File: zprime.c

package info (click to toggle)
apcalc 2.12.1.5-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 5,548 kB
  • ctags: 4,129
  • sloc: ansic: 53,374; makefile: 5,589; awk: 96; sed: 33; sh: 13
file content (1619 lines) | stat: -rw-r--r-- 35,427 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
/*
 * zprime - rapid small prime routines
 *
 * Copyright (C) 1999  Landon Curt Noll
 *
 * Calc is open software; you can redistribute it and/or modify it under
 * the terms of the version 2.1 of the GNU Lesser General Public License
 * as published by the Free Software Foundation.
 *
 * Calc is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU Lesser General
 * Public License for more details.
 *
 * A copy of version 2.1 of the GNU Lesser General Public License is
 * distributed with calc under the filename COPYING-LGPL.  You should have
 * received a copy with calc; if not, write to Free Software Foundation, Inc.
 * 59 Temple Place, Suite 330, Boston, MA  02111-1307, USA.
 *
 * @(#) $Revision: 29.3 $
 * @(#) $Id: zprime.c,v 29.3 2006/05/20 08:43:55 chongo Exp $
 * @(#) $Source: /usr/local/src/cmd/calc/RCS/zprime.c,v $
 *
 * Under source code control:	1994/05/29 04:34:36
 * File existed as early as:	1994
 *
 * chongo <was here> /\oo/\	http://www.isthe.com/chongo/
 * Share and enjoy!  :-)	http://www.isthe.com/chongo/tech/comp/calc/
 */


#include "zmath.h"
#include "prime.h"
#include "jump.h"
#include "config.h"
#include "zrand.h"
#include "have_const.h"


/*
 * When performing a probabilistic primality test, check to see
 * if the number has a factor <= PTEST_PRECHECK.
 *
 * XXX - what should this value be?  Perhaps this should be a function
 *	 of the size of the text value and the number of tests?
 */
#define PTEST_PRECHECK ((FULL)101)

/*
 * product of primes that fit into a long
 */
static CONST FULL pfact_tbl[MAX_PFACT_VAL+1] = {
    1, 1, 2, 6, 6, 30, 30, 210, 210, 210, 210, 2310, 2310, 30030, 30030,
    30030, 30030, 510510, 510510, 9699690, 9699690, 9699690, 9699690,
    223092870, 223092870, 223092870, 223092870, 223092870, 223092870
#if FULL_BITS == 64
    , U(6469693230), U(6469693230), U(200560490130), U(200560490130),
    U(200560490130), U(200560490130), U(200560490130), U(200560490130),
    U(7420738134810), U(7420738134810), U(7420738134810), U(7420738134810),
    U(304250263527210), U(304250263527210), U(13082761331670030),
    U(13082761331670030), U(13082761331670030), U(13082761331670030),
    U(614889782588491410), U(614889782588491410), U(614889782588491410),
    U(614889782588491410), U(614889782588491410), U(614889782588491410)
#endif
};

/*
 * determine the top 1 bit of a 8 bit value:
 *
 *	topbit[0] == 0 by convention
 *	topbit[x] gives the highest 1 bit of x
 */
static CONST unsigned char topbit[256] = {
    0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
    5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
    5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
    6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
    6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
    6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
    6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
};

/*
 * integer square roots of powers of 2
 *
 * isqrt_pow2[x] == (int)(sqrt(2 to the x power))	      (for 0 <= x < 64)
 *
 * We have enough table entries for a FULL that is 64 bits long.
 */
static CONST FULL isqrt_pow2[64] = {
    1, 1, 2, 2, 4, 5, 8, 11,					/*  0 ..  7 */
    16, 22, 32, 45, 64, 90, 128, 181,				/*  8 .. 15 */
    256, 362, 512, 724, 1024, 1448, 2048, 2896,			/* 16 .. 23 */
    4096, 5792, 8192, 11585, 16384, 23170, 32768, 46340,	/* 24 .. 31 */
    65536, 92681, 131072, 185363,				/* 32 .. 35 */
    262144, 370727, 524288, 741455,				/* 36 .. 39 */
    1048576, 1482910, 2097152, 2965820,				/* 40 .. 43 */
    4194304, 5931641, 8388608, 11863283,			/* 44 .. 47 */
    16777216, 23726566, 33554432, 47453132,			/* 48 .. 51 */
    67108864, 94906265, 134217728, 189812531,			/* 52 .. 55 */
    268435456, 379625062, 536870912, 759250124,			/* 56 .. 59 */
    1073741824, 1518500249, 0x80000000, 0xb504f333		/* 60 .. 63 */
};

/*
 * static functions
 */
static FULL fsqrt(FULL v);		/* quick square root of v */
static long pix(FULL x);		/* pi of x */
static FULL small_factor(ZVALUE n, FULL limit);	  /* factor or 0 */


/*
 * Determine if a value is a small (32 bit) prime
 *
 * Returns:
 *	1	z is a prime <= MAX_SM_VAL
 *	0	z is not a prime <= MAX_SM_VAL
 *	-1	z > MAX_SM_VAL
 */
FLAG
zisprime(ZVALUE z)
{
	FULL n;				/* number to test */
	FULL isqr;			/* factor limit */
	CONST unsigned short *tp;	/* pointer to a prime factor */

	z.sign = 0;
	if (zisleone(z)) {
		return 0;
	}

	/* even numbers > 2 are not prime */
	if (ziseven(z)) {
		/*
		 * "2 is the greatest odd prime because it is the least even!"
		 *					- Dr. Dan Jurca	 1978
		 */
		return zisabstwo(z);
	}

