1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
|
/*
* Copyright (C) 2019 Ernesto A. Fernández <ernesto.mnd.fernandez@gmail.com>
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <unistd.h>
#include <apfs/parameters.h>
#include <apfs/raw.h>
#include "apfsck.h"
#include "btree.h"
#include "key.h"
#include "object.h"
#include "spaceman.h"
#include "super.h"
/**
* block_in_ip - Does this block belong to the internal pool?
* @bno: block number to check
*/
static inline bool block_in_ip(u64 bno)
{
struct spaceman *sm = &sb->s_spaceman;
u64 start = sm->sm_ip_base;
u64 end = start + sm->sm_ip_block_count;
return bno >= start && bno < end;
}
/**
* range_in_ip - Is this range included in the internal pool?
* @paddr: first block of the range
* @length: length of the range
*/
static bool range_in_ip(u64 paddr, u64 length)
{
u64 last = paddr + length - 1;
bool first_in_ip = block_in_ip(paddr);
bool last_in_ip = block_in_ip(last);
if ((first_in_ip && !last_in_ip) || (!first_in_ip && last_in_ip))
report("Free queue record", "internal pool is overrun.");
return first_in_ip;
}
/**
* bmap_mark_as_used - Set a range to ones in a bitmap
* @bitmap: the bitmap
* @paddr: first block number
* @length: block count
*
* Checks that an address range is still zeroed in the given bitmap, and then
* switches those bits.
*/
static void bmap_mark_as_used(u64 *bitmap, u64 paddr, u64 length)
{
u64 *byte;
u64 flag;
u64 i;
for (i = paddr; i < paddr + length; ++i) {
byte = bitmap + i / 64;
flag = 1ULL << i % 64;
if (*byte & flag)
report(NULL /* context */, "A block is used twice.");
*byte |= flag;
}
}
/**
* ip_bmap_mark_as_used - Mark a range as used in the ip allocation bitmap
* @paddr: first block number
* @length: block count
*
* Checks that the given address range is still marked as free in the internal
* pool's allocation bitmap, and then switches those bits.
*/
void ip_bmap_mark_as_used(u64 paddr, u64 length)
{
if (!range_in_ip(paddr, length))
report(NULL /* context */, "Out-of-range ip block number.");
paddr -= sb->s_spaceman.sm_ip_base;
bmap_mark_as_used(sb->s_ip_bitmap, paddr, length);
}
/**
* container_bmap_mark_as_used - Mark a range as used in the allocation bitmap
* @paddr: first block number
* @length: block count
*
* Checks that the given address range is still marked as free in the
* container's allocation bitmap, and then switches those bits.
*/
void container_bmap_mark_as_used(u64 paddr, u64 length)
{
/* Avoid out-of-bounds writes to the allocation bitmap */
if (paddr + length > sb->s_block_count || paddr + length < paddr)
report(NULL /* context */, "Out-of-range block number.");
bmap_mark_as_used(sb->s_bitmap, paddr, length);
}
/**
* parse_spaceman_chunk_counts - Parse spaceman fields for chunk-related counts
* @raw: pointer to the raw spaceman structure
*
* Checks the counts of blocks per chunk, chunks per cib, and cibs per cab, and
* reads them into the in-memory container superblock. Also calculates the
* total number of chunks and cibs in the container.
*/
static void parse_spaceman_chunk_counts(struct apfs_spaceman_phys *raw)
{
struct spaceman *sm = &sb->s_spaceman;
int chunk_info_size = sizeof(struct apfs_chunk_info);
int cib_size = sizeof(struct apfs_chunk_info_block);
int cab_size = sizeof(struct apfs_cib_addr_block);
sm->sm_blocks_per_chunk = le32_to_cpu(raw->sm_blocks_per_chunk);
if (sm->sm_blocks_per_chunk != 8 * sb->s_blocksize)
/* One bitmap block for each chunk */
report("Space manager", "wrong count of blocks per chunk.");
sm->sm_chunks_per_cib = (sb->s_blocksize - cib_size) / chunk_info_size;
if (le32_to_cpu(raw->sm_chunks_per_cib) != sm->sm_chunks_per_cib)
report("Space manager", "wrong count of chunks per cib.");
sm->sm_cibs_per_cab = (sb->s_blocksize - cab_size) / sizeof(__le64);
if (le32_to_cpu(raw->sm_cibs_per_cab) != sm->sm_cibs_per_cab)
report("Space manager", "wrong count of cibs per cab.");
sm->sm_chunk_count = DIV_ROUND_UP(sb->s_block_count,
sm->sm_blocks_per_chunk);
sm->sm_cib_count = DIV_ROUND_UP(sm->sm_chunk_count,
sm->sm_chunks_per_cib);
if ((sm->sm_chunk_count + sm->sm_cib_count) * 3 != sm->sm_ip_block_count)
report("Space manager", "wrong size of internal pool.");
}
/**
* read_chunk_bitmap - Read a chunk's bitmap into memory
* @addr: first block number for the chunk
* @bmap: block number for the chunk's bitmap, or zero if the chunk is all free
*
* Returns a pointer to the chunk's bitmap, read into its proper position
* within the in-memory bitmap for the container.
