File: spaceman.c

package info (click to toggle)
apfsprogs 0%2Bgit20230206%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,036 kB
  • sloc: ansic: 14,691; makefile: 123
file content (896 lines) | stat: -rw-r--r-- 28,985 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
/*
 * Copyright (C) 2019 Ernesto A. Fernández <ernesto.mnd.fernandez@gmail.com>
 */

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <unistd.h>
#include <apfs/parameters.h>
#include <apfs/raw.h>
#include "apfsck.h"
#include "btree.h"
#include "key.h"
#include "object.h"
#include "spaceman.h"
#include "super.h"

/**
 * block_in_ip - Does this block belong to the internal pool?
 * @bno: block number to check
 */
static inline bool block_in_ip(u64 bno)
{
	struct spaceman *sm = &sb->s_spaceman;
	u64 start = sm->sm_ip_base;
	u64 end = start + sm->sm_ip_block_count;

	return bno >= start && bno < end;
}

/**
 * range_in_ip - Is this range included in the internal pool?
 * @paddr:	first block of the range
 * @length:	length of the range
 */
static bool range_in_ip(u64 paddr, u64 length)
{
	u64 last = paddr + length - 1;
	bool first_in_ip = block_in_ip(paddr);
	bool last_in_ip = block_in_ip(last);

	if ((first_in_ip && !last_in_ip) || (!first_in_ip && last_in_ip))
		report("Free queue record", "internal pool is overrun.");
	return first_in_ip;
}

/**
 * bmap_mark_as_used - Set a range to ones in a bitmap
 * @bitmap:	the bitmap
 * @paddr:	first block number
 * @length:	block count
 *
 * Checks that an address range is still zeroed in the given bitmap, and then
 * switches those bits.
 */
static void bmap_mark_as_used(u64 *bitmap, u64 paddr, u64 length)
{
	u64 *byte;
	u64 flag;
	u64 i;

	for (i = paddr; i < paddr + length; ++i) {
		byte = bitmap + i / 64;
		flag = 1ULL << i % 64;
		if (*byte & flag)
			report(NULL /* context */, "A block is used twice.");
		*byte |= flag;
	}
}

/**
 * ip_bmap_mark_as_used - Mark a range as used in the ip allocation bitmap
 * @paddr:	first block number
 * @length:	block count
 *
 * Checks that the given address range is still marked as free in the internal
 * pool's allocation bitmap, and then switches those bits.
 */
void ip_bmap_mark_as_used(u64 paddr, u64 length)
{
	if (!range_in_ip(paddr, length))
		report(NULL /* context */, "Out-of-range ip block number.");
	paddr -= sb->s_spaceman.sm_ip_base;
	bmap_mark_as_used(sb->s_ip_bitmap, paddr, length);
}

/**
 * container_bmap_mark_as_used - Mark a range as used in the allocation bitmap
 * @paddr:	first block number
 * @length:	block count
 *
 * Checks that the given address range is still marked as free in the
 * container's allocation bitmap, and then switches those bits.
 */
void container_bmap_mark_as_used(u64 paddr, u64 length)
{
	/* Avoid out-of-bounds writes to the allocation bitmap */
	if (paddr + length > sb->s_block_count || paddr + length < paddr)
		report(NULL /* context */, "Out-of-range block number.");

	bmap_mark_as_used(sb->s_bitmap, paddr, length);
}

/**
 * parse_spaceman_chunk_counts - Parse spaceman fields for chunk-related counts
 * @raw: pointer to the raw spaceman structure
 *
 * Checks the counts of blocks per chunk, chunks per cib, and cibs per cab, and
 * reads them into the in-memory container superblock.  Also calculates the
 * total number of chunks and cibs in the container.
 */
static void parse_spaceman_chunk_counts(struct apfs_spaceman_phys *raw)
{
	struct spaceman *sm = &sb->s_spaceman;
	int chunk_info_size = sizeof(struct apfs_chunk_info);
	int cib_size = sizeof(struct apfs_chunk_info_block);
	int cab_size = sizeof(struct apfs_cib_addr_block);

	sm->sm_blocks_per_chunk = le32_to_cpu(raw->sm_blocks_per_chunk);
	if (sm->sm_blocks_per_chunk != 8 * sb->s_blocksize)
		/* One bitmap block for each chunk */
		report("Space manager", "wrong count of blocks per chunk.");

	sm->sm_chunks_per_cib = (sb->s_blocksize - cib_size) / chunk_info_size;
	if (le32_to_cpu(raw->sm_chunks_per_cib) != sm->sm_chunks_per_cib)
		report("Space manager", "wrong count of chunks per cib.");