	/* ignore non-small values */
	if (zge32b(z)) {
		return -1;
	}

	/* we now know that we are dealing with a value 0 <= n < 2^32 */
	n = ztofull(z);

	/* lookup small cases in pr_map */
	if (n <= MAX_MAP_VAL) {
		return (pr_map_bit(n) ? 1 : 0);
	}

	/* ignore Saber-C warning #530 about empty for statement */
	/*	  ok to ignore in proc zisprime */
	/* a number >=2^16 and < 2^32 */
	for (isqr=fsqrt(n), tp=prime; (*tp <= isqr) && (n % *tp); ++tp) {
	}
	return ((*tp <= isqr && *tp != 1) ? 0 : 1);
}


/*
 * Determine the next small (32 bit) prime > a 32 bit value.
 *
 * given:
 *	z		search point
 *
 * Returns:
 *	0	next prime is 2^32+15
 *	1	abs(z) >= 2^32
 *	smallest prime > abs(z) otherwise
 */
FULL
znprime(ZVALUE z)
{
	FULL n;			/* search point */

	z.sign = 0;

	/* ignore large values */
	if (zge32b(z)) {
		return (FULL)1;
	}

	/* deal a search point of 0 or 1 */
	if (zisabsleone(z)) {
		return (FULL)2;
	}

	/* deal with returning a value that is beyond our reach */
	n = ztofull(z);
	if (n >= MAX_SM_PRIME) {
		return (FULL)0;
	}

	/* return the next prime */
	return next_prime(n);
}


/*
 * Compute the next prime beyond a small (32 bit) value.
 *
 * This function assumes that 2 <= n < 2^32-5.
 *
 * given:
 *	n		search point
 */
FULL
next_prime(FULL n)
{
	CONST unsigned short *tp;	/* pointer to a prime factor */
	CONST unsigned char *j;		/* current jump increment */
	int tmp;

	/* find our search point */
	n = ((n & 0x1) ? n+2 : n+1);

	/* if we can just search the bit map, then search it */
	if (n <= MAX_MAP_PRIME) {

		/* search until we find a 1 bit */
		while (pr_map_bit(n) == 0) {
			n += (FULL)2;
		}

	/* too large for our table, find the next prime the hard way */
	} else {
		FULL isqr;		/* factor limit */

		/*
		 * Our search for a prime may cause us to increment n over
		 * a perfect square, but never two perfect squares.  The largest
		 * prime gap <= 2614941711251 is 651.  Shanks conjectures that
		 * the largest gap below P is about ln(P)^2.
		 *
		 * The value fsqrt(n)^2 will always be the perfect square
		 * that is <= n.  Given the smallness of prime gaps we will
		 * deal with, we know that n could carry us across the next
		 * perfect square (fsqrt(n)+1)^2 but not the following
		 * perfect square (fsqrt(n)+2)^2.
		 *
		 * Now the factor search limit for values < (fsqrt(n)+2)^2
		 * is the same limit for (fsqrt(n)+1)^2; namely fsqrt(n)+1.
		 * Therefore setting our limit at fsqrt(n)+1 and never
		 * bothering with it after that is safe.
		 */
		isqr = fsqrt(n)+1;

		/*
		 * If our factor limit is even, then we can reduce it to
		 * the next lowest odd value.  We already tested if n
		 * was even and all of our remaining potential factors
		 * are odd.
		 */
		if ((isqr & 0x1) == 0) {
			--isqr;
		}

		/*
		 * Skip to next value not divisible by a trivial prime.
		 */
		n = firstjmp(n, tmp);
		j = jmp + jmpptr(n);

		/*
		 * Look for tiny prime factors of increasing n until we
		 * find a prime.
		 */
		do {
			/* ignore Saber-C warning #530 - empty for statement */
			/*	  ok to ignore in proc next_prime */
			/* XXX - speed up test for large n by using gcds */
			/* find a factor, or give up if not found */
			for (tp=JPRIME; (*tp <= isqr) && (n % *tp); ++tp) {
			}
		} while (*tp <= isqr && *tp != 1 && (n += nxtjmp(j)));
	}

	/* return the prime that we found */
	return n;
}


/*
 * Determine the previous small (32 bit) prime < a 32 bit value
 *
 * given:
 *	z		search point
 *
 * Returns:
 *	1	abs(z) >= 2^32
 *	0	abs(z) <= 2
 *	greatest prime < abs(z) otherwise
 */
FULL
zpprime(ZVALUE z)
{
	CONST unsigned short *tp;	/* pointer to a prime factor */
	FULL isqr;			/* isqrt(z) */
	FULL n;				/* search point */
	CONST unsigned char *j;		/* current jump increment */
	int tmp;

	z.sign	= 0;

	/* ignore large values */
	if (zge32b(z)) {
		return (FULL)1;
	}

	/* deal with special case small values */
	n = ztofull(z);
	switch ((int)n) {
	case 0:
	case 1:
	case 2:
		/* ignore values <= 2 */
		return (FULL)0;
	case 3:
		/* 3 returns the only even prime */
		return (FULL)2;
	}

	/* deal with values above the bit map */
	if (n > NXT_MAP_PRIME) {

		/* find our search point */
		n = ((n & 0x1) ? n-2 : n-1);

		/* our factor limit - see next_prime for why this works */
		isqr = fsqrt(n)+1;
		if ((isqr & 0x1) == 0) {
			--isqr;
		}

		/*
		 * Skip to previous value not divisible by a trivial prime.
		 */
		tmp = jmpindxval(n);
		if (tmp >= 0) {

			/* find next value not divisible by a trivial prime */
			n += tmp;

			/* find the previous jump index */
			j = jmp + jmpptr(n);