*/
static void *read_chunk_bitmap(u64 addr, u64 bmap)
{
struct spaceman *sm = &sb->s_spaceman;
ssize_t read_bytes;
void *buf, *ret;
size_t count;
off_t offset;
u32 chunk_number;
assert(sm->sm_bitmap);
/* Prevent out-of-bounds writes to sm->sm_bitmap */
if (addr & (sm->sm_blocks_per_chunk - 1))
report("Chunk-info", "chunk address isn't multiple of size.");
chunk_number = addr / sm->sm_blocks_per_chunk;
if (addr >= sb->s_block_count)
report("Chunk-info", "chunk address is out of bounds.");
ret = buf = sm->sm_bitmap + chunk_number * sb->s_blocksize;
if (!bmap) /* The whole chunk is free, so leave this block as zero */
return ret;
count = sb->s_blocksize;
offset = bmap * sb->s_blocksize;
do {
read_bytes = pread(fd, buf, count, offset);
if (read_bytes < 0)
system_error();
buf += read_bytes;
count -= read_bytes;
offset += read_bytes;
} while (read_bytes > 0);
/* Mark the bitmap block as used in the actual allocation bitmap */
ip_bmap_mark_as_used(bmap, 1 /* length */);
return ret;
}
/**
* count_chunk_free - Count the free blocks in a chunk
* @bmap: pointer to the chunk's bitmap
* @blks: number of blocks in the chunk
*/
static int count_chunk_free(void *bmap, u32 blks)
{
unsigned long long *curr, *end;
int free = blks;
end = bmap + sb->s_blocksize;
for (curr = bmap; curr < end; ++curr)
free -= __builtin_popcountll(*curr);
return free;
}
/**
* parse_chunk_info - Parse and check a chunk info structure
* @chunk: pointer to the raw chunk info structure
* @is_last: is this the last chunk of the device?
* @start: expected first block number for the chunk
* @xid: on return, the transaction id of the chunk
*
* Returns the first block number for the next chunk.
*/
static u64 parse_chunk_info(struct apfs_chunk_info *chunk, bool is_last,
u64 start, u64 *xid)
{
struct spaceman *sm = &sb->s_spaceman;
u32 block_count;
void *bitmap;
u32 free_count;
block_count = le32_to_cpu(chunk->ci_block_count);
if (!block_count)
report("Chunk-info", "has no blocks.");
if (block_count > sm->sm_blocks_per_chunk)
report("Chunk-info", "too many blocks.");
if (!is_last && block_count != sm->sm_blocks_per_chunk)
report("Chunk-info", "too few blocks.");
sm->sm_blocks += block_count;
if (le64_to_cpu(chunk->ci_addr) != start)
report("Chunk-info block", "chunks are not consecutive.");
bitmap = read_chunk_bitmap(start, le64_to_cpu(chunk->ci_bitmap_addr));
free_count = le32_to_cpu(chunk->ci_free_count);
if (free_count != count_chunk_free(bitmap, block_count))
report("Chunk-info", "wrong count of free blocks.");
sm->sm_free += free_count;
*xid = le64_to_cpu(chunk->ci_xid);
if (!*xid)
report("Chunk-info", "bad transaction id.");
return start + block_count;
}
/**
* parse_chunk_info_block - Parse and check a chunk-info block
* @bno: block number of the chunk-info block
* @index: index of the chunk-info block
* @start: expected first block number for the first chunk
*
* Returns the first block number for the first chunk of the next cib.
