1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
|
/*
* @file similarity.c
* @author Nathan Baker
* @brief Program that computes similarity indices for two scalar fields
* @version $Id$
*/
/*
* Last update: 08/29/2016 by Leighton Wilson
* Description: Added ability to read in binary DX files as input
*/
#include "apbs.h"
VEMBED(rcsid="$Id$")
/**
* @brief Prints usage information and exits
* @author Nathan Baker
* @param rc Exit code */
void usage(int rc) {
char *usage = "\n\
A program to calculate similarity metrics between scalar data sets.\n\
Usage: similarity <req args> [opts]\n\
where <req args> are the required arguments:\n\
--format=<format> The input file format. Acceptable values include\n\
dx: standard OpenDX format\n\
dxbin: binary OpenDX format\n\
--scalar1=<path> The path to the first scalar data file\n\
--scalar2=<path> The path to the second scalar data file\n\
and where [opts] are the options:\n\
--help Print this message\n\
--mask1=<path> A file with scalar values specifying a \"mask\" or\n\
characteristic function for the similarity calculation. This file\n\
contains values between 1 and 0 which are multiplied against the\n\
scalar data set 1 before the similarity calculation is performed.\n\
--mask2=<path> A file with scalar values specifying a \"mask\" or\n\
characteristic function for the similarity calculation. This file\n\
contains values between 1 and 0 which are multiplied against the\n\
scalar data set 1 before the similarity calculation is performed.\n\
--transform=<path> The path to a file containing the coordinate\n\
transformation to place data set 2 in the coordinate frame of data set\n\
1. The format of this file is:\n\
a11 a12 a13\n\
a21 a22 a23\n\
a31 a32 a33\n\
b1 b2 b3\n\
where aij are the elements of a rotation matrix A and bi are the\n\
elements of a displacement vector b. The transformed coordinates (y) of\n\
data set 2 are obtained from the original coordinates (x) by:\n\
y = A*x + v\n\
\n";
Vnm_print(2, usage);
exit(rc);
}
/**
* @brief Invert coordinate transform (A, b) to find (C, d) such that
* x = A*y + b
* y = C*x + d
* @param rotMat Set to rotation matrix
* @param dispVec Set to displacement vector
* @return 1 if successful, 0 otherwise */
int invertTransform(double A[3][3], double b[3], double C[3][3], double d[3]) {
double detA;
/* Compute the determinant of A */
detA = - A[0][2]*A[1][1]*A[2][0] + A[0][1]*A[1][2]*A[2][0] \
+ A[0][2]*A[1][0]*A[2][1] - A[0][0]*A[1][2]*A[2][1] \
- A[0][1]*A[1][0]*A[2][2] + A[0][0]*A[1][1]*A[2][2];
if (detA < VSMALL) {
Vnm_print(2, "Error! Your matrix is singular; det = %g!\n", detA);
return 0;
}
/* Compute C */