			/* jump back */
			n -= prevjmp(j);

		/* already not divisible by a trivial prime */
		} else {
			/* find the current jump index */
			j = jmp + jmpptr(n);
		}

		/* factor values until we find a prime */
		do {
			/* ignore Saber-C warning #530 - empty for statement */
			/*	  ok to ignore in proc zpprime */
			/* XXX - speed up test for large n by using gcds */
			/* find a factor, or give up if not found */
			for (tp=prime; (*tp <= isqr) && (n % *tp); ++tp) {
			}
		} while (*tp <= isqr && *tp != 1 && (n -= prevjmp(j)));

	/* deal with values within the bit map */
	} else if (n <= MAX_MAP_PRIME) {

		/* find our search point */
		n = ((n & 0x1) ? n-2 : n-1);

		/* search until we find a 1 bit */
		while (pr_map_bit(n) == 0) {
			n -= (FULL)2;
		}

	/* deal with values that could cross into the bit map */
	} else {
		/* MAX_MAP_PRIME < n <= NXT_MAP_PRIME returns MAX_MAP_PRIME */
		return MAX_MAP_PRIME;
	}

	/* return what we found */
	return n;
}


/*
 * Compute the number of primes <= a ZVALUE that can fit into a FULL
 *
 * given:
 *	z		compute primes <= z
 *
 * Returns:
 *	-1	error
 *	>=0	number of primes <= x
 */
long
zpix(ZVALUE z)
{
	/* pi(<0) is always 0 */
	if (zisneg(z)) {
		return (long)0;
	}

	/* firewall */
	if (zge32b(z)) {
		return (long)-1;
	}
	return pix(ztofull(z));
}


/*
 * Compute the number of primes <= a ZVALUE
 *
 * given:
 *	x		value of z
 *
 * Returns:
 *	-1	error
 *	>=0	number of primes <= x
 */
static long
pix(FULL x)
{
	long count;			/* pi(x) */
	FULL top;			/* top of the range to test */
	CONST unsigned short *tp;	/* pointer to a tiny prime */
	FULL i;

	/* compute pi(x) using the 2^8 step table */
	if (x <= MAX_PI10B) {

		/* x within the prime table, so use it */
		if (x < MAX_MAP_PRIME) {
			/* firewall - pix(x) ==0 for x < 2 */
			if (x < 2) {
				count = 0;

			} else {
				/* determine how and where we will count */
				if (x < 1024) {
					count = 1;
					tp = prime;
				} else {
					count = pi10b[x>>10];
					tp = prime+count-1;
				}
				/* count primes in the table */
				while (*tp++ <= x) {
					++count;
				}
			}

		/* x is larger than the prime table, so count the hard way */
		} else {

			/* case: count down from pi18b entry to x */
			if (x & 0x200) {
				top = (x | 0x3ff);
				count = pi10b[(top+1)>>10];
				for (i=next_prime(x); i <= top;
				     i=next_prime(i)) {
					--count;
				}

			/* case: count up from pi10b entry to x */
			} else {
				count = pi10b[x>>10];
				for (i=next_prime(x&(~0x3ff));
				     i <= x; i = next_prime(i)) {
					++count;
				}
			}
		}

	/* compute pi(x) using the 2^18 interval table */
	} else {

		/* compute sum of intervals up to our interval */
		for (count=0, i=0; i < (x>>18); ++i) {
			count += pi18b[i];
		}

		/* case: count down from pi18b entry to x */
		if (x & 0x20000) {
			top = (x | 0x3ffff);
			count += pi18b[i];
			if (top > MAX_SM_PRIME) {
				if (x < MAX_SM_PRIME) {
					for (i=next_prime(x); i < MAX_SM_PRIME;
					     i=next_prime(i)) {
						--count;
					}
					--count;
				}
			} else {
				for (i=next_prime(x); i<=top; i=next_prime(i)) {
					--count;
				}
			}

		/* case: count up from pi18b entry to x */
		} else {
			for (i=next_prime(x&(~0x3ffff));
			     i <= x; i = next_prime(i)) {
				++count;
			}
		}
	}
	return count;
}


/*
 * Compute the smallest prime factor < limit
 *
 * given:
 *	n		number to factor
 *	zlimit		ending search point
 *	res		factor, if found, or NULL
 *
 * Returns:
 *	-1	error, limit >= 2^32
 *	0	no factor found, res is not changed
 *	1	factor found, res (if non-NULL) is smallest prime factor
 *
 * NOTE: This routine will not return a factor == the test value
 *	 except when the test value is 1 or -1.
 */
FLAG
zfactor(ZVALUE n, ZVALUE zlimit, ZVALUE *res)
{
	FULL f;			/* factor found, or 0 */

	/*
	 * determine the limit
	 */
	if (zge32b(zlimit)) {
		/* limit is too large to be reasonable */
		return -1;
	}
	n.sign = 0;		/* ignore sign of n */

	/*
	 * find the smallest factor <= limit, if possible
	 */
	f = small_factor(n, ztofull(zlimit));

	/*
	 * report the results
	 */
	if (f > 0) {
		/* return factor if requested */
		if (res) {
			utoz(f, res);
		}
		/* report a factor was found */
		return 1;
	}
	/* no factor was found */
	return 0;
}


/*
 * Find a smallest prime factor <= some small (32 bit) limit of a value
 *
 * given:
 *	z		number to factor
 *	limit		largest factor we will test
 *
 * Returns:
 *	0	no prime <= the limit was found
 *	!= 0	the smallest prime factor
 */
static FULL
small_factor(ZVALUE z, FULL limit)
{
	FULL top;			/* current max factor level */
	CONST unsigned short *tp;	/* pointer to a tiny prime */
	FULL factlim;			/* highest factor to test */
	CONST unsigned short *p;	/* test factor */
	FULL factor;			/* test factor */
	HALF tlim;			/* limit on prime table use */
	HALF divval[2];			/* divisor value */
	ZVALUE div;			/* test factor/divisor */
	ZVALUE tmp;
	CONST unsigned char *j;