	sm->sm_cibs_per_cab = (sb->s_blocksize - cab_size) / sizeof(__le64);
	if (le32_to_cpu(raw->sm_cibs_per_cab) != sm->sm_cibs_per_cab)
		report("Space manager", "wrong count of cibs per cab.");

	sm->sm_chunk_count = DIV_ROUND_UP(sb->s_block_count,
					  sm->sm_blocks_per_chunk);
	sm->sm_cib_count = DIV_ROUND_UP(sm->sm_chunk_count,
					sm->sm_chunks_per_cib);

	if ((sm->sm_chunk_count + sm->sm_cib_count) * 3 != sm->sm_ip_block_count)
		report("Space manager", "wrong size of internal pool.");
}

/**
 * read_chunk_bitmap - Read a chunk's bitmap into memory
 * @addr: first block number for the chunk
 * @bmap: block number for the chunk's bitmap, or zero if the chunk is all free
 *
 * Returns a pointer to the chunk's bitmap, read into its proper position
 * within the in-memory bitmap for the container.
 */
static void *read_chunk_bitmap(u64 addr, u64 bmap)
{
	struct spaceman *sm = &sb->s_spaceman;
	ssize_t read_bytes;
	void *buf, *ret;
	size_t count;
	off_t offset;
	u32 chunk_number;

	assert(sm->sm_bitmap);

	/* Prevent out-of-bounds writes to sm->sm_bitmap */
	if (addr & (sm->sm_blocks_per_chunk - 1))
		report("Chunk-info", "chunk address isn't multiple of size.");
	chunk_number = addr / sm->sm_blocks_per_chunk;
	if (addr >= sb->s_block_count)
		report("Chunk-info", "chunk address is out of bounds.");

	ret = buf = sm->sm_bitmap + chunk_number * sb->s_blocksize;
	if (!bmap) /* The whole chunk is free, so leave this block as zero */
		return ret;

	count = sb->s_blocksize;
	offset = bmap * sb->s_blocksize;
	do {
		read_bytes = pread(fd, buf, count, offset);
		if (read_bytes < 0)
			system_error();
		buf += read_bytes;
		count -= read_bytes;
		offset += read_bytes;
	} while (read_bytes > 0);

	/* Mark the bitmap block as used in the actual allocation bitmap */
	ip_bmap_mark_as_used(bmap, 1 /* length */);
	return ret;
}

/**
 * count_chunk_free - Count the free blocks in a chunk
 * @bmap: pointer to the chunk's bitmap
 * @blks: number of blocks in the chunk
 */
static int count_chunk_free(void *bmap, u32 blks)
{
	unsigned long long *curr, *end;
	int free = blks;

	end = bmap + sb->s_blocksize;
	for (curr = bmap; curr < end; ++curr)
		free -= __builtin_popcountll(*curr);
	return free;
}

/**
 * parse_chunk_info - Parse and check a chunk info structure
 * @chunk:	pointer to the raw chunk info structure
 * @is_last:	is this the last chunk of the device?
 * @start:	expected first block number for the chunk
 * @xid:	on return, the transaction id of the chunk
 *
 * Returns the first block number for the next chunk.
 */
static u64 parse_chunk_info(struct apfs_chunk_info *chunk, bool is_last,
			    u64 start, u64 *xid)
{
	struct spaceman *sm = &sb->s_spaceman;
	u32 block_count;
	void *bitmap;
	u32 free_count;

	block_count = le32_to_cpu(chunk->ci_block_count);
	if (!block_count)
		report("Chunk-info", "has no blocks.");
	if (block_count > sm->sm_blocks_per_chunk)
		report("Chunk-info", "too many blocks.");
	if (!is_last && block_count != sm->sm_blocks_per_chunk)
		report("Chunk-info", "too few blocks.");
	sm->sm_blocks += block_count;

	if (le64_to_cpu(chunk->ci_addr) != start)
		report("Chunk-info block", "chunks are not consecutive.");
	bitmap = read_chunk_bitmap(start, le64_to_cpu(chunk->ci_bitmap_addr));

	free_count = le32_to_cpu(chunk->ci_free_count);
	if (free_count != count_chunk_free(bitmap, block_count))
		report("Chunk-info", "wrong count of free blocks.");
	sm->sm_free += free_count;

	*xid = le64_to_cpu(chunk->ci_xid);
	if (!*xid)
		report("Chunk-info", "bad transaction id.");
	return start + block_count;
}