*/
static u64 parse_chunk_info_block(u64 bno, int index, u64 start)
{
struct spaceman *sm = &sb->s_spaceman;
struct object obj;
struct apfs_chunk_info_block *cib;
u32 chunk_count;
bool last_cib = index == sm->sm_cib_count - 1;
u64 max_chunk_xid = 0;
int i;
cib = read_object(bno, NULL, &obj);
if (obj.type != APFS_OBJECT_TYPE_SPACEMAN_CIB)
report("Chunk-info block", "wrong object type.");
if (obj.subtype != APFS_OBJECT_TYPE_INVALID)
report("Chunk-info block", "wrong object subtype.");
if (obj.xid > sm->sm_xid) /* Cib address is stored in the spaceman */
report("Chunk-info block", "xid is more recent than spaceman.");
if (le32_to_cpu(cib->cib_index) != index)
report("Chunk-info block", "wrong index.");
chunk_count = le32_to_cpu(cib->cib_chunk_info_count);
if (!chunk_count)
report("Chunk-info block", "has no chunks.");
if (chunk_count > sm->sm_chunks_per_cib)
report("Chunk-info block", "too many chunks.");
if (!last_cib && chunk_count != sm->sm_chunks_per_cib)
report("Chunk-info block", "too few chunks.");
sm->sm_chunks += chunk_count;
for (i = 0; i < chunk_count; ++i) {
bool last_block = false;
u64 chunk_xid;
if (last_cib && i == chunk_count - 1)
last_block = true;
start = parse_chunk_info(&cib->cib_chunk_info[i], last_block,
start, &chunk_xid);
if (chunk_xid > obj.xid)
report("Chunk-info", "xid is too recent.");
if (chunk_xid > max_chunk_xid)
max_chunk_xid = chunk_xid;
}
if (obj.xid != max_chunk_xid) /* Cib only changes if a chunk changes */
report("Chunk-info block", "xid is too recent.");
munmap(cib, sb->s_blocksize);
return start;
}
/**
* spaceman_val_from_off - Get the value stored on a given spaceman offset
* @raw: pointer to the raw space manager
* @offset: offset of the value in @raw
*
* This is not in the official documentation and I didn't figure it out myself.
* Credit should go to Joachim Metz: <https://github.com/libyal/libfsapfs>.
*
* TODO: check that no values found by this function overlap with each other.
*/
static u64 spaceman_val_from_off(struct apfs_spaceman_phys *raw, u32 offset)
{
struct spaceman *sm = &sb->s_spaceman;
char *value_p = (char *)raw + offset;
assert(sm->sm_struct_size);
if (offset & 0x7)
report("Spaceman", "offset is not aligned to 8 bytes.");
if (offset < sm->sm_struct_size)
report("Spaceman", "offset overlaps with structure.");
if (offset >= sb->s_blocksize || offset + sizeof(u64) > sb->s_blocksize)
report("Spaceman", "offset is out of bounds.");
return *((u64 *)value_p);
}
/**
* spaceman_256_from_off - Get a pointer to the 256 bits on a spaceman offset
* @raw: pointer to the raw space manager
* @offset: offset of the 256-bit value in @raw
*
* TODO: check that no values found by this function overlap with each other,
* and also with spaceman_val_from_off().