	/*
	 * catch impossible ranges
	 */
	if (limit < 2) {
		/* range is too small */
		return 0;
	}

	/*
	 * perform the even test
	 */
	if (ziseven(z)) {
		if (zistwo(z)) {
			/* z is 2, so don't return 2 as a factor */
			return 0;
		}
		return 2;

	/*
	 * value is odd
	 */
	} else if (limit == 2) {
		/* limit is 2, value is odd, no factors will ever be found */
		return 0;
	}

	/*
	 * force the factor limit to be odd
	 */
	if ((limit & 0x1) == 0) {
		--limit;
	}

	/*
	 * case: number to factor fits into a FULL
	 */
	if (!zgtmaxufull(z)) {
		FULL val = ztofull(z);	/* find the smallest factor of val */
		FULL isqr;		/* sqrt of val */

		/*
		 * special case: val is a prime <= MAX_MAP_PRIME
		 */
		if (val <= MAX_MAP_PRIME && pr_map_bit(val)) {
			/* z is prime, so no factors will be found */
			return 0;
		}

		/*
		 * we need not search above the sqrt of val
		 */
		isqr = fsqrt(val);
		if (limit > isqr) {
			/* limit is largest odd value <= sqrt of val */
			limit = ((isqr & 0x1) ? isqr : isqr-1);
		}

		/*
		 * search for a small prime factor
		 */
		top = ((limit < MAX_MAP_VAL) ? limit : MAX_MAP_VAL);
		for (tp = prime; *tp <= top && *tp != 1; ++tp) {
			if (val%(*tp) == 0) {
				return ((FULL)*tp);
			}
		}

#if FULL_BITS == 64
		/*
		 * Our search will carry us beyond the prime table.  We will
		 * continue to values until we reach our limit or until a
		 * factor is found.
		 *
		 * It is faster to simply test odd values and ignore non-prime
		 * factors because the work needed to find the next prime is
		 * more than the work one saves in not factor with non-prime
		 * values.
		 *
		 * We can improve on this method by skipping odd values that
		 * are a multiple of 3, 5, 7 and 11.  We use a table of
		 * bytes that indicate the offsets between odd values that
		 * are not a multiple of 3,4,5,7 & 11.
		 */
		/* XXX - speed up test for large z by using gcds */
		j = jmp + jmpptr(NXT_MAP_PRIME);
		for (top=NXT_MAP_PRIME; top <= limit; top += nxtjmp(j)) {
			if ((val % top) == 0) {
				return top;
			}
		}
#endif /* FULL_BITS == 64 */

		/* no prime factors found */
		return 0;
	}

	/*
	 * Find a factor of a value that is too large to fit into a FULL.
	 *
	 * determine if/what our sqrt factor limit will be
	 */
	if (zge64b(z)) {
		/* we have no factor limit, avoid highest factor */
		factlim = MAX_SM_PRIME-1;
	} else if (zge32b(z)) {
		/* determine if limit is too small to matter */
		if (limit < BASE) {
			factlim = limit;
		} else {
			/* find the isqrt(z) */
			if (!zsqrt(z, &tmp, 0)) {
				/* sqrt is exact */
				factlim = ztofull(tmp);
			} else {
				/* sqrt is inexact */
				factlim = ztofull(tmp)+1;
			}
			zfree(tmp);

			/* avoid highest factor */
			if (factlim >= MAX_SM_PRIME) {
				factlim = MAX_SM_PRIME-1;
			}
		}
	} else {
		/* determine our factor limit */
		factlim = fsqrt(ztofull(z));
		if (factlim >= MAX_SM_PRIME) {
			factlim = MAX_SM_PRIME-1;
		}
	}
	if (factlim > limit) {
		factlim = limit;
	}

	/*
	 * walk the prime table looking for factors
	 *
	 * XXX - consider using gcd of products of primes to speed this
	 *	 section up
	 */
	tlim = (HALF)((factlim >= MAX_MAP_PRIME) ? MAX_MAP_PRIME-1 : factlim);
	div.sign = 0;
	div.v = divval;
	div.len = 1;
	for (p=prime; (HALF)*p <= tlim; ++p) {

		/* setup factor */
		div.v[0] = (HALF)(*p);

		if (zdivides(z, div))
			return (FULL)(*p);
	}
	if ((FULL)*p > factlim) {
		/* no factor found */
		return (FULL)0;
	}

	/*
	 * test the highest factor possible
	 */
	div.v[0] = MAX_MAP_PRIME;

	if (zdivides(z, div))
		return (FULL)MAX_MAP_PRIME;

	/*
	 * generate higher test factors as needed
	 *
	 * XXX - consider using gcd of products of primes to speed this
	 *	 section up
	 */
#if BASEB == 16
	div.len = 2;
#endif
	factor = NXT_MAP_PRIME;
	j = jmp + jmpptr(factor);
	for(; factor <= factlim; factor += nxtjmp(j)) {

		/* setup factor */
#if BASEB == 32
		div.v[0] = (HALF)factor;
#else
		div.v[0] = (HALF)(factor & BASE1);
		div.v[1] = (HALF)(factor >> BASEB);
#endif

		if (zdivides(z, div))
			return (FULL)(factor);
	}
	if (factor >= factlim) {
		/* no factor found */
		return (FULL)0;
	}