C[0][0] = (-A[1][2]*A[2][1]+A[1][1]*A[2][2])/detA;
C[0][1] = ( A[0][2]*A[2][1]-A[0][1]*A[2][2])/detA;
C[0][2] = (-A[0][2]*A[1][1]+A[0][1]*A[1][2])/detA;
C[1][0] = ( A[1][2]*A[2][0]-A[1][0]*A[2][2])/detA;
C[1][1] = (-A[0][2]*A[2][0]+A[0][0]*A[2][2])/detA;
C[1][2] = ( A[0][2]*A[1][0]-A[0][0]*A[1][2])/detA;
C[2][0] = (-A[1][1]*A[2][0]+A[1][0]*A[2][1])/detA;
C[2][1] = ( A[0][1]*A[2][0]-A[0][0]*A[2][1])/detA;
C[2][2] = (-A[0][1]*A[1][0]+A[0][0]*A[1][1])/detA;
printf("%4.3f %4.3f %4.3f\n",
A[0][0]*C[0][0] + A[0][1]*C[1][0] + A[0][2]*C[2][0],
A[0][0]*C[0][1] + A[0][1]*C[1][1] + A[0][2]*C[2][1],
A[0][0]*C[0][2] + A[0][1]*C[1][2] + A[0][2]*C[2][2]);
printf("%4.3f %4.3f %4.3f\n",
A[1][0]*C[0][0] + A[1][1]*C[1][0] + A[1][2]*C[2][0],
A[1][0]*C[0][1] + A[1][1]*C[1][1] + A[1][2]*C[2][1],
A[1][0]*C[0][2] + A[1][1]*C[1][2] + A[1][2]*C[2][2]);
printf("%4.3f %4.3f %4.3f\n",
A[2][0]*C[0][0] + A[2][1]*C[1][0] + A[2][2]*C[2][0],
A[2][0]*C[0][1] + A[2][1]*C[1][1] + A[2][2]*C[2][1],
A[2][0]*C[0][2] + A[2][1]*C[1][2] + A[2][2]*C[2][2]);
/* Compute d */
d[0] = -(C[0][0]*b[0]+C[0][1]*b[1]+C[0][2]*b[2]);
d[1] = -(C[1][0]*b[0]+C[1][1]*b[1]+C[1][2]*b[2]);
d[2] = -(C[2][0]*b[0]+C[2][1]*b[1]+C[2][2]*b[2]);
return 1;
}
/**
* @brief Read transformation from file
* @param path Path to file
* @param rotMat Set to rotation matrix
* @param dispVec Set to displacement vector
* @return 1 if successful, 0 otherwise */
int readTransform(char *path, double rotMat[3][3], double dispVec[3]) {
Vio *sock = VNULL;
char tok[VMAX_BUFSIZE];
int rc;
Vnm_print(1, "Reading coordinate transform from %s...\n", path);
sock = Vio_ctor("FILE", "ASC", VNULL, path, "r");
if (sock == VNULL) {
Vnm_print(2, "Problem opening virtual socket %s!\n", path);
return 0;
}
if (Vio_accept(sock, 0) < 0) {
Vnm_print(2, "Problem accepting virtual socket %s!\n", path);
return 0;
}
Vio_setWhiteChars(sock, " =,;\t\n");
Vio_setCommChars(sock, "#%");
rc = Vio_scanf(sock, "%s", tok);
if (rc == 1) rc = sscanf(tok, "%lf", &(rotMat[0][0]));
if (rc != 1) {
Vnm_print(1, "Error while reading a11!\n");
return 0;
}
rc = Vio_scanf(sock, "%s", tok);
if (rc == 1) rc = sscanf(tok, "%lf", &(rotMat[0][1]));
if (rc != 1) {
Vnm_print(1, "Error while reading a12!\n");
return 0;
}
rc = Vio_scanf(sock, "%s", tok);
if (rc == 1) rc = sscanf(tok, "%lf", &(rotMat[0][2]));
if (rc != 1) {
Vnm_print(1, "Error while reading a13!\n");
return 0;
}
rc = Vio_scanf(sock, "%s", tok);
if (rc == 1) rc = sscanf(tok, "%lf", &(rotMat[1][0]));
if (rc != 1) {
Vnm_print(1, "Error while reading a21!\n");
return 0;
}
rc = Vio_scanf(sock, "%s", tok);
if (rc == 1) rc = sscanf(tok, "%lf", &(rotMat[1][1]));
if (rc != 1) {