*/
static char *spaceman_256_from_off(struct apfs_spaceman_phys *raw, u32 offset)
{
struct spaceman *sm = &sb->s_spaceman;
char *value_p = (char *)raw + offset;
int sz_256 = 256 / 8;
assert(sm->sm_struct_size);
if (offset & 0x7)
report("Spaceman", "offset is not aligned to 8 bytes.");
if (offset < sm->sm_struct_size)
report("Spaceman", "offset overlaps with structure.");
if (offset >= sb->s_blocksize || offset + sz_256 > sb->s_blocksize)
report("Spaceman", "offset is out of bounds.");
return value_p;
}
/**
* parse_spaceman_main_device - Parse and check the spaceman main device struct
* @raw: pointer to the raw space manager
*/
static void parse_spaceman_main_device(struct apfs_spaceman_phys *raw)
{
struct spaceman *sm = &sb->s_spaceman;
struct apfs_spaceman_device *dev = &raw->sm_dev[APFS_SD_MAIN];
u32 addr_off;
u64 start = 0;
int i;
if (dev->sm_cab_count)
report_unknown("Chunk-info address block");
if (le32_to_cpu(dev->sm_cib_count) != sm->sm_cib_count)
report("Spaceman device", "wrong count of chunk-info blocks.");
if (le64_to_cpu(dev->sm_chunk_count) != sm->sm_chunk_count)
report("Spaceman device", "wrong count of chunks.");
if (le64_to_cpu(dev->sm_block_count) != sb->s_block_count)
report("Spaceman device", "wrong block count.");
addr_off = le32_to_cpu(dev->sm_addr_offset);
for (i = 0; i < sm->sm_cib_count; ++i) {
u64 bno = spaceman_val_from_off(raw,
addr_off + i * sizeof(u64));
start = parse_chunk_info_block(bno, i, start);
}
if (sm->sm_chunk_count != sm->sm_chunks)
report("Spaceman device", "bad total number of chunks.");
if (sb->s_block_count != sm->sm_blocks)
report("Spaceman device", "bad total number of blocks.");
if (le64_to_cpu(dev->sm_free_count) != sm->sm_free)
report("Spaceman device", "bad total number of free blocks.");
if (dev->sm_reserved || dev->sm_reserved2)
report("Spaceman device", "non-zero padding.");
}
/**
* check_spaceman_tier2_device - Check that the second-tier device is empty
* @raw: pointer to the raw space manager
*/
static void check_spaceman_tier2_device(struct apfs_spaceman_phys *raw)
{
struct spaceman *sm = &sb->s_spaceman;
struct apfs_spaceman_device *main_dev = &raw->sm_dev[APFS_SD_MAIN];
struct apfs_spaceman_device *dev = &raw->sm_dev[APFS_SD_TIER2];
u32 addr_off, main_addr_off;
addr_off = le32_to_cpu(dev->sm_addr_offset);
main_addr_off = le32_to_cpu(main_dev->sm_addr_offset);
if (addr_off != main_addr_off + sm->sm_cib_count * sizeof(u64))
report("Spaceman device", "not consecutive address offsets.");
if (spaceman_val_from_off(raw, addr_off)) /* Empty device has no cib */
report_unknown("Fusion drive");
if (dev->sm_block_count || dev->sm_chunk_count || dev->sm_cib_count ||
dev->sm_cab_count || dev->sm_free_count)
report_unknown("Fusion drive");
if (dev->sm_reserved || dev->sm_reserved2)
report("Spaceman device", "non-zero padding.");
}
struct alloc_zone {
struct alloc_zone *next; /* Next entry in linked list */
u16 id; /* Zone id */
u64 start; /* Start of zone */
u64 end; /* End of zone */
};
static struct alloc_zone *alloc_zone_list = NULL;
static void check_alloc_zone_sanity(u64 start, u64 end)
{
if (start & (sb->s_blocksize - 1))
report("Allocation zone", "start isn't multiple of block size.");
if (end & (sb->s_blocksize - 1))
report("Allocation zone", "end isn't multiple of block size.");
if (start >= end)
report("Allocation zone", "invalid range.");
}
/* Puts alloc zones in a list to check for overlap */