	/*
	 * test the highest factor possible
	 */
#if BASEB == 32
	div.v[0] = MAX_SM_PRIME;
#else
	div.v[0] = (MAX_SM_PRIME & BASE1);
	div.v[1] = (MAX_SM_PRIME >> BASEB);
#endif
	if (zdivides(z, div))
		return (FULL)MAX_SM_PRIME;

	/*
	 * no factor found
	 */
	return (FULL)0;
}


/*
 * Compute the product of the primes up to the specified number.
 */
void
zpfact(ZVALUE z, ZVALUE *dest)
{
	long n;				/* limiting number to multiply by */
	long p;				/* current prime */
	CONST unsigned short *tp;	/* pointer to a tiny prime */
	CONST unsigned char *j;		/* current jump increment */
	ZVALUE res, temp;

	/* firewall */
	if (zisneg(z)) {
		math_error("Negative argument for factorial");
		/*NOTREACHED*/
	}
	if (zge24b(z)) {
		math_error("Very large factorial");
		/*NOTREACHED*/
	}
	n = ztolong(z);

	/*
	 * Deal with table lookup pfact values
	 */
	if (n <= MAX_PFACT_VAL) {
		utoz(pfact_tbl[n], dest);
		return;
	}

	/*
	 * Multiply by the primes in the static table
	 */
	utoz(pfact_tbl[MAX_PFACT_VAL], &res);
	for (tp=(&prime[NXT_PFACT_VAL]); *tp != 1 && (long)(*tp) <= n; ++tp) {
		zmuli(res, *tp, &temp);
		zfree(res);
		res = temp;
	}

	/*
	 * if needed, multiply by primes beyond the static table
	 */
	j = jmp + jmpptr(NXT_MAP_PRIME);
	for (p = NXT_MAP_PRIME; p <= n; p += nxtjmp(j)) {
		FULL isqr;	/* isqrt(p) */

		/* our factor limit - see next_prime for why this works */
		isqr = fsqrt(p)+1;
		if ((isqr & 0x1) == 0) {
			--isqr;
		}

		/* ignore Saber-C warning #530 about empty for statement */
		/*	  ok to ignore in proc zpfact */
		/* find the next prime */
		for (tp=prime; (*tp <= isqr) && (p % (long)(*tp)); ++tp) {
		}
		if (*tp <= isqr && *tp != 1) {
			continue;
		}

		/* multiply by the next prime */
		zmuli(res, p, &temp);
		zfree(res);
		res = temp;
	}
	*dest = res;
}


/*
 * Perform a probabilistic primality test (algorithm P in Knuth vol2, 4.5.4).
 * Returns FALSE if definitely not prime, or TRUE if probably prime.
 * Count determines how many times to check for primality.
 * The chance of a non-prime passing this test is less than (1/4)^count.
 * For example, a count of 100 fails for only 1 in 10^60 numbers.
 *
 * It is interesting to note that ptest(a,1,x) (for any x >= 0) of this
 * test will always return TRUE for a prime, and rarely return TRUE for
 * a non-prime.	 The 1/4 is appears in practice to be a poor upper
 * bound.  Even so the only result that is EXACT and TRUE is when
 * this test returns FALSE for a non-prime.  When ptest returns TRUE,
 * one cannot determine if the value in question is prime, or the value
 * is one of those rare non-primes that produces a false positive.
 *
 * The absolute value of count determines how many times to check
 * for primality.  If count < 0, then the trivial factor check is
 * omitted.
 * skip = 0 uses random bases
 * skip = 1 uses prime bases 2, 3, 5, ...
 * skip > 1 or < 0 uses bases skip, skip + 1, ...
 */
BOOL
zprimetest(ZVALUE z, long count, ZVALUE skip)
{
	long limit = 0;		/* test odd values from skip up to limit */
	ZVALUE zbase;		/* base as a ZVALUE */
	long i, ij, ik;
	ZVALUE zm1, z1, z2, z3;
	int type;		/* random, prime or consecutive integers */
	CONST unsigned short *pr;	/* pointer to small prime */

	/*
	 * firewall - ignore sign of z, values 0 and 1 are not prime
	 */
	z.sign = 0;
	if (zisleone(z)) {
		return 0;
	}

	/*
	 * firewall - All even values, except 2, are not prime
	 */
	if (ziseven(z))
		return zistwo(z);

	if (z.len == 1 && *z.v == 3)
		return 1;		/* 3 is prime */

	/*
	 * we know that z is an odd value > 1
	 */

	/*
	 * Perform trivial checks if count is not negative
	 */
	if (count >= 0) {

		/*
		 * If the number is a small (32 bit) value, do a direct test
		 */
		if (!zge32b(z)) {
			return zisprime(z);
		}

		/*
		 * See if the number has a tiny factor.
		 */
		if (small_factor(z, PTEST_PRECHECK) != 0) {
			/* a tiny factor was found */
			return FALSE;
		}

		/*
		 * If our count is zero, do nothing more
		 */
		if (count == 0) {
			/* no test was done, so no test failed! */
			return TRUE;
		}