Vnm_print(1, "Error while reading a22!\n");
return 0;
}
rc = Vio_scanf(sock, "%s", tok);
if (rc == 1) rc = sscanf(tok, "%lf", &(rotMat[1][2]));
if (rc != 1) {
Vnm_print(1, "Error while reading a23!\n");
return 0;
}
rc = Vio_scanf(sock, "%s", tok);
if (rc == 1) rc = sscanf(tok, "%lf", &(rotMat[2][0]));
if (rc != 1) {
Vnm_print(1, "Error while reading a31!\n");
return 0;
}
rc = Vio_scanf(sock, "%s", tok);
if (rc == 1) rc = sscanf(tok, "%lf", &(rotMat[2][1]));
if (rc != 1) {
Vnm_print(1, "Error while reading a32!\n");
return 0;
}
rc = Vio_scanf(sock, "%s", tok);
if (rc == 1) rc = sscanf(tok, "%lf", &(rotMat[2][2]));
if (rc != 1) {
Vnm_print(1, "Error while reading a33!\n");
return 0;
}
rc = Vio_scanf(sock, "%s", tok);
if (rc == 1) rc = sscanf(tok, "%lf", &(dispVec[0]));
if (rc != 1) {
Vnm_print(1, "Error while reading b1!\n");
return 0;
}
rc = Vio_scanf(sock, "%s", tok);
if (rc == 1) rc = sscanf(tok, "%lf", &(dispVec[1]));
if (rc != 1) {
Vnm_print(1, "Error while reading b2!\n");
return 0; } rc = Vio_scanf(sock, "%s", tok);
if (rc == 1) rc = sscanf(tok, "%lf", &(dispVec[2]));
if (rc != 1) {
Vnm_print(1, "Error while reading b3!\n");
return 0;
}
Vio_acceptFree(sock);
Vio_dtor(&sock);
return 1;
}
/**
* @brief Read a grid
* @param grid Pointer to Vgrid file to be read
* @param path Path to read from
* @param format Format to read
* @return 1 if successful, 0 otherwise */
int readGrid(Vgrid **grid, char *path, Vdata_Format format) {
*grid = Vgrid_ctor(0, 0, 0,
0.0, 0.0, 0.0,
0.0, 0.0, 0.0,
VNULL);
switch (format) {
case VDF_DX:
return Vgrid_readDX(*grid, "FILE", "ASC", VNULL, path);
break;
case VDF_DXBIN:
return Vgrid_readDXBIN(*grid, "FILE", "ASC", VNULL, path);
break;
case VDF_UHBD:
Vnm_print(2, "Sorry, UHBD input not supported yet!\n");
return 0;
break;
case VDF_AVS:
Vnm_print(2, "Sorry, AVS input not supported yet!\n");
return 0;
break;
default:
Vnm_print(2, "Unknown data format (%d)!\n", format);
return 0;
}
return 1;
}
int main(int argc, char **argv) {
/* *************** VARIABLES ******************* */
int i, j, k, onGridS1, onGridV1, onGridS2, onGridV2, nx, ny, nz;
double hx, hy, hzed, xmin, ymin, zmin, dvol, svol, gvol;
double norm1_L1, norm1_L2, snorm1_H1, norm1_H1;
double norm2_L1, norm2_L2, snorm2_H1, norm2_H1;
double normDiff_L1, normDiff_L2, snormDiff_H1, normDiff_H1;
double ip_L2, ip_H1;
double val1, val2, sval1, sval2, mval1, mval2, p1[3], p2[3];
double dval, gval1[3], gval2[3];
Vgrid *scalar1, *scalar2, *mask1, *mask2;
double rotMat2to1[3][3], dispVec2to1[3];
double rotMat1to2[3][3], dispVec1to2[3];
char scalar1Path[VMAX_ARGLEN];
int gotScalar1 = 0;
char scalar2Path[VMAX_ARGLEN];
int gotScalar2 = 0;