static void check_new_alloc_zone(u16 id, u64 start, u64 end)
{
struct alloc_zone **zone_p = NULL;
struct alloc_zone *zone = NULL;
struct alloc_zone *new = NULL;
check_alloc_zone_sanity(start, end);
zone_p = &alloc_zone_list;
zone = *zone_p;
while (zone) {
if (zone->id == id)
report("Allocation zones", "repeated id.");
if (start < zone->end && end > zone->start)
report("Allocations zones", "overlapping ranges.");
zone_p = &zone->next;
zone = *zone_p;
}
new = calloc(1, sizeof(*new));
if (!new)
system_error();
new->id = id;
new->start = start;
new->end = end;
*zone_p = new;
}
static void free_checked_alloc_zones(void)
{
struct alloc_zone *curr = alloc_zone_list;
alloc_zone_list = NULL;
while (curr) {
struct alloc_zone *next = NULL;
next = curr->next;
curr->next = NULL;
free(curr);
curr = next;
}
}
/* If old zones are reported, just check that the index is valid */
static void check_prev_alloc_zones(struct apfs_spaceman_allocation_zone_info_phys *az)
{
struct apfs_spaceman_allocation_zone_boundaries *azb = NULL;
u16 prev_index;
int j;
prev_index = le16_to_cpu(az->saz_previous_boundary_index);
if (prev_index > APFS_SM_ALLOCZONE_NUM_PREVIOUS_BOUNDARIES)
report("Allocation zones", "out-of-range previous index.");
for (j = 0; j < APFS_SM_ALLOCZONE_NUM_PREVIOUS_BOUNDARIES; ++j) {
azb = &az->saz_previous_boundaries[j];
if (prev_index == 0) {
/* No previous zones should be reported */
if (azb->saz_zone_start || azb->saz_zone_end)
report("Previous allocation zones", "missing index.");
continue;
}
if (!azb->saz_zone_start && !azb->saz_zone_end) {
/* No zone reported in this slot */
if (j == prev_index - 1 && !azb->saz_zone_start)
report("Allocation zones", "latest is missing.");
continue;
}
check_alloc_zone_sanity(le64_to_cpu(azb->saz_zone_start), le64_to_cpu(azb->saz_zone_end));
}
}
/**
* check_spaceman_datazone - Check the spaceman allocation zones
* @dz: pointer to the raw datazone structure
*
* Allocation zones are undocumented, so we can't do much more than report them
* as unsupported if they are in use.
*/
static void check_spaceman_datazone(struct apfs_spaceman_datazone_info_phys *dz)
{
int i, dev;
for (dev = 0; dev < APFS_SD_COUNT; ++dev) {
for (i = 0; i < APFS_SM_DATAZONE_ALLOCZONE_COUNT; ++i) {
struct apfs_spaceman_allocation_zone_info_phys *az = NULL;
struct apfs_spaceman_allocation_zone_boundaries *azb = NULL;
az = &dz->sdz_allocation_zones[dev][i];
azb = &az->saz_current_boundaries;
if (az->saz_zone_id) {
if (dev != APFS_SD_MAIN)
report_unknown("Fusion drive");
check_new_alloc_zone(le16_to_cpu(az->saz_zone_id), le64_to_cpu(azb->saz_zone_start), le64_to_cpu(azb->saz_zone_end));
} else if (azb->saz_zone_start || azb->saz_zone_end) {
report("Allocation zone", "has no id.");
}
if (az->saz_reserved)
report("Datazone", "reserved field in use.");
check_prev_alloc_zones(az);
}
free_checked_alloc_zones();
}
}
/**
* check_spaceman_free_queues - Check the spaceman free queues
* @sfq: pointer to the raw free queue array
*/
static void check_spaceman_free_queues(struct apfs_spaceman_free_queue *sfq)
{
struct spaceman *sm = &sb->s_spaceman;
int i;
if (sfq[APFS_SFQ_TIER2].sfq_count || sfq[APFS_SFQ_TIER2].sfq_tree_oid ||
sfq[APFS_SFQ_TIER2].sfq_oldest_xid ||
sfq[APFS_SFQ_TIER2].sfq_tree_node_limit)
report_unknown("Fusion drive");
for (i = 0; i < APFS_SFQ_COUNT; ++i) {
if (sfq[i].sfq_pad16 || sfq[i].sfq_pad32)
report("Spaceman free queue", "non-zero padding.");