	} else {
		/* use the absolute value of count */
		count = -count;
	}
	if (z.len < conf->redc2) {
		return zredcprimetest(z, count, skip);
	}

	if (ziszero(skip)) {
		type = 0;
		zbase = _zero_;
	} else if (zisone(skip)) {
		type = 1;
		itoz(2, &zbase);
		limit = 1 << 16;
		if (!zge16b(z))
			limit = ztolong(z);
	} else {
		type = 2;
		if (zrel(skip, z) >= 0 || zisneg(skip))
			zmod(skip, z, &zbase, 0);
		else
			zcopy(skip, &zbase);
	}
	/*
	 * Loop over various bases, testing each one.
	 */
	zsub(z, _one_, &zm1);
	ik = zlowbit(zm1);
	zshift(zm1, -ik, &z1);
	pr = prime;
	for (i = 0; i < count; i++) {
		switch (type) {
		case 0:
			zfree(zbase);
			zrandrange(_two_, zm1, &zbase);
			break;
		case 1:
			if (i == 0)
				break;
			zfree(zbase);
			if (*pr == 1 || (long)*pr >= limit) {
				zfree(z1);
				zfree(zm1);
				return TRUE;
			}
			itoz((long) *pr++, &zbase);
			break;
		default:
			if (i == 0)
				break;
			zadd(zbase, _one_, &z3);
			zfree(zbase);
			zbase = z3;
		}

		ij = 0;
		zpowermod(zbase, z1, z, &z3);
		for (;;) {
			if (zisone(z3)) {
				if (ij) {
				/* number is definitely not prime */
					zfree(z3);
					zfree(zm1);
					zfree(z1);
					zfree(zbase);
					return FALSE;
				}
				break;
			}
			if (!zcmp(z3, zm1))
				break;
			if (++ij >= ik) {
				/* number is definitely not prime */
				zfree(z3);
				zfree(zm1);
				zfree(z1);
				zfree(zbase);
				return FALSE;
			}
			zsquare(z3, &z2);
			zfree(z3);
			zmod(z2, z, &z3, 0);
			zfree(z2);
		}
		zfree(z3);
	}
	zfree(zm1);
	zfree(z1);
	zfree(zbase);

	/* number might be prime */
	return TRUE;
}


/*
 * Called by zprimetest when simple cases have been eliminated
 * and z.len < conf->redc2.  Here count > 0, z is odd and > 3.
 */
BOOL
zredcprimetest(ZVALUE z, long count, ZVALUE skip)
{
	long limit = 0;		/* test odd values from skip up to limit */
	ZVALUE zbase;		/* base as a ZVALUE */
	REDC *rp;
	long i, ij, ik;
	ZVALUE zm1, z1, z2, z3;
	ZVALUE zredcm1;
	int type;		/* random, prime or consecutive integers */
	CONST unsigned short *pr;	/* pointer to small prime */


	rp = zredcalloc(z);
	zsub(z, rp->one, &zredcm1);
	if (ziszero(skip)) {
		zbase = _zero_;
		type = 0;
	} else if (zisone(skip)) {
		itoz(2, &zbase);
		type = 1;
		limit = 1 << 16;
		if (!zge16b(z))
			limit = ztolong(z);
	} else {
		zredcencode(rp, skip, &zbase);
		type = 2;
	}
	/*
	 * Loop over various "random" numbers, testing each one.
	 */
	zsub(z, _one_, &zm1);
	ik = zlowbit(zm1);
	zshift(zm1, -ik, &z1);
	pr = prime;

	for (i = 0; i < count; i++) {
		switch (type) {
		case 0:
			do {
				zfree(zbase);
				zrandrange(_one_, z, &zbase);
			}
			while (!zcmp(zbase, rp->one) ||
					!zcmp(zbase, zredcm1));
			break;
		case 1:
			if (i == 0) {
				break;
			}
			zfree(zbase);
			if (*pr == 1 || (long)*pr >= limit) {
				zfree(z1);
				zfree(zm1);
				if (z.len < conf->redc2) {
					zredcfree(rp);
					zfree(zredcm1);
				}
				return TRUE;
			}
			itoz((long) *pr++, &z3);
			zredcencode(rp, z3, &zbase);
			zfree(z3);
			break;
		default:
			if (i == 0)
				break;
			zadd(zbase, rp->one, &z3);
			zfree(zbase);
			zbase = z3;
			if (zrel(zbase, z) >= 0) {
				zsub(zbase, z, &z3);
				zfree(zbase);
				zbase = z3;
			}
		}

		ij = 0;
		zredcpower(rp, zbase, z1, &z3);
		for (;;) {
			if (!zcmp(z3, rp->one)) {
				if (ij) {
				/* number is definitely not prime */
					zfree(z3);
					zfree(zm1);
					zfree(z1);
					zfree(zbase);
					zredcfree(rp);
					zfree(zredcm1);
					return FALSE;
				}
				break;
			}
			if (!zcmp(z3, zredcm1))
				break;
			if (++ij >= ik) {
				/* number is definitely not prime */
				zfree(z3);
				zfree(zm1);
				zfree(z1);
				zfree(zbase);
				zredcfree(rp);
				zfree(zredcm1);
				return FALSE;
			}
			zredcsquare(rp, z3, &z2);
			zfree(z3);
			z3 = z2;
		}
		zfree(z3);
	}
	zfree(zbase);
	zredcfree(rp);
	zfree(zredcm1);
	zfree(zm1);
	zfree(z1);

	/* number might be prime */
	return TRUE;
}


/*
 * znextcand - find the next integer that passes ptest().
 * The signs of z and mod are ignored.	Result is the least integer
 * greater than abs(z) congruent to res modulo abs(mod), or if there
 * is no such integer, zero.
 *
 * given:
 *	z		search point > 2
 *	count		ptests to perform per candidate
 *	skip		ptests to skip
 *	res		return congruent to res modulo abs(mod)
 *	mod		congruent to res modulo abs(mod)
 *	cand		candidate found
 */
BOOL
znextcand(ZVALUE z, long count, ZVALUE skip, ZVALUE res, ZVALUE mod, ZVALUE *cand)
{
	ZVALUE tmp1;
	ZVALUE tmp2;

	z.sign	= 0;
	mod.sign = 0;
	if (ziszero(mod)) {
		if (zrel(res, z) > 0 && zprimetest(res, count, skip)) {
			zcopy(res, cand);
			return TRUE;
		}
		return FALSE;
	}
	if (ziszero(z) && zisone(mod)) {
		zcopy(_two_, cand);
		return TRUE;
	}
	zsub(res, z, &tmp1);
	if (zmod(tmp1, mod, &tmp2, 0))
		zadd(z, tmp2, cand);
	else
		zadd(z, mod, cand);