char transformPath[VMAX_ARGLEN];
int gotTransform = 0;
char mask1Path[VMAX_ARGLEN];
int gotMask1 = 0;
char mask2Path[VMAX_ARGLEN];
int gotMask2 = 0;
Vdata_Format format;
int gotFormat = 0;
char *tstr, *targ;
/* *************** CHECK INVOCATION ******************* */
Vio_start();
/* Parse args */
for (i=1; i<argc; i++) {
targ = argv[i];
/* FORMAT */
tstr = strstr(targ, "format");
if (tstr != NULL) {
tstr = tstr + 7;
if (strcmp(tstr, "dx") == 0) {
format = VDF_DX;
gotFormat = 1;
} else if (strcmp(tstr, "dxbin") == 0) {
format = VDF_DXBIN;
gotFormat = 1;
} else {
Vnm_print(2, "Error! Unknown format (%s)!\n", tstr);
usage(2);
}
}
/* SCALAR 1 */
tstr = strstr(targ, "scalar1");
if (tstr != NULL) {
tstr = tstr + 8;
strncpy(scalar1Path, tstr, VMAX_ARGLEN);
gotScalar1 = 1;
}
/* SCALAR 2 */
tstr = strstr(targ, "scalar2");
if (tstr != NULL) {
tstr = tstr + 8;
strncpy(scalar2Path, tstr, VMAX_ARGLEN);
gotScalar2 = 1;
}
/* TRANSFORM */
tstr = strstr(targ, "transform");
if (tstr != NULL) {
tstr = tstr + 10;
strncpy(transformPath, tstr, VMAX_ARGLEN);
gotTransform = 1;
}
/* HELP */
tstr = strstr(targ, "help");
if (tstr != NULL) usage(0);
/* MASK 1 */
tstr = strstr(targ, "mask1");
if (tstr != NULL) {
tstr = tstr + 6;
strncpy(mask1Path, tstr, VMAX_ARGLEN);
gotMask1 = 1;
}
/* MASK 2 */
tstr = strstr(targ, "mask2");
if (tstr != NULL) {
tstr = tstr + 6;
strncpy(mask2Path, tstr, VMAX_ARGLEN);
gotMask2 = 1;
}
}
/* Check and print args */
if (!gotFormat) {
Vnm_print(2, "Error! --format not specified!\n");
usage(2);
} else {
switch (format) {
case VDF_DX:
Vnm_print(1, "format: standard OpenDX\n");
break;
case VDF_DXBIN:
Vnm_print(1, "format: binary OpenDX\n");
break;
case VDF_UHBD:
Vnm_print(1, "format: UHBD\n");
break;
case VDF_AVS:
Vnm_print(1, "format: AVS\n");
break;
default:
Vnm_print(2, "Error! Unknown format (%d)!\n", format);
usage(2);
}
}
if (!gotScalar1) {
Vnm_print(2, "Error! --scalar1 not specified!\n");
usage(2);
} else {
Vnm_print(1, "Data set 1: %s\n", scalar1Path);
}
if (!gotScalar2) {
Vnm_print(2, "Error! --scalar2 not specified!\n");
usage(2);
} else {
Vnm_print(1, "Data set 2: %s\n", scalar2Path);
}
if (gotTransform) {
Vnm_print(1, "Transform: %s\n", transformPath);
}
if (gotMask1) {
Vnm_print(1, "Mask 1: %s\n", mask1Path);
}
if (gotMask2) {
Vnm_print(1, "Mask 2: %s\n", mask2Path);
}
/* Parse transform matrix */
if (!gotTransform) {
Vnm_print(1, "Setting coordinate transform to identity...\n");
rotMat2to1[0][0] = 1.0; rotMat2to1[0][1] = 0.0; rotMat2to1[0][2] = 0.0;
rotMat2to1[1][0] = 0.0; rotMat2to1[1][1] = 1.0; rotMat2to1[1][2] = 0.0;
rotMat2to1[2][0] = 0.0; rotMat2to1[2][1] = 0.0; rotMat2to1[2][2] = 1.0;