/**
 * parse_chunk_info_block - Parse and check a chunk-info block
 * @bno:	block number of the chunk-info block
 * @index:	index of the chunk-info block
 * @start:	expected first block number for the first chunk
 *
 * Returns the first block number for the first chunk of the next cib.
 */
static u64 parse_chunk_info_block(u64 bno, int index, u64 start)
{
	struct spaceman *sm = &sb->s_spaceman;
	struct object obj;
	struct apfs_chunk_info_block *cib;
	u32 chunk_count;
	bool last_cib = index == sm->sm_cib_count - 1;
	u64 max_chunk_xid = 0;
	int i;

	cib = read_object(bno, NULL, &obj);
	if (obj.type != APFS_OBJECT_TYPE_SPACEMAN_CIB)
		report("Chunk-info block", "wrong object type.");
	if (obj.subtype != APFS_OBJECT_TYPE_INVALID)
		report("Chunk-info block", "wrong object subtype.");
	if (obj.xid > sm->sm_xid) /* Cib address is stored in the spaceman */
		report("Chunk-info block", "xid is more recent than spaceman.");

	if (le32_to_cpu(cib->cib_index) != index)
		report("Chunk-info block", "wrong index.");

	chunk_count = le32_to_cpu(cib->cib_chunk_info_count);
	if (!chunk_count)
		report("Chunk-info block", "has no chunks.");
	if (chunk_count > sm->sm_chunks_per_cib)
		report("Chunk-info block", "too many chunks.");
	if (!last_cib && chunk_count != sm->sm_chunks_per_cib)
		report("Chunk-info block", "too few chunks.");
	sm->sm_chunks += chunk_count;

	for (i = 0; i < chunk_count; ++i) {
		bool last_block = false;
		u64 chunk_xid;

		if (last_cib && i == chunk_count - 1)
			last_block = true;
		start = parse_chunk_info(&cib->cib_chunk_info[i], last_block,
					 start, &chunk_xid);

		if (chunk_xid > obj.xid)
			report("Chunk-info", "xid is too recent.");
		if (chunk_xid > max_chunk_xid)
			max_chunk_xid = chunk_xid;
	}
	if (obj.xid != max_chunk_xid) /* Cib only changes if a chunk changes */
		report("Chunk-info block", "xid is too recent.");

	munmap(cib, sb->s_blocksize);
	return start;
}

/**
 * spaceman_val_from_off - Get the value stored on a given spaceman offset
 * @raw:	pointer to the raw space manager
 * @offset:	offset of the value in @raw
 *
 * This is not in the official documentation and I didn't figure it out myself.
 * Credit should go to Joachim Metz: <https://github.com/libyal/libfsapfs>.
 *
 * TODO: check that no values found by this function overlap with each other.
 */
static u64 spaceman_val_from_off(struct apfs_spaceman_phys *raw, u32 offset)
{
	struct spaceman *sm = &sb->s_spaceman;
	char *value_p = (char *)raw + offset;

	assert(sm->sm_struct_size);

	if (offset & 0x7)
		report("Spaceman", "offset is not aligned to 8 bytes.");
	if (offset < sm->sm_struct_size)
		report("Spaceman", "offset overlaps with structure.");
	if (offset >= sb->s_blocksize || offset + sizeof(u64) > sb->s_blocksize)
		report("Spaceman", "offset is out of bounds.");
	return *((u64 *)value_p);
}

/**
 * spaceman_256_from_off - Get a pointer to the 256 bits on a spaceman offset
 * @raw:	pointer to the raw space manager
 * @offset:	offset of the 256-bit value in @raw
 *
 * TODO: check that no values found by this function overlap with each other,
 * and also with spaceman_val_from_off().
 */
static char *spaceman_256_from_off(struct apfs_spaceman_phys *raw, u32 offset)
{
	struct spaceman *sm = &sb->s_spaceman;
	char *value_p = (char *)raw + offset;
	int sz_256 = 256 / 8;

	assert(sm->sm_struct_size);

	if (offset & 0x7)
		report("Spaceman", "offset is not aligned to 8 bytes.");
	if (offset < sm->sm_struct_size)
		report("Spaceman", "offset overlaps with structure.");
	if (offset >= sb->s_blocksize || offset + sz_256 > sb->s_blocksize)
		report("Spaceman", "offset is out of bounds.");
	return value_p;
}