	/*
	 * Now *cand is least integer greater than abs(z) and congruent
	 * to res modulo mod.
	 */
	zfree(tmp1);
	zfree(tmp2);
	if (zprimetest(*cand, count, skip))
		return TRUE;
	zgcd(*cand, mod, &tmp1);
	if (!zisone(tmp1)) {
		zfree(tmp1);
		zfree(*cand);
		return FALSE;
	}
	zfree(tmp1);
	if (ziseven(*cand)) {
		zadd(*cand, mod, &tmp1);
		zfree(*cand);
		*cand = tmp1;
		if (zprimetest(*cand, count, skip))
			return TRUE;
	}
	/*
	 * *cand is now least odd integer > abs(z) and congruent to
	 * res modulo mod.
	 */
	if (zisodd(mod))
		zshift(mod, 1, &tmp1);
	else
		zcopy(mod, &tmp1);
	do {
		zadd(*cand, tmp1, &tmp2);
		zfree(*cand);
		*cand = tmp2;
	} while (!zprimetest(*cand, count, skip));
	zfree(tmp1);
	return TRUE;
}


/*
 * zprevcand - find the nearest previous integer that passes ptest().
 * The signs of z and mod are ignored.	Result is greatest positive integer
 * less than abs(z) congruent to res modulo abs(mod), or if there
 * is no such integer, zero.
 *
 * given:
 *	z		search point > 2
 *	count		ptests to perform per candidate
 *	skip		ptests to skip
 *	res		return congruent to res modulo abs(mod)
 *	mod		congruent to res modulo abs(mod)
 *	cand		candidate found
 */
BOOL
zprevcand(ZVALUE z, long count, ZVALUE skip, ZVALUE res, ZVALUE mod, ZVALUE *cand)
{
	ZVALUE tmp1;
	ZVALUE tmp2;

	z.sign	= 0;
	mod.sign = 0;
	if (ziszero(mod)) {
		if (zispos(res)&&zrel(res, z)<0 && zprimetest(res,count,skip)) {
			zcopy(res, cand);
			return TRUE;
		}
		return FALSE;
	}
	zsub(z, res, &tmp1);
	if (zmod(tmp1, mod, &tmp2, 0))
		zsub(z, tmp2, cand);
	else
		zsub(z, mod, cand);
	/*
	 * *cand is now the greatest integer < z that is congruent to res
	 * modulo mod.
	 */
	zfree(tmp1);
	zfree(tmp2);
	if (zisneg(*cand)) {
		zfree(*cand);
		return FALSE;
	}
	if (zprimetest(*cand, count, skip))
		return TRUE;
	zgcd(*cand, mod, &tmp1);
	if (!zisone(tmp1)) {
		zfree(tmp1);
		zmod(*cand, mod, &tmp1, 0);
		zfree(*cand);
		if (zprimetest(tmp1, count, skip)) {
			*cand = tmp1;
			return TRUE;
		}
		if (ziszero(tmp1)) {
			zfree(tmp1);
			if (zprimetest(mod, count, skip)) {
				zcopy(mod, cand);
				return TRUE;
			}
			return FALSE;
		}
		zfree(tmp1);
		return FALSE;
	}
	zfree(tmp1);
	if (ziseven(*cand)) {
		zsub(*cand, mod, &tmp1);
		zfree(*cand);
		if (zisneg(tmp1)) {
			zfree(tmp1);
			return FALSE;
		}
		*cand = tmp1;
		if (zprimetest(*cand, count, skip))
			return TRUE;
	}
	/*
	 * *cand is now the greatest odd integer < z that is congruent to
	 * res modulo mod.
	 */
	if (zisodd(mod))
		zshift(mod, 1, &tmp1);
	else
		zcopy(mod, &tmp1);

	do {
		zsub(*cand, tmp1, &tmp2);
		zfree(*cand);
		*cand = tmp2;
	} while (!zprimetest(*cand, count, skip) && !zisneg(*cand));
	zfree(tmp1);
	if (zisneg(*cand)) {
			zadd(*cand, mod, &tmp1);
			zfree(*cand);
			*cand = tmp1;
			if (zistwo(*cand))
				return TRUE;
			zfree(*cand);
			return FALSE;
	}
	return TRUE;
}


/*
 * Find the lowest prime factor of a number if one can be found.
 * Search is conducted for the first count primes.
 *
 * Returns:
 *	1	no factor found or z < 3
 *	>1	factor found
 */
FULL
zlowfactor(ZVALUE z, long count)
{
	FULL factlim;			/* highest factor to test */
	CONST unsigned short *p;	/* test factor */
	FULL factor;			/* test factor */
	HALF tlim;			/* limit on prime table use */
	HALF divval[2];			/* divisor value */
	ZVALUE div;			/* test factor/divisor */
	ZVALUE tmp;

	z.sign = 0;

	/*
	 * firewall
	 */
	if (count <= 0 || zisleone(z) || zistwo(z)) {
		/* number is < 3 or count is <= 0 */
		return (FULL)1;
	}