if (sfq[i].sfq_reserved)
report("Spaceman free queue", "reserved field in use.");
}
sm->sm_ip_fq = parse_free_queue_btree(
le64_to_cpu(sfq[APFS_SFQ_IP].sfq_tree_oid), APFS_SFQ_IP);
if (le64_to_cpu(sfq[APFS_SFQ_IP].sfq_count) != sm->sm_ip_fq->sfq_count)
report("Spaceman free queue", "wrong block count.");
if (le64_to_cpu(sfq[APFS_SFQ_IP].sfq_oldest_xid) !=
sm->sm_ip_fq->sfq_oldest_xid)
report("Spaceman free queue", "oldest xid is wrong.");
if (le16_to_cpu(sfq[APFS_SFQ_IP].sfq_tree_node_limit) <
sm->sm_ip_fq->sfq_btree.node_count)
report("Spaceman free queue", "node count above limit.");
if (le16_to_cpu(sfq[APFS_SFQ_IP].sfq_tree_node_limit) != ip_fq_node_limit(sm->sm_chunks))
report("Spaceman free queue", "wrong node limit.");
sm->sm_main_fq = parse_free_queue_btree(
le64_to_cpu(sfq[APFS_SFQ_MAIN].sfq_tree_oid), APFS_SFQ_MAIN);
if (le64_to_cpu(sfq[APFS_SFQ_MAIN].sfq_count) !=
sm->sm_main_fq->sfq_count)
report("Spaceman free queue", "wrong block count.");
if (le64_to_cpu(sfq[APFS_SFQ_MAIN].sfq_oldest_xid) !=
sm->sm_main_fq->sfq_oldest_xid)
report("Spaceman free queue", "oldest xid is wrong.");
if (le16_to_cpu(sfq[APFS_SFQ_MAIN].sfq_tree_node_limit) <
sm->sm_main_fq->sfq_btree.node_count)
report("Spaceman free queue", "node count above limit.");
if (le16_to_cpu(sfq[APFS_SFQ_MAIN].sfq_tree_node_limit) != main_fq_node_limit(sm->sm_blocks))
report("Spaceman free queue", "wrong node limit.");
}
/**
* compare_container_bitmaps - Verify the container's allocation bitmap
* @sm_bmap: allocation bitmap reported by the space manager
* @real_bmap: allocation bitmap assembled by the fsck
* @chunks: container chunk count, i.e., block count for the bitmaps
*/
static void compare_container_bitmaps(u64 *sm_bmap, u64 *real_bmap, u64 chunks)
{
unsigned long long bmap_size = sb->s_blocksize * chunks;
if (memcmp(sm_bmap, real_bmap, bmap_size) != 0)
report("Space manager", "bad allocation bitmap.");
}
/**
* check_ip_free_next - Check the free_next field for the internal pool
* @free_next: 256-bit field to check
* @free_head: first free block in the ip circular buffer
* @free_len: number of free blocks in the ip circular buffer
*/
static void check_ip_free_next(__le16 *free_next, u16 free_head, u16 free_len)
{
int bmap_count = 16;
__le16 *expected;
u32 i;
expected = calloc(bmap_count, sizeof(*free_next));
if (!expected)
system_error();
/*
* Ip bitmap blocks are marked with numbers 1,2,3,...,14,15,0 in
* free_next, except when they are in use: those get overwritten with
* 0xFFFF.
*/
for (i = 0; i < bmap_count; i++) {
u32 index_in_free = (bmap_count + i - free_head) % bmap_count;
if (index_in_free < free_len)
expected[i] = cpu_to_le16((1 + i) % bmap_count);
else
expected[i] = cpu_to_le16(0xFFFF);
}
if (memcmp(free_next, expected, bmap_count * sizeof(*free_next)))
report("Space manager", "Bad ip_bm_free_next bitmap.");
}
/**
* parse_ip_bitmap_list - Check consistency of the internal pool bitmap list
* @raw: pointer to the raw space manager
*
* Returns the block number for the current bitmap.
*/
static u64 parse_ip_bitmap_list(struct apfs_spaceman_phys *raw)
{
u64 bmap_base = le64_to_cpu(raw->sm_ip_bm_base);
u64 bmap_off;
u32 bmap_length = le32_to_cpu(raw->sm_ip_bm_block_count);
u16 free_head, free_tail, free_length;
char *free_next;
/*
* So far all internal pool bitmaps encountered had only one block; the
* bitmap area is larger than that because it keeps some old versions.