/**
 * parse_spaceman_main_device - Parse and check the spaceman main device struct
 * @raw: pointer to the raw space manager
 */
static void parse_spaceman_main_device(struct apfs_spaceman_phys *raw)
{
	struct spaceman *sm = &sb->s_spaceman;
	struct apfs_spaceman_device *dev = &raw->sm_dev[APFS_SD_MAIN];
	u32 addr_off;
	u64 start = 0;
	int i;

	if (dev->sm_cab_count)
		report_unknown("Chunk-info address block");
	if (le32_to_cpu(dev->sm_cib_count) != sm->sm_cib_count)
		report("Spaceman device", "wrong count of chunk-info blocks.");
	if (le64_to_cpu(dev->sm_chunk_count) != sm->sm_chunk_count)
		report("Spaceman device", "wrong count of chunks.");
	if (le64_to_cpu(dev->sm_block_count) != sb->s_block_count)
		report("Spaceman device", "wrong block count.");

	addr_off = le32_to_cpu(dev->sm_addr_offset);
	for (i = 0; i < sm->sm_cib_count; ++i) {
		u64 bno = spaceman_val_from_off(raw,
						addr_off + i * sizeof(u64));

		start = parse_chunk_info_block(bno, i, start);
	}

	if (sm->sm_chunk_count != sm->sm_chunks)
		report("Spaceman device", "bad total number of chunks.");
	if (sb->s_block_count != sm->sm_blocks)
		report("Spaceman device", "bad total number of blocks.");
	if (le64_to_cpu(dev->sm_free_count) != sm->sm_free)
		report("Spaceman device", "bad total number of free blocks.");

	if (dev->sm_reserved || dev->sm_reserved2)
		report("Spaceman device", "non-zero padding.");
}

/**
 * check_spaceman_tier2_device - Check that the second-tier device is empty
 * @raw: pointer to the raw space manager
 */
static void check_spaceman_tier2_device(struct apfs_spaceman_phys *raw)
{
	struct spaceman *sm = &sb->s_spaceman;
	struct apfs_spaceman_device *main_dev = &raw->sm_dev[APFS_SD_MAIN];
	struct apfs_spaceman_device *dev = &raw->sm_dev[APFS_SD_TIER2];
	u32 addr_off, main_addr_off;

	addr_off = le32_to_cpu(dev->sm_addr_offset);
	main_addr_off = le32_to_cpu(main_dev->sm_addr_offset);
	if (addr_off != main_addr_off + sm->sm_cib_count * sizeof(u64))
		report("Spaceman device", "not consecutive address offsets.");
	if (spaceman_val_from_off(raw, addr_off)) /* Empty device has no cib */
		report_unknown("Fusion drive");

	if (dev->sm_block_count || dev->sm_chunk_count || dev->sm_cib_count ||
	    dev->sm_cab_count || dev->sm_free_count)
		report_unknown("Fusion drive");
	if (dev->sm_reserved || dev->sm_reserved2)
		report("Spaceman device", "non-zero padding.");
}

struct alloc_zone {
	struct alloc_zone *next;	/* Next entry in linked list */
	u16 id;				/* Zone id */
	u64 start;			/* Start of zone */
	u64 end;			/* End of zone */
};

static struct alloc_zone *alloc_zone_list = NULL;

static void check_alloc_zone_sanity(u64 start, u64 end)
{
	if (start & (sb->s_blocksize - 1))
		report("Allocation zone", "start isn't multiple of block size.");
	if (end & (sb->s_blocksize - 1))
		report("Allocation zone", "end isn't multiple of block size.");
	if (start >= end)
		report("Allocation zone", "invalid range.");
}

/* Puts alloc zones in a list to check for overlap */
static void check_new_alloc_zone(u16 id, u64 start, u64 end)
{
	struct alloc_zone **zone_p = NULL;
	struct alloc_zone *zone = NULL;
	struct alloc_zone *new = NULL;

	check_alloc_zone_sanity(start, end);

	zone_p = &alloc_zone_list;
	zone = *zone_p;
	while (zone) {
		if (zone->id == id)
			report("Allocation zones", "repeated id.");
		if (start < zone->end && end > zone->start)
			report("Allocations zones", "overlapping ranges.");
		zone_p = &zone->next;
		zone = *zone_p;
	}

	new = calloc(1, sizeof(*new));
	if (!new)
		system_error();
	new->id = id;
	new->start = start;
	new->end = end;
	*zone_p = new;
}

static void free_checked_alloc_zones(void)
{
	struct alloc_zone *curr = alloc_zone_list;

	alloc_zone_list = NULL;
	while (curr) {
		struct alloc_zone *next = NULL;

