1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
/*
* Copyright (c) 1996 Landon Curt Noll
*
* Permission to use, copy, modify, and distribute this software and
* its documentation for any purpose and without fee is hereby granted,
* provided that the above copyright, this permission notice and text
* this comment, and the disclaimer below appear in all of the following:
*
* supporting documentation
* source copies
* source works derived from this source
* binaries derived from this source or from derived source
*
* LANDON CURT NOLL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO
* EVENT SHALL LANDON CURT NOLL BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
* USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*
* chongo was here /\../\ chongo@toad.com
*/
/*
* seedrandom - seed the cryptographically strong Blum generator
*
*
* The period of a Blum generators with modulus 'n=p*q' (where p and
* q are primes 3 mod 4) is:
*
* lambda(n) = lcm(factors of p-1 & q-1)
*
* One can construct a generator with a maximal period when
* 'p' and 'q' have the fewest possible factors in common.
* The quickest way to select such primes is only use 'p'
* and 'q' when '(p-1)/2' and '(q-1)/2' are both primes.
* This function will seed the random() generator that uses
* such primes.
*
* given:
* seed1 - a large random value (at least 10^20 and perhaps < 10^314)
* seed2 - a large random value (at least 10^20 and perhaps < 10^314)
* size - min Blum modulus as a power of 2 (at least 32, perhaps >= 512)
* trials - number of ptest() trials (default 25)
*
* returns:
* the previous random state
*
* NOTE: The [10^20, 10^314) range comes from the fact that the 13th internal
* modulus is ~10^315. We want the lower bound seed to be reasonably big.
*/
define seedrandom(seed1, seed2, size, trials)
{
local p; /* first Blum prime */
local fp; /* prime co-factor of p-1 */
local sp; /* min bit size of p */
local q; /* second Blum prime */
local fq; /* prime co-factor of q-1 */
local sq; /* min bit size of q */
local n; /* Blum modulus */
local binsize; /* smallest power of 2 > n=p*q */
local r; /* initial quadratic residue */
local random_state; /* the initial rand state */
local random_junk; /* rand state that is not needed */
local old_state; /* old random state to return */
/*
* firewall
*/
if (!isint(seed1)) {
quit "1st arg (seed1) is not an int";
}
if (!isint(seed2)) {
quit "2nd arg (seed2) is not an int";
}
if (!isint(size)) {
quit "3rd arg (size) is not an int";
}
if (!isint(trials)) {
trials = 25;
}
if (digits(seed1) <= 20) {
quit "1st arg (seed1) must be > 10^20 and perhaps < 10^314";
}
if (digits(seed2) <= 20) {
quit "2nd arg (seed2) must be > 10^20 and perhaps < 10^314";
}
if (size < 32) {
quit "3rd arg (size) needs to be >= 32 (perhaps >= 512)";
}
if (trials < 1) {
quit "4th arg (trials) must be > 0";
}
/*
* determine the search parameters
*/
++size; /* convert power of 2 to bit length */
sp = int((size/2)-(size*0.03)+1);
sq = size - sp;
/*
* find the first Blum prime
*/
random_state = srandom(seed1, 13);
do {
do {
fp = nextcand(2^sp+randombit(sp), 1, 1, 3, 4);
p = 2*fp+1;
} while (ptest(p,1,0) == 0);
} while(ptest(p, trials) == 0 || ptest(fp, trials) == 0);
if (config("lib_debug") > 0) {
print "/* 1st Blum prime */ p=", p;
}
/*
* find the 2nd Blum prime
*/
random_junk = srandom(seed2, 13);
do {
do {
fq = nextcand(2^sq+randombit(sq), 1, 1, 3, 4);
q = 2*fq+1;
} while (ptest(q,1,0) == 0);
} while(ptest(q, trials) == 0 || ptest(fq, trials) == 0);
if (config("lib_debug") > 0) {
print "/* 2nd Blum prime */ q=", q;
}
/*
* seed the Blum generator
*/
n = p*q; /* the Blum modulus */
binsize = highbit(n)+1; /* smallest power of 2 > p*q */
r = pmod(rand(1<<ceil(binsize*4/5), 1<<(binsize-2)), 2, n);
if (config("lib_debug") >= 0) {
print "/* seed quadratic residue */ r=", r;
print "/* newn", binsize, "bit quadratic residue*/ newn=", n;
}
old_state = srandom(r, n);
/*
* restore other states that we altered
*/
random_junk = srandom(random_state);
/*
* return the previous random state
*/
return old_state;
}
if (config("lib_debug") >= 0) {
print "seedrandom(seed1, seed2, size [, trials]) defined";
}
|