*/
bmap_off = spaceman_val_from_off(raw,
le32_to_cpu(raw->sm_ip_bitmap_offset));
if (bmap_off >= bmap_length)
report("Internal pool", "bitmap block is out-of-bounds.");
if (le32_to_cpu(raw->sm_ip_bm_size_in_blocks) != 1)
report_unknown("Multiblock bitmap in internal pool");
/* The head and tail fit in 16-bit fields, so the length also should */
if (bmap_length > (u16)(~0U))
report("Internal pool", "bitmap list is too long.");
/* This may be wrong for huge containers, I haven't tested those yet */
if (bmap_length != 16)
report("Space manager", "ip doesn't have 16 bitmaps.");
free_head = le16_to_cpu(raw->sm_ip_bm_free_head);
free_tail = le16_to_cpu(raw->sm_ip_bm_free_tail);
free_length = (bmap_length + free_tail - free_head) % bmap_length;
if (free_head >= bmap_length || free_tail >= bmap_length)
report("Internal pool", "free bitmaps are out-of-bounds.");
if ((bmap_length + bmap_off - free_head) % bmap_length < free_length)
report("Internal pool", "current bitmap listed as free.");
if (free_length != bmap_length - 2)
report_unknown("Internal pool bitmaps in use are not two");
free_next = spaceman_256_from_off(raw, le32_to_cpu(raw->sm_ip_bm_free_next_offset));
check_ip_free_next((__le16 *)free_next, free_head, free_length);
container_bmap_mark_as_used(bmap_base, bmap_length);
return bmap_base + bmap_off;
}
/**
* check_ip_bitmap_blocks - Check that the bitmap blocks are properly zeroed
* @raw: pointer to the raw space manager
*
* For most internal pool bitmap blocks this is the only check needed; the
* current one also needs to be compared against the actual allocation bitmap.
*/
static void check_ip_bitmap_blocks(struct apfs_spaceman_phys *raw)
{
u64 bmap_base = le64_to_cpu(raw->sm_ip_bm_base);
u32 bmap_length = le32_to_cpu(raw->sm_ip_bm_block_count);
u64 pool_blocks = le64_to_cpu(raw->sm_ip_block_count);
int i;
for (i = 0; i < bmap_length; ++i) {
char *bmap;
int edge, j;
bmap = mmap(NULL, sb->s_blocksize, PROT_READ, MAP_PRIVATE,
fd, (bmap_base + i) * sb->s_blocksize);
if (bmap == MAP_FAILED)
system_error();
/*
* The edge is the last byte inside the allocation bitmap;
* everything that comes afterwards must be zeroed.
*/
edge = pool_blocks / 8;
for (j = pool_blocks % 8; j < 8; ++j) {
u8 flag = 1 << j;
if (bmap[edge] & flag)
report("Internal pool", "non-zeroed bitmap.");
}
for (j = edge + 1; j < sb->s_blocksize; ++j) {
if (bmap[j])
report("Internal pool", "non-zeroed bitmap.");
}
munmap(bmap, sb->s_blocksize);
}
}
/**
* check_internal_pool - Check the internal pool of blocks
* @raw: pointer to the raw space manager
*/
static void check_internal_pool(struct apfs_spaceman_phys *raw)
{
u64 *pool_bmap;
u64 pool_base = le64_to_cpu(raw->sm_ip_base);
u64 pool_blocks = le64_to_cpu(raw->sm_ip_block_count);
u64 ip_chunk_count = DIV_ROUND_UP(pool_blocks, 8 * sb->s_blocksize);
u64 xid;
pool_bmap = mmap(NULL, sb->s_blocksize, PROT_READ, MAP_PRIVATE,
fd, parse_ip_bitmap_list(raw) * sb->s_blocksize);
if (pool_bmap == MAP_FAILED)
system_error();
if (memcmp(pool_bmap, sb->s_ip_bitmap, ip_chunk_count * sb->s_blocksize))
report("Space manager", "bad ip allocation bitmap.");
container_bmap_mark_as_used(pool_base, pool_blocks);
munmap(pool_bmap, sb->s_blocksize);
if (le32_to_cpu(raw->sm_ip_bm_tx_multiplier) !=
APFS_SPACEMAN_IP_BM_TX_MULTIPLIER)
report("Space manager", "bad tx multiplier for internal pool.");
xid = spaceman_val_from_off(raw, le32_to_cpu(raw->sm_ip_bm_xid_offset));
if (xid > sb->s_xid)
report("Internal pool", "bad transaction id.");
check_ip_bitmap_blocks(raw);
}
/**
* check_spaceman - Check the space manager structures for a container
* @oid: ephemeral object id for the spaceman structure
*/
void check_spaceman(u64 oid)
{
struct spaceman *sm = &sb->s_spaceman;