dispVec2to1[0] = 0.0; dispVec2to1[1] = 0.0; dispVec2to1[2] = 0.0;
} else {
if (!readTransform(transformPath, rotMat2to1, dispVec2to1)) {
Vnm_print(2, "Error reading transformation matrix!\n");
return 2;
}
}
Vnm_print(1, "Rotation matrix for set 2 into set 1:\n");
Vnm_print(1, " %1.12E %1.12E %1.12E\n",
rotMat2to1[0][0], rotMat2to1[0][1], rotMat2to1[0][2]);
Vnm_print(1, " %1.12E %1.12E %1.12E\n",
rotMat2to1[1][0], rotMat2to1[1][1], rotMat2to1[1][2]);
Vnm_print(1, " %1.12E %1.12E %1.12E\n",
rotMat2to1[2][0], rotMat2to1[2][1], rotMat2to1[2][2]);
Vnm_print(1, "Displacement vector for set 2 into set 1:\n");
Vnm_print(1, " %1.12E %1.12E %1.12E\n",
dispVec2to1[0], dispVec2to1[1], dispVec2to1[2]);
/* Invert transformation */
Vnm_print(1, "Inverting coordinate transform...\n");
if (!invertTransform(rotMat2to1, dispVec2to1, rotMat1to2, dispVec1to2)) {
Vnm_print(2, "Error inverting transformation!\n");
return 2;
}
Vnm_print(1, "Rotation matrix for set 1 into set 2:\n");
Vnm_print(1, " %1.12E %1.12E %1.12E\n",
rotMat1to2[0][0], rotMat1to2[0][1], rotMat1to2[0][2]);
Vnm_print(1, " %1.12E %1.12E %1.12E\n",
rotMat1to2[1][0], rotMat1to2[1][1], rotMat1to2[1][2]);
Vnm_print(1, " %1.12E %1.12E %1.12E\n",
rotMat1to2[2][0], rotMat1to2[2][1], rotMat1to2[2][2]);
Vnm_print(1, "Displacement vector for set 2 into set 1:\n");
Vnm_print(1, " %1.12E %1.12E %1.12E\n",
dispVec1to2[0], dispVec1to2[1], dispVec1to2[2]);
/* Read scalar set 1 */
Vnm_print(1, "Reading scalar data set 1 from %s...\n", scalar1Path);
if (!readGrid(&scalar1, scalar1Path, format)) {
Vnm_print(2, "Error reading scalar data set 1!\n");
return 2;
}
Vnm_print(1, "Read %d x %d x %d grid.\n",
scalar1->nx, scalar1->ny, scalar1->nz);
/* Read scalar set 2 */
Vnm_print(1, "Reading scalar data set 2 from %s...\n", scalar2Path);
if (!readGrid(&scalar2, scalar2Path, format)) {
Vnm_print(2, "Error reading scalar data set 2!\n");
return 2;
}
Vnm_print(1, "Read %d x %d x %d grid.\n",
scalar2->nx, scalar2->ny, scalar2->nz);
/* Read mask 1 */
if (gotMask1) {
Vnm_print(1, "Reading mask data set 1 from %s...\n", mask1Path);
if (!readGrid(&mask1, mask1Path, format)) {
Vnm_print(2, "Error reading mask data set 1!\n");
return 2;
}
Vnm_print(1, "Read %d x %d x %d grid.\n",
mask1->nx, mask1->ny, mask1->nz);
}
/* Read mask 2 */
if (gotMask2) {
Vnm_print(1, "Reading mask data set 2 from %s...\n", mask2Path);
if (!readGrid(&mask2, mask2Path, format)) {
Vnm_print(2, "Error reading mask data set 2!\n");
return 2;
}
Vnm_print(1, "Read %d x %d x %d grid.\n",
mask2->nx, mask2->ny, mask2->nz);
}
/* Calculate relative L2 norm of difference */
Vnm_print(1, "Calculating similarity measures...\n");
