File: seedrandom.cal

package info (click to toggle)
apcalc 2.10.3t5.46-1
  • links: PTS
  • area: main
  • in suites: slink
  • size: 4,276 kB
  • ctags: 3,115
  • sloc: ansic: 47,720; makefile: 3,702; awk: 105; sed: 55
file content (156 lines) | stat: -rw-r--r-- 4,561 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
/*
 * Copyright (c) 1996 Landon Curt Noll
 *
 * Permission to use, copy, modify, and distribute this software and
 * its documentation for any purpose and without fee is hereby granted,
 * provided that the above copyright, this permission notice and text
 * this comment, and the disclaimer below appear in all of the following:
 *
 *	supporting documentation
 *	source copies
 *	source works derived from this source
 *	binaries derived from this source or from derived source
 *
 * LANDON CURT NOLL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO
 * EVENT SHALL LANDON CURT NOLL BE LIABLE FOR ANY SPECIAL, INDIRECT OR
 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
 * USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
 * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
 * PERFORMANCE OF THIS SOFTWARE.
 *
 * chongo was here	/\../\		chongo@toad.com
 */

/*
 * seedrandom - seed the cryptographically strong Blum generator
 *
 *
 * The period of a  Blum generators with modulus 'n=p*q' (where p and
 * q are primes 3 mod 4) is:
 *
 *	lambda(n) = lcm(factors of p-1 & q-1)
 *
 * One can construct a generator with a maximal period when
 * 'p' and 'q' have the fewest possible factors in common.
 * The quickest way to select such primes is only use 'p'
 * and 'q' when '(p-1)/2' and '(q-1)/2' are both primes.
 * This function will seed the random() generator that uses
 * such primes.
 *
 * given:
 *	seed1 - a large random value (at least 10^20 and perhaps < 10^314)
 *	seed2 - a large random value (at least 10^20 and perhaps < 10^314)
 *	size - min Blum modulus as a power of 2 (at least 32, perhaps >= 512)
 *	trials - number of ptest() trials (default 25)
 *
 * returns:
 *	the previous random state
 *
 * NOTE: The [10^20, 10^314) range comes from the fact that the 13th internal
 *	 modulus is ~10^315.  We want the lower bound seed to be reasonably big.
 */
define seedrandom(seed1, seed2, size, trials)
{
	local p;		/* first Blum prime */
	local fp;		/* prime co-factor of p-1 */
	local sp;	 	/* min bit size of p */
	local q;		/* second Blum prime */
	local fq;		/* prime co-factor of q-1 */
	local sq;	 	/* min bit size of q */
	local n;		/* Blum modulus */
	local binsize;		/* smallest power of 2 > n=p*q */
	local r;		/* initial quadratic residue */
	local random_state;	/* the initial rand state */
	local random_junk;	/* rand state that is not needed */
	local old_state;	/* old random state to return */

	/*
	 * firewall
	 */
	if (!isint(seed1)) {
		quit "1st arg (seed1) is not an int";
	}
	if (!isint(seed2)) {
		quit "2nd arg (seed2) is not an int";
	}
	if (!isint(size)) {
		quit "3rd arg (size) is not an int";
	}
	if (!isint(trials)) {
		trials = 25;
	}
	if (digits(seed1) <= 20) {
		quit "1st arg (seed1) must be > 10^20 and perhaps < 10^314";
	}
	if (digits(seed2) <= 20) {
		quit "2nd arg (seed2) must be > 10^20 and perhaps < 10^314";
	}
	if (size < 32) {
		quit "3rd arg (size) needs to be >= 32 (perhaps >= 512)";
	}
	if (trials < 1) {
		quit "4th arg (trials) must be > 0";
	}

	/*
	 * determine the search parameters
	 */
	++size;		/* convert power of 2 to bit length */
	sp = int((size/2)-(size*0.03)+1);
	sq = size - sp;

	/*
	 * find the first Blum prime
	 */
	random_state = srandom(seed1, 13);
	do {
		do {
			fp = nextcand(2^sp+randombit(sp), 1, 1, 3, 4);
			p = 2*fp+1;
		} while (ptest(p,1,0) == 0);
	} while(ptest(p, trials) == 0 || ptest(fp, trials) == 0);
	if (config("lib_debug") > 0) {
		print "/* 1st Blum prime */ p=", p;
	}

	/*
	 * find the 2nd Blum prime
	 */
	random_junk = srandom(seed2, 13);
	do {
		do {
			fq = nextcand(2^sq+randombit(sq), 1, 1, 3, 4);
			q = 2*fq+1;
		} while (ptest(q,1,0) == 0);
	} while(ptest(q, trials) == 0 || ptest(fq, trials) == 0);
	if (config("lib_debug") > 0) {
		print "/* 2nd Blum prime */ q=", q;
	}

	/*
	 * seed the Blum generator
	 */
	n = p*q;				/* the Blum modulus */
 	binsize = highbit(n)+1;			/* smallest power of 2 > p*q */
	r = pmod(rand(1<<ceil(binsize*4/5), 1<<(binsize-2)), 2, n);
	if (config("lib_debug") >= 0) {
		print "/* seed quadratic residue */ r=", r;
		print "/* newn", binsize, "bit quadratic residue*/ newn=", n;
	}
	old_state = srandom(r, n);

	/*
	 * restore other states that we altered
	 */
	random_junk = srandom(random_state);

	/*
	 * return the previous random state
	 */
	return old_state;
}

if (config("lib_debug") >= 0) {
    print "seedrandom(seed1, seed2, size [, trials]) defined";
}