struct object obj;
struct apfs_spaceman_phys *raw;
u64 ip_chunk_count;
u32 flags;
raw = read_ephemeral_object(oid, &obj);
if (obj.type != APFS_OBJECT_TYPE_SPACEMAN)
report("Space manager", "wrong object type.");
if (obj.subtype != APFS_OBJECT_TYPE_INVALID)
report("Space manager", "wrong object subtype.");
sm->sm_xid = obj.xid;
sm->sm_ip_base = le64_to_cpu(raw->sm_ip_base);
sm->sm_ip_block_count = le64_to_cpu(raw->sm_ip_block_count);
ip_chunk_count = DIV_ROUND_UP(sm->sm_ip_block_count, 8 * sb->s_blocksize);
sb->s_ip_bitmap = calloc(ip_chunk_count, sb->s_blocksize);
if (!sb->s_ip_bitmap)
system_error();
flags = le32_to_cpu(raw->sm_flags);
if ((flags & APFS_SM_FLAGS_VALID_MASK) != flags)
report("Space manager", "invalid flag in use.");
if (flags & APFS_SM_FLAG_VERSIONED) {
sm->sm_struct_size = le32_to_cpu(raw->sm_struct_size);
if (sm->sm_struct_size != sizeof(*raw))
report("Space manager", "wrong reported struct size.");
check_spaceman_datazone(&raw->sm_datazone);
} else {
/* Some fields are missing in the non-versioned structure */
sm->sm_struct_size = sizeof(*raw) - sizeof(raw->sm_datazone) -
sizeof(raw->sm_struct_size) -
sizeof(raw->sm_version);
}
if (le32_to_cpu(raw->sm_block_size) != sb->s_blocksize)
report("Space manager", "wrong block size.");
parse_spaceman_chunk_counts(raw);
/* All bitmaps will need to be read into memory */
sm->sm_bitmap = calloc(sm->sm_chunk_count, sb->s_blocksize);
if (!sm->sm_bitmap)
system_error();
parse_spaceman_main_device(raw);
check_spaceman_tier2_device(raw);
check_spaceman_free_queues(raw->sm_fq);
check_internal_pool(raw);
free(sb->s_ip_bitmap);
if (le64_to_cpu(raw->sm_fs_reserve_block_count) != sm->sm_reserve_block_num)
report("Space manager", "wrong block reservation total.");
if (le64_to_cpu(raw->sm_fs_reserve_alloc_count) != sm->sm_reserve_alloc_num)
report("Space manager", "wrong reserve block allocation total.");
if (sm->sm_reserve_block_num - sm->sm_reserve_alloc_num > sm->sm_free)
report("Space manager", "block reservation not respected.");
compare_container_bitmaps(sm->sm_bitmap, sb->s_bitmap,
sm->sm_chunk_count);
munmap(raw, sb->s_blocksize);
}
/**
* parse_free_queue_record - Parse a free queue record and check for corruption
* @key: pointer to the raw key
* @val: pointer to the raw value
* @len: length of the raw value
* @btree: the free queue btree structure
*
* Internal consistency of @key must be checked before calling this function.
*/
void parse_free_queue_record(struct apfs_spaceman_free_queue_key *key,
void *val, int len, struct btree *btree)
{
struct free_queue *sfq = (struct free_queue *)btree;
u64 paddr, length, xid;
bool inside_ip;
if (!len) {
length = 1; /* Ghost records are for one block long extents */
} else if (len == 8) {
__le64 *val64 = (__le64 *)val;
length = le64_to_cpu(*val64);
if (!length)
report("Free queue record", "length is zero.");
if (length == 1)
report("Free queue record", "value is unnecessary.");
} else {
report("Free queue record", "wrong size of value.");
}
sfq->sfq_count += length;
paddr = le64_to_cpu(key->sfqk_paddr);
inside_ip = range_in_ip(paddr, length);
if (sfq->sfq_index == APFS_SFQ_IP && !inside_ip)
report("Free queue record", "range should be inside the IP.");
if (sfq->sfq_index != APFS_SFQ_IP && inside_ip)
report("Free queue record", "range should be outside the IP.");
xid = le64_to_cpu(key->sfqk_xid);
if (xid > sb->s_xid)
report("Free queue record", "bad transaction id.");
if (!sfq->sfq_oldest_xid || xid < sfq->sfq_oldest_xid)
sfq->sfq_oldest_xid = xid;
/*
* These blocks are free, but still not marked as such. The point
* seems to be the preservation of recent checkpoints.
*/
if (inside_ip)
ip_bmap_mark_as_used(paddr, length);
else
container_bmap_mark_as_used(paddr, length);
}
|