brought to the right-hand-side of the equation if
%Dirichlet boundary condition is required
for i=2:dime(1)-1
    for j=2:2
        for k=2:dime(3)-1
             fc(i,j,k)=fc(i,j,k)+diely(i,j-1,k)*ch(2)*gycf(i,k,1);  
         end
    end
end
end
if bz==1
%boundary components are brought to the right-hand-side of the equation if
%Dirichlet boundary condition is required
for i=2:dime(1)-1
    for j=2:dime(2)-1
        for k=2:2
             fc(i,j,k)=fc(i,j,k)+dielz(i,j,k-1)*ch(3)*gzcf(i,j,1); 
        end
    end
end 
if bx==1
%boundary components are brought to the right-hand-side of the equation if
%Dirichlet boundary condition is required
for i=dime(1)-1:dime(1)-1
    for j=2:dime(2)-1
        for k=2:dime(3)-1
             fc(i,j,k)=fc(i,j,k)+dielx(i,j,k)*ch(1)*gxcf(j,k,2);
        end
    end
end
end
end
if by==1
%boundary components are brought to the right-hand-side of the equation if
%Dirichlet boundary condition is required
for i=2:dime(1)-1
            for j=dime(2)-1:dime(2)-1
                for k=2:dime(3)-1
             fc(i,j,k)=fc(i,j,k)+diely(i,j,k)*ch(2)*gycf(i,k,2);
                end
            end
end
end
if bz==1
%boundary components are brought to the right-hand-side of the equation if
%Dirichlet boundary condition is required
for i=2:dime(1)-1
    for j=2:dime(2)-1
        for k=dime(3)-1:dime(3)-1
            fc(i,j,k)=fc(i,j,k)+dielz(i,j,k)*ch(3)*gzcf(i,j,2); 
         end
    end
end 
end

%first band, x-backward direction AxB
for i=2:dime(1)-1
    for j=1:dime(2)-1
        for k=1:dime(3)-1
             AxB(i-1,j,k)=-dielx(i-1,j,k)*ch(1);
        end
    end
end
%second band, y-backward direction AyB
for i=1:dime(1)-1
    for j=2:dime(2)-1
        for k=1:dime(3)-1
             AyB(i,j-1,k)=-diely(i,j-1,k)*ch(2);
        end
    end
end
%third band, z-backward direction AzB
for i=1:dime(1)-1
    for j=1:dime(2)-1
        for k=2:dime(3)-1
             AzB(i,j,k-1)=-dielz(i,j,k-1)*ch(3);
        end
    end
end

%ka=8.486902807*2.*78.54;

%array to column converter
for i=2:dime(1)-1
    for j=2:dime(2)-1
        for k=2:dime(3)-1
             pe=(k-2)*(dime(1)-2)*(dime(2)-2)+(j-2)*(dime(1)-2)+i-1;
             AAxB(pe)=AxB(i,j,k);
             AAyB(pe)=AyB(i,j,k);
             AAzB(pe)=AzB(i,j,k);
             AAMain(pe)=(dielx(i,j,k)+dielx(i-1,j,k))*ch(1)+(diely(i,j,k)+diely(i,j-1,k))*ch(2)...
          +(dielz(i,j,k)+dielz(i,j,k-1))*ch(3)+ prod(ch)*kappa(i,j,k)*Squared_Debye_Huckel;
              bb(pe)=charge(i,j,k)*prod(ch)*zmagic+fc(i,j,k);
        end
    end
end

% additional diagonals are added if periodic boundary condition is required
if bx==2
    AAxPeriod=zeros(prod(dime-2),1);
    for k=2:dime(3)-1
        for j=2:dime(2)-1
             pe=(k-2)*(dime(1)-2)*(dime(2)-2)+(j-2)*(dime(1)-2)+1;
             AAxPeriod(pe)=-dielx(dime(1),j,k)*ch(1);
        end
    end 
end
if by==2
AAyPeriod=zeros(prod(dime-2),1);
    for k=2:dime(3)-1
        for i=2:dime(1)-1
             pe=(k-2)*(dime(1)-2)*(dime(2)-2)+i-1;
             AAyPeriod(pe)=-diely(i,dime(2),k)*ch(2);
        end
    end 
end
if bz==2
AAzPeriod=zeros(prod(dime-2),1);
    for j=2:dime(2)-1
        for i=2:dime(1)-1
             pe=(j-2)*(dime(1)-2)+i-1;
             AAzPeriod(pe)=-dielz(i,j,dime(3))*ch(3);
        end
    end 
end
% Generating array by placing each diagonal column in the following order
% the number of diagonals depends on the required boundary conditions
% if Dirichlet along the three Cartesian axis
dcdiag=0;
dcx=-1;
dcy=-(dime(1)-2);
%dcy=-((dime(1)-2)-1);
dcz=-(dime(1)-2)*(dime(2)-2);
%dcz=-((dime(1)-2)*(dime(2)-2)-1);
pcx=-(dime(1)-3);
pcy=-((dime(1)-2)*(dime(2)-3));
pcz=-((dime(1)-2)*(dime(2)-2)*(dime(3)-3));
if bx==1 && by==1 && bz==1
diagonals=horzcat(AAMain,AAxB,AAyB,AAzB);
% Diagonal displacement vector corresponding to the pevious array
d=[dcdiag dcx dcy dcz];
end
% Periodicity along x and y axis and Dirichlet along z axis
if bx==2 && by==2 && bz==1
diagonals=horzcat(AAMain,AAxB,AAxPeriod,AAyB,AAyPeriod,AAzB);
% Diagonal displacement vector corresponding to the pevious array
d=[dcdiag dcx pcx dcy pcy dcz];
end
% Periodic conditions along the x , y and z axis
if bx==2 && by==2 && bz==2
diagonals=horzcat(AAMain,AAxB,AAxPeriod,AAyB,AAyPeriod,AAzB,AAzPeriod);
% Diagonal displacement vector corresponding to the pevious array
d=[dcdiag dcx pcx dcy pcy dcz pcz];
end

% Generating lower Sparse Matrix AA
AA=spdiags(diagonals, d, prod(dime-2), prod(dime-2));

% Generating the transpose Sparse Matrix AA
B=AA';

%Generating the symmetric A Matrix
A=tril(AA,0)+triu(B,1);