		next = curr->next;
		curr->next = NULL;
		free(curr);
		curr = next;
	}
}

/* If old zones are reported, just check that the index is valid */
static void check_prev_alloc_zones(struct apfs_spaceman_allocation_zone_info_phys *az)
{
	struct apfs_spaceman_allocation_zone_boundaries *azb = NULL;
	u16 prev_index;
	int j;

	prev_index = le16_to_cpu(az->saz_previous_boundary_index);
	if (prev_index > APFS_SM_ALLOCZONE_NUM_PREVIOUS_BOUNDARIES)
		report("Allocation zones", "out-of-range previous index.");

	for (j = 0; j < APFS_SM_ALLOCZONE_NUM_PREVIOUS_BOUNDARIES; ++j) {
		azb = &az->saz_previous_boundaries[j];

		if (prev_index == 0) {
			/* No previous zones should be reported */
			if (azb->saz_zone_start || azb->saz_zone_end)
				report("Previous allocation zones", "missing index.");
			continue;
		}

		if (!azb->saz_zone_start && !azb->saz_zone_end) {
			/* No zone reported in this slot */
			if (j == prev_index - 1 && !azb->saz_zone_start)
				report("Allocation zones", "latest is missing.");
			continue;
		}

		check_alloc_zone_sanity(le64_to_cpu(azb->saz_zone_start), le64_to_cpu(azb->saz_zone_end));
	}
}

/**
 * check_spaceman_datazone - Check the spaceman allocation zones
 * @dz: pointer to the raw datazone structure
 *
 * Allocation zones are undocumented, so we can't do much more than report them
 * as unsupported if they are in use.
 */
static void check_spaceman_datazone(struct apfs_spaceman_datazone_info_phys *dz)
{
	int i, dev;

	for (dev = 0; dev < APFS_SD_COUNT; ++dev) {
		for (i = 0; i < APFS_SM_DATAZONE_ALLOCZONE_COUNT; ++i) {
			struct apfs_spaceman_allocation_zone_info_phys *az = NULL;
			struct apfs_spaceman_allocation_zone_boundaries *azb = NULL;

			az = &dz->sdz_allocation_zones[dev][i];
			azb = &az->saz_current_boundaries;

			if (az->saz_zone_id) {
				if (dev != APFS_SD_MAIN)
					report_unknown("Fusion drive");
				check_new_alloc_zone(le16_to_cpu(az->saz_zone_id), le64_to_cpu(azb->saz_zone_start), le64_to_cpu(azb->saz_zone_end));
			} else if (azb->saz_zone_start || azb->saz_zone_end) {
				report("Allocation zone", "has no id.");
			}

			if (az->saz_reserved)
				report("Datazone", "reserved field in use.");

			check_prev_alloc_zones(az);
		}
		free_checked_alloc_zones();
	}
}

/**
 * check_spaceman_free_queues - Check the spaceman free queues
 * @sfq: pointer to the raw free queue array
 */
static void check_spaceman_free_queues(struct apfs_spaceman_free_queue *sfq)
{
	struct spaceman *sm = &sb->s_spaceman;
	int i;

	if (sfq[APFS_SFQ_TIER2].sfq_count || sfq[APFS_SFQ_TIER2].sfq_tree_oid ||
	    sfq[APFS_SFQ_TIER2].sfq_oldest_xid ||
	    sfq[APFS_SFQ_TIER2].sfq_tree_node_limit)
		report_unknown("Fusion drive");

	for (i = 0; i < APFS_SFQ_COUNT; ++i) {
		if (sfq[i].sfq_pad16 || sfq[i].sfq_pad32)
			report("Spaceman free queue", "non-zero padding.");
		if (sfq[i].sfq_reserved)
			report("Spaceman free queue", "reserved field in use.");
	}

	sm->sm_ip_fq = parse_free_queue_btree(
				le64_to_cpu(sfq[APFS_SFQ_IP].sfq_tree_oid), APFS_SFQ_IP);
	if (le64_to_cpu(sfq[APFS_SFQ_IP].sfq_count) != sm->sm_ip_fq->sfq_count)
		report("Spaceman free queue", "wrong block count.");
	if (le64_to_cpu(sfq[APFS_SFQ_IP].sfq_oldest_xid) !=
					sm->sm_ip_fq->sfq_oldest_xid)
		report("Spaceman free queue", "oldest xid is wrong.");
	if (le16_to_cpu(sfq[APFS_SFQ_IP].sfq_tree_node_limit) <
					sm->sm_ip_fq->sfq_btree.node_count)
		report("Spaceman free queue", "node count above limit.");
	if (le16_to_cpu(sfq[APFS_SFQ_IP].sfq_tree_node_limit) != ip_fq_node_limit(sm->sm_chunks))
		report("Spaceman free queue", "wrong node limit.");