nx = scalar1->nx; ny = scalar1->ny; nz = scalar1->nz;
hx = scalar1->hx; hy = scalar1->hy; hzed = scalar1->hzed;
dvol = (hx*hy*hzed);
xmin = scalar1->xmin; ymin = scalar1->ymin; zmin = scalar1->zmin;
norm1_L1 = 0; norm1_L2 = 0; snorm1_H1 = 0; norm1_H1 = 0;
norm2_L1 = 0; norm2_L2 = 0; snorm2_H1 = 0; norm2_H1 = 0;
normDiff_L1 = 0; normDiff_L2 = 0; snormDiff_H1 = 0; normDiff_H1 = 0;
ip_L2 = 0; ip_H1 = 0;
svol = 0; gvol = 0;
for (i=0; i<nx; i++) {
p1[0] = i*hx + xmin;
for (j=0; j<ny; j++) {
p1[1] = j*hy + ymin;
for (k=0; k<nz; k++) {
/* Grid 1 values */
p1[2] = k*hzed + zmin;
onGridS1 = Vgrid_value(scalar1, p1, &sval1);
onGridV1 = Vgrid_gradient(scalar1, p1, gval1);
if (gotMask1) onGridS1 = Vgrid_value(mask1, p1, &mval1);
else mval1 = 1.0;
/* Grid 2 values */
p2[0] = rotMat1to2[0][0]*p1[0] + rotMat1to2[0][1]*p1[1] \
+ rotMat1to2[0][2]*p1[2] + dispVec1to2[0];
p2[1] = rotMat1to2[1][0]*p1[0] + rotMat1to2[1][1]*p1[1] \
+ rotMat1to2[1][2]*p1[2] + dispVec1to2[1];
p2[2] = rotMat1to2[2][0]*p1[0] + rotMat1to2[2][1]*p1[1] \
+ rotMat1to2[2][2]*p1[2] + dispVec1to2[2];
onGridS2 = Vgrid_value(scalar2, p2, &sval2);
onGridV2 = Vgrid_gradient(scalar2, p2, gval2);
if (gotMask2) onGridS2 = Vgrid_value(mask2, p2, &mval2);
else mval2 = 1.0;
/* Measures based on scalars */
if (onGridS1 && onGridS2) {
val1 = sval1*mval1;
val2 = sval2*mval2;
dval = mval1*mval2*(sval1 - sval2);
/* L2 */
norm1_L2 += VSQR(val1);
norm2_L2 += VSQR(val2);
normDiff_L2 += VSQR(dval);
ip_L2 += (val2*val1);
/* L1 */
norm1_L1 += VABS(val1);
norm2_L1 += VABS(val2);
normDiff_L1 += VABS(dval);
/* Volume */
svol += dvol;
if (isnan(norm1_L2) || isnan(norm2_L2)) {
Vnm_print(2, "ERROR! Got NaN!\n");
Vnm_print(2, "p1 = (%1.12E, %1.12E, %1.12E)\n",
p1[0], p1[1], p1[2]);
Vnm_print(2, "p2 = (%1.12E, %1.12E, %1.12E)\n",
p2[0], p2[1], p2[2]);
Vnm_print(2, "mval1 = %1.12E\n", mval1);
Vnm_print(2, "mval2 = %1.12E\n", mval2);
Vnm_print(2, "sval1 = %1.12E\n", sval1);
Vnm_print(2, "sval2 = %1.12E\n", sval2);
Vnm_print(2, "val1 = %1.12E\n", val1);
Vnm_print(2, "val2 = %1.12E\n", val2);
Vnm_print(2, "dval = %1.12E\n", dval);
VASSERT(0);
}
}
/* Measures based on gradients */
if (onGridV1 && onGridV2 && onGridS1 && onGridS2) {
val1 = mval1*(VSQR(gval1[0]) + VSQR(gval1[1]) \
+ VSQR(gval1[2]));
val2 = mval2*(VSQR(gval2[0]) + VSQR(gval2[1]) \
+ VSQR(gval2[2]));
dval = mval1*mval2*(VSQR(gval1[0]-gval2[0]) \
+ VSQR(gval1[1]-gval2[1]) \
+ VSQR(gval1[2]-gval2[2]));
snorm1_H1 += VSQR(val1);
snorm2_H1 += VSQR(val2);
snormDiff_H1 += VSQR(dval);
ip_H1 += (val1*val2);
gvol += dvol;
}
}
}
}
/* Volumes */
Vnm_print(1, "Volume used to calculate L2 and L1 measures = %1.12E\n",
svol);