	/*
	 * test for the first factor
	 */
	if (ziseven(z)) {
		return (FULL)2;
	}
	if (count <= 1) {
		/* count was 1, tested the one and only factor */
		return (FULL)1;
	}

	/*
	 * determine if/what our sqrt factor limit will be
	 */
	if (zge64b(z)) {
		/* we have no factor limit, avoid highest factor */
		factlim = MAX_SM_PRIME-1;
	} else if (zge32b(z)) {
		/* find the isqrt(z) */
		if (!zsqrt(z, &tmp, 0)) {
			/* sqrt is exact */
			factlim = ztofull(tmp);
		} else {
			/* sqrt is inexact */
			factlim = ztofull(tmp)+1;
		}
		zfree(tmp);

		/* avoid highest factor */
		if (factlim >= MAX_SM_PRIME) {
			factlim = MAX_SM_PRIME-1;
		}
	} else {
		/* determine our factor limit */
		factlim = fsqrt(ztofull(z));
	}
	if (factlim >= MAX_SM_PRIME) {
		factlim = MAX_SM_PRIME-1;
	}

	/*
	 * walk the prime table looking for factors
	 */
	tlim = (HALF)((factlim >= MAX_MAP_PRIME) ? MAX_MAP_PRIME-1 : factlim);
	div.sign = 0;
	div.v = divval;
	div.len = 1;
	for (p=prime, --count; count > 0 && (HALF)*p <= tlim; ++p, --count) {

		/* setup factor */
		div.v[0] = (HALF)(*p);

		if (zdivides(z, div))
			return (FULL)(*p);
	}
	if (count <= 0 || (FULL)*p > factlim) {
		/* no factor found */
		return (FULL)1;
	}

	/*
	 * test the highest factor possible
	 */
	div.v[0] = MAX_MAP_PRIME;
	if (zdivides(z, div))
		return (FULL)MAX_MAP_PRIME;

	/*
	 * generate higher test factors as needed
	 */
#if BASEB == 16
	div.len = 2;
#endif
	for(factor = NXT_MAP_PRIME;
	    count > 0 && factor <= factlim;
	    factor = next_prime(factor), --count) {

		/* setup factor */
#if BASEB == 32
		div.v[0] = (HALF)factor;
#else
		div.v[0] = (HALF)(factor & BASE1);
		div.v[1] = (HALF)(factor >> BASEB);
#endif

		if (zdivides(z, div))
			return (FULL)(factor);
	}
	if (count <= 0 || factor >= factlim) {
		/* no factor found */
		return (FULL)1;
	}

	/*
	 * test the highest factor possible
	 */
#if BASEB == 32
	div.v[0] = MAX_SM_PRIME;
#else
	div.v[0] = (MAX_SM_PRIME & BASE1);
	div.v[1] = (MAX_SM_PRIME >> BASEB);
#endif
	if (zdivides(z, div))
		return (FULL)MAX_SM_PRIME;

	/*
	 * no factor found
	 */
	return (FULL)1;
}


/*
 * Compute the least common multiple of all the numbers up to the
 * specified number.
 */
void
zlcmfact(ZVALUE z, ZVALUE *dest)
{
	long n;				/* limiting number to multiply by */
	long p;				/* current prime */
	long pp = 0;			/* power of prime */
	long i;				/* test value */
	CONST unsigned short *pr;	/* pointer to a small prime */
	ZVALUE res, temp;

	if (zisneg(z) || ziszero(z)) {
		math_error("Non-positive argument for lcmfact");
		/*NOTREACHED*/
	}
	if (zge24b(z)) {
		math_error("Very large lcmfact");
		/*NOTREACHED*/
	}
	n = ztolong(z);
	/*
	 * Multiply by powers of the necessary odd primes in order.
	 * The power for each prime is the highest one which is not
	 * more than the specified number.
	 */
	res = _one_;
	for (pr=prime; (long)(*pr) <= n && *pr > 1; ++pr) {
		i = p = *pr;
		while (i <= n) {
			pp = i;
			i *= p;
		}
		zmuli(res, pp, &temp);
		zfree(res);
		res = temp;
	}
	for (p = NXT_MAP_PRIME; p <= n; p = (long)next_prime(p)) {
		i = p;
		while (i <= n) {
			pp = i;
			i *= p;
		}
		zmuli(res, pp, &temp);
		zfree(res);
		res = temp;
	}
	/*
	 * Finish by scaling by the necessary power of two.
	 */
	zshift(res, zhighbit(z), dest);
	zfree(res);
}


/*
 * fsqrt - fast square root of a FULL value
 *
 * We will determine the square root of a given value.
 * Starting with the integer square root of the largest power of
 * two <= the value, we will perform 3 Newton interations to
 * arive at our guess.
 *
 * We have verified that fsqrt(x) == (FULL)sqrt((double)x), or
 * fsqrt(x)-1 == (FULL)sqrt((double)x) for all 0 <= x < 2^32.
 *
 * given:
 *	x		compute the integer square root of x
 */
static FULL
fsqrt(FULL x)
{
	FULL y;		/* (FULL)temporary value */
	int i;

	/* firewall - deal with 0 */
	if (x == 0) {
	    return 0;
	}

	/* ignore Saber-C warning #530 about empty for statement */
	/*	  ok to ignore in proc fsqrt */
	/* determine our initial guess */
	for (i=0, y=x; y >= (FULL)256; i+=8, y>>=8) {
	}
	y = isqrt_pow2[i + topbit[y]];

	/* perform 3 Newton interations */
	y = (y+x/y)>>1;
	y = (y+x/y)>>1;
	y = (y+x/y)>>1;
#if FULL_BITS == 64
	y = (y+x/y)>>1;
#endif

	/* return the result */
	return y;
}