	sm->sm_main_fq = parse_free_queue_btree(
				le64_to_cpu(sfq[APFS_SFQ_MAIN].sfq_tree_oid), APFS_SFQ_MAIN);
	if (le64_to_cpu(sfq[APFS_SFQ_MAIN].sfq_count) !=
					sm->sm_main_fq->sfq_count)
		report("Spaceman free queue", "wrong block count.");
	if (le64_to_cpu(sfq[APFS_SFQ_MAIN].sfq_oldest_xid) !=
					sm->sm_main_fq->sfq_oldest_xid)
		report("Spaceman free queue", "oldest xid is wrong.");
	if (le16_to_cpu(sfq[APFS_SFQ_MAIN].sfq_tree_node_limit) <
					sm->sm_main_fq->sfq_btree.node_count)
		report("Spaceman free queue", "node count above limit.");
	if (le16_to_cpu(sfq[APFS_SFQ_MAIN].sfq_tree_node_limit) != main_fq_node_limit(sm->sm_blocks))
		report("Spaceman free queue", "wrong node limit.");
}

/**
 * compare_container_bitmaps - Verify the container's allocation bitmap
 * @sm_bmap:	allocation bitmap reported by the space manager
 * @real_bmap:	allocation bitmap assembled by the fsck
 * @chunks:	container chunk count, i.e., block count for the bitmaps
 */
static void compare_container_bitmaps(u64 *sm_bmap, u64 *real_bmap, u64 chunks)
{
	unsigned long long bmap_size = sb->s_blocksize * chunks;

	if (memcmp(sm_bmap, real_bmap, bmap_size) != 0)
		report("Space manager", "bad allocation bitmap.");
}

/**
 * check_ip_free_next - Check the free_next field for the internal pool
 * @free_next:	256-bit field to check
 * @free_head:	first free block in the ip circular buffer
 * @free_len:	number of free blocks in the ip circular buffer
 */
static void check_ip_free_next(__le16 *free_next, u16 free_head, u16 free_len)
{
	int bmap_count = 16;
	__le16 *expected;
	u32 i;

	expected = calloc(bmap_count, sizeof(*free_next));
	if (!expected)
		system_error();

	/*
	 * Ip bitmap blocks are marked with numbers 1,2,3,...,14,15,0 in
	 * free_next, except when they are in use: those get overwritten with
	 * 0xFFFF.
	 */
	for (i = 0; i < bmap_count; i++) {
		u32 index_in_free = (bmap_count + i - free_head) % bmap_count;

		if (index_in_free < free_len)
			expected[i] = cpu_to_le16((1 + i) % bmap_count);
		else
			expected[i] = cpu_to_le16(0xFFFF);
	}

	if (memcmp(free_next, expected, bmap_count * sizeof(*free_next)))
		report("Space manager", "Bad ip_bm_free_next bitmap.");
}

/**
 * parse_ip_bitmap_list - Check consistency of the internal pool bitmap list
 * @raw: pointer to the raw space manager
 *
 * Returns the block number for the current bitmap.
 */
static u64 parse_ip_bitmap_list(struct apfs_spaceman_phys *raw)
{
	u64 bmap_base = le64_to_cpu(raw->sm_ip_bm_base);
	u64 bmap_off;
	u32 bmap_length = le32_to_cpu(raw->sm_ip_bm_block_count);
	u16 free_head, free_tail, free_length;
	char *free_next;

	/*
	 * So far all internal pool bitmaps encountered had only one block; the
	 * bitmap area is larger than that because it keeps some old versions.
	 */
	bmap_off = spaceman_val_from_off(raw,
					 le32_to_cpu(raw->sm_ip_bitmap_offset));
	if (bmap_off >= bmap_length)
		report("Internal pool", "bitmap block is out-of-bounds.");
	if (le32_to_cpu(raw->sm_ip_bm_size_in_blocks) != 1)
		report_unknown("Multiblock bitmap in internal pool");