Vnm_print(1, "Volume used to calculate H1 measures = %1.12E\n",
gvol);
/* L2 */
printf("norm1_L2^2 = %1.12E\n", norm1_L2);
norm1_L2 = VSQRT(norm1_L2*dvol);
printf("norm1_L2 = %1.12E\n", norm1_L2);
printf("norm2_L2^2 = %1.12E\n", norm2_L2);
norm2_L2 = VSQRT(norm2_L2*dvol);
printf("norm2_L2 = %1.12E\n", norm2_L2);
printf("normDiff_L2^2 = %1.12E\n", normDiff_L2);
normDiff_L2 = VSQRT(normDiff_L2*dvol);
printf("normDiff_L2 = %1.12E\n", normDiff_L2);
ip_L2 = ip_L2*dvol;
Vnm_print(1, "Set 1 absolute L2 norm = %1.12E\n", norm1_L2);
Vnm_print(1, "Set 2 absolute L2 norm = %1.12E\n", norm2_L2);
Vnm_print(1, "Difference absolute L2 norm = %1.12E\n", normDiff_L2);
Vnm_print(1, "Difference relative L2 norm = %1.12E\n",
VSQR(normDiff_L2)/(norm1_L2*norm2_L2));
Vnm_print(1, "Absolute L2 inner product = %1.12E\n", ip_L2);
Vnm_print(1, "Hodgkin L2 inner product = %1.12E\n",
2*ip_L2/(VSQR(norm1_L2)+VSQR(norm2_L2)));
Vnm_print(1, "Carbo L2 inner product = %1.12E\n",
ip_L2/(norm1_L2*norm2_L2));
/* L1 */
norm1_L1 = (norm1_L2*dvol);
norm2_L1 = (norm2_L2*dvol);
normDiff_L1 = (normDiff_L2*dvol);
Vnm_print(1, "Set 1 absolute L1 norm = %1.12E\n", norm1_L1);
Vnm_print(1, "Set 2 absolute L1 norm = %1.12E\n", norm2_L1);
Vnm_print(1, "Difference absolute L1 norm = %1.12E\n", normDiff_L1);
Vnm_print(1, "Difference relative L1 norm = %1.12E\n",
VSQR(normDiff_L1)/(norm1_L1*norm2_L1));
/* H1 */
snorm1_H1 = VSQRT(snorm1_H1*dvol);
snorm2_H1 = VSQRT(snorm2_H1*dvol);
snormDiff_H1 = VSQRT(snormDiff_H1*dvol);
norm1_H1 = VSQRT(VSQR(snorm1_H1)+VSQR(norm1_L2));
norm2_H1 = VSQRT(VSQR(snorm2_H1)+VSQR(norm2_L2));
normDiff_H1 = VSQRT(VSQR(snormDiff_H1)+VSQR(normDiff_L2));
ip_H1 = ip_H1*dvol;
Vnm_print(1, "Set 1 absolute H1 norm = %1.12E\n", norm1_H1);
Vnm_print(1, "Set 2 absolute H1 norm = %1.12E\n", norm2_H1);
Vnm_print(1, "Difference absolute H1 norm = %1.12E\n", normDiff_H1);
Vnm_print(1, "Difference relative H1 norm = %1.12E\n",
VSQR(normDiff_H1)/(norm1_L2*norm2_H1));
Vnm_print(1, "Set 1 absolute H1 semi-norm = %1.12E\n", snorm1_H1);
Vnm_print(1, "Set 2 absolute H1 semi-norm = %1.12E\n", snorm2_H1);
Vnm_print(1, "Difference absolute H1 semi-norm = %1.12E\n", snormDiff_H1);
Vnm_print(1, "Absolute H1 inner product = %1.12E\n", ip_H1);
Vnm_print(1, "Hodgkin H1 inner product = %1.12E\n",
2*ip_H1/(VSQR(snorm1_H1)+VSQR(snorm2_H1)));
Vnm_print(1, "Carbo H1 inner product = %1.12E\n",
ip_H1/(snorm1_H1*snorm2_H1));
Vnm_print(1, "Absolute H1+L2 inner product = %1.12E\n",
(ip_H1+ip_L2));
Vnm_print(1, "Hodgkin H1+L2 inner product = %1.12E\n",
2*(ip_H1+ip_L2)/(VSQR(norm1_H1)+VSQR(norm2_H1)));
Vnm_print(1, "Carbo H1+L2 inner product = %1.12E\n",
(ip_H1+ip_L2)/(norm1_H1*norm2_H1));
return 0;
}
|