	/* The head and tail fit in 16-bit fields, so the length also should */
	if (bmap_length > (u16)(~0U))
		report("Internal pool", "bitmap list is too long.");
	/* This may be wrong for huge containers, I haven't tested those yet */
	if (bmap_length != 16)
		report("Space manager", "ip doesn't have 16 bitmaps.");

	free_head = le16_to_cpu(raw->sm_ip_bm_free_head);
	free_tail = le16_to_cpu(raw->sm_ip_bm_free_tail);
	free_length = (bmap_length + free_tail - free_head) % bmap_length;

	if (free_head >= bmap_length || free_tail >= bmap_length)
		report("Internal pool", "free bitmaps are out-of-bounds.");
	if ((bmap_length + bmap_off - free_head) % bmap_length < free_length)
		report("Internal pool", "current bitmap listed as free.");
	if (free_length != bmap_length - 2)
		report_unknown("Internal pool bitmaps in use are not two");

	free_next = spaceman_256_from_off(raw, le32_to_cpu(raw->sm_ip_bm_free_next_offset));
	check_ip_free_next((__le16 *)free_next, free_head, free_length);

	container_bmap_mark_as_used(bmap_base, bmap_length);
	return bmap_base + bmap_off;
}

/**
 * check_ip_bitmap_blocks - Check that the bitmap blocks are properly zeroed
 * @raw: pointer to the raw space manager
 *
 * For most internal pool bitmap blocks this is the only check needed; the
 * current one also needs to be compared against the actual allocation bitmap.
 */
static void check_ip_bitmap_blocks(struct apfs_spaceman_phys *raw)
{
	u64 bmap_base = le64_to_cpu(raw->sm_ip_bm_base);
	u32 bmap_length = le32_to_cpu(raw->sm_ip_bm_block_count);
	u64 pool_blocks = le64_to_cpu(raw->sm_ip_block_count);
	int i;

	for (i = 0; i < bmap_length; ++i) {
		char *bmap;
		int edge, j;

		bmap = mmap(NULL, sb->s_blocksize, PROT_READ, MAP_PRIVATE,
			    fd, (bmap_base + i) * sb->s_blocksize);
		if (bmap == MAP_FAILED)
			system_error();

		/*
		 * The edge is the last byte inside the allocation bitmap;
		 * everything that comes afterwards must be zeroed.
		 */
		edge = pool_blocks / 8;
		for (j = pool_blocks % 8; j < 8; ++j) {
			u8 flag = 1 << j;

			if (bmap[edge] & flag)
				report("Internal pool", "non-zeroed bitmap.");
		}
		for (j = edge + 1; j < sb->s_blocksize; ++j) {
			if (bmap[j])
				report("Internal pool", "non-zeroed bitmap.");
		}

		munmap(bmap, sb->s_blocksize);
	}
}

/**
 * check_internal_pool - Check the internal pool of blocks
 * @raw:	pointer to the raw space manager
 */
static void check_internal_pool(struct apfs_spaceman_phys *raw)
{
	u64 *pool_bmap;
	u64 pool_base = le64_to_cpu(raw->sm_ip_base);
	u64 pool_blocks = le64_to_cpu(raw->sm_ip_block_count);
	u64 ip_chunk_count = DIV_ROUND_UP(pool_blocks, 8 * sb->s_blocksize);
	u64 xid;

	pool_bmap = mmap(NULL, sb->s_blocksize, PROT_READ, MAP_PRIVATE,
			 fd, parse_ip_bitmap_list(raw) * sb->s_blocksize);
	if (pool_bmap == MAP_FAILED)
		system_error();

	if (memcmp(pool_bmap, sb->s_ip_bitmap, ip_chunk_count * sb->s_blocksize))
		report("Space manager", "bad ip allocation bitmap.");
	container_bmap_mark_as_used(pool_base, pool_blocks);

	munmap(pool_bmap, sb->s_blocksize);

	if (le32_to_cpu(raw->sm_ip_bm_tx_multiplier) !=
					APFS_SPACEMAN_IP_BM_TX_MULTIPLIER)
		report("Space manager", "bad tx multiplier for internal pool.");

	xid = spaceman_val_from_off(raw, le32_to_cpu(raw->sm_ip_bm_xid_offset));
	if (xid > sb->s_xid)
		report("Internal pool", "bad transaction id.");

	check_ip_bitmap_blocks(raw);
}

/**
 * check_spaceman - Check the space manager structures for a container
 * @oid: ephemeral object id for the spaceman structure
 */
void check_spaceman(u64 oid)
{
	struct spaceman *sm = &sb->s_spaceman;
	struct object obj;
	struct apfs_spaceman_phys *raw;
	u64 ip_chunk_count;
	u32 flags;

	raw = read_ephemeral_object(oid, &obj);
	if (obj.type != APFS_OBJECT_TYPE_SPACEMAN)
		report("Space manager", "wrong object type.");
	if (obj.subtype != APFS_OBJECT_TYPE_INVALID)
		report("Space manager", "wrong object subtype.");
	sm->sm_xid = obj.xid;

	sm->sm_ip_base = le64_to_cpu(raw->sm_ip_base);
	sm->sm_ip_block_count = le64_to_cpu(raw->sm_ip_block_count);
	ip_chunk_count = DIV_ROUND_UP(sm->sm_ip_block_count, 8 * sb->s_blocksize);
	sb->s_ip_bitmap = calloc(ip_chunk_count, sb->s_blocksize);
	if (!sb->s_ip_bitmap)
		system_error();

	flags = le32_to_cpu(raw->sm_flags);
	if ((flags & APFS_SM_FLAGS_VALID_MASK) != flags)
		report("Space manager", "invalid flag in use.");
	if (flags & APFS_SM_FLAG_VERSIONED) {
		sm->sm_struct_size = le32_to_cpu(raw->sm_struct_size);
		if (sm->sm_struct_size != sizeof(*raw))
			report("Space manager", "wrong reported struct size.");
		check_spaceman_datazone(&raw->sm_datazone);
	} else {
		/* Some fields are missing in the non-versioned structure */
		sm->sm_struct_size = sizeof(*raw) - sizeof(raw->sm_datazone) -
				     sizeof(raw->sm_struct_size) -
				     sizeof(raw->sm_version);
	}

	if (le32_to_cpu(raw->sm_block_size) != sb->s_blocksize)
		report("Space manager", "wrong block size.");
	parse_spaceman_chunk_counts(raw);

	/* All bitmaps will need to be read into memory */
	sm->sm_bitmap = calloc(sm->sm_chunk_count, sb->s_blocksize);
	if (!sm->sm_bitmap)
		system_error();

	parse_spaceman_main_device(raw);
	check_spaceman_tier2_device(raw);
	check_spaceman_free_queues(raw->sm_fq);
	check_internal_pool(raw);
	free(sb->s_ip_bitmap);

	if (le64_to_cpu(raw->sm_fs_reserve_block_count) != sm->sm_reserve_block_num)
		report("Space manager", "wrong block reservation total.");
	if (le64_to_cpu(raw->sm_fs_reserve_alloc_count) != sm->sm_reserve_alloc_num)
		report("Space manager", "wrong reserve block allocation total.");
	if (sm->sm_reserve_block_num - sm->sm_reserve_alloc_num > sm->sm_free)
		report("Space manager", "block reservation not respected.");

	compare_container_bitmaps(sm->sm_bitmap, sb->s_bitmap,
				  sm->sm_chunk_count);
	munmap(raw, sb->s_blocksize);
}

/**
 * parse_free_queue_record - Parse a free queue record and check for corruption
 * @key:	pointer to the raw key
 * @val:	pointer to the raw value
 * @len:	length of the raw value
 * @btree:	the free queue btree structure
 *
 * Internal consistency of @key must be checked before calling this function.
 */
void parse_free_queue_record(struct apfs_spaceman_free_queue_key *key,
			     void *val, int len, struct btree *btree)
{
	struct free_queue *sfq = (struct free_queue *)btree;
	u64 paddr, length, xid;
	bool inside_ip;

	if (!len) {
		length = 1; /* Ghost records are for one block long extents */
	} else if (len == 8) {
		__le64 *val64 = (__le64 *)val;

		length = le64_to_cpu(*val64);
		if (!length)
			report("Free queue record", "length is zero.");
		if (length == 1)
			report("Free queue record", "value is unnecessary.");
	} else {
		report("Free queue record", "wrong size of value.");
	}
	sfq->sfq_count += length;

	paddr = le64_to_cpu(key->sfqk_paddr);
	inside_ip = range_in_ip(paddr, length);
	if (sfq->sfq_index == APFS_SFQ_IP && !inside_ip)
		report("Free queue record", "range should be inside the IP.");
	if (sfq->sfq_index != APFS_SFQ_IP && inside_ip)
		report("Free queue record", "range should be outside the IP.");

	xid = le64_to_cpu(key->sfqk_xid);
	if (xid > sb->s_xid)
		report("Free queue record", "bad transaction id.");
	if (!sfq->sfq_oldest_xid || xid < sfq->sfq_oldest_xid)
		sfq->sfq_oldest_xid = xid;

	/*
	 * These blocks are free, but still not marked as such.  The point
	 * seems to be the preservation of recent checkpoints.
	 */
	if (inside_ip)
		ip_bmap_mark_as_used(paddr, length);
	else
		container_bmap_mark_as_used(paddr, length);
}