1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
/**************************************************************************
*
* Copyright 2014-2016 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
**************************************************************************/
#include "memtrace.hpp"
#include <assert.h>
#include <string.h>
#include <stdio.h>
#include <algorithm>
#include "crc32c.hpp"
#if \
(defined(__i386__) && defined(__SSE2__)) /* gcc */ || \
defined(_M_IX86) /* msvc */ || \
defined(__x86_64__) /* gcc */ || \
defined(_M_X64) /* msvc */ || \
defined(_M_AMD64) /* msvc */
# define HAVE_SSE2
// TODO: Detect and leverage SSE 4.1 and 4.2 at runtime
#endif
#if defined(HAVE_SSE42)
# include <nmmintrin.h>
#elif defined(HAVE_SSE41)
# include <smmintrin.h>
#elif defined(HAVE_SSE2)
# include <emmintrin.h>
#endif
#define BLOCK_SIZE 512
template< class T >
static inline T *
lAlignPtr(T *p, uintptr_t alignment)
{
return reinterpret_cast<T *>(reinterpret_cast<uintptr_t>(p) & ~(alignment - 1));
}
template< class T >
static inline T *
rAlignPtr(T *p, uintptr_t alignment)
{
return reinterpret_cast<T *>((reinterpret_cast<uintptr_t>(p) + alignment - 1) & ~(alignment - 1));
}
#ifdef HAVE_SSE2
#ifdef HAVE_SSE41
#define mm_stream_load_si128 _mm_stream_load_si128
#define mm_extract_epi32_0(x) _mm_extract_epi32(x, 0)
#define mm_extract_epi32_1(x) _mm_extract_epi32(x, 1)
#define mm_extract_epi32_2(x) _mm_extract_epi32(x, 2)
#define mm_extract_epi32_3(x) _mm_extract_epi32(x, 3)
#else /* !HAVE_SSE41 */
#define mm_stream_load_si128 _mm_load_si128
#define mm_extract_epi32_0(x) _mm_cvtsi128_si32(x)
#define mm_extract_epi32_1(x) _mm_cvtsi128_si32(_mm_shuffle_epi32(x,_MM_SHUFFLE(1,1,1,1)))
#define mm_extract_epi32_2(x) _mm_cvtsi128_si32(_mm_shuffle_epi32(x,_MM_SHUFFLE(2,2,2,2)))
#define mm_extract_epi32_3(x) _mm_cvtsi128_si32(_mm_shuffle_epi32(x,_MM_SHUFFLE(3,3,3,3)))
#endif /* !HAVE_SSE41 */
#ifdef HAVE_SSE42
#define mm_crc32_u32 _mm_crc32_u32
#else /* !HAVE_SSE42 */
static inline uint32_t
mm_crc32_u32(uint32_t crc, uint32_t current)
{
uint32_t one = current ^ crc;
crc = crc32c_8x256_table[0][ one >> 24 ] ^
crc32c_8x256_table[1][(one >> 16) & 0xff] ^
crc32c_8x256_table[2][(one >> 8) & 0xff] ^
crc32c_8x256_table[3][ one & 0xff];
return crc;
}
#endif /* !HAVE_SSE42 */
#endif /* HAVE_SSE2 */
uint32_t
hashBlock(const void *p)
{
assert((uintptr_t)p % BLOCK_SIZE == 0);
uint32_t crc;
#ifdef HAVE_SSE2
crc = 0;
__m128i *q = (__m128i *)(void *)p;
crc = ~crc;
for (unsigned c = BLOCK_SIZE / (4 * sizeof *q); c; --c) {
__m128i m0 = mm_stream_load_si128(q++);
__m128i m1 = mm_stream_load_si128(q++);
__m128i m2 = mm_stream_load_si128(q++);
__m128i m3 = mm_stream_load_si128(q++);
crc = mm_crc32_u32(crc, mm_extract_epi32_0(m0));
crc = mm_crc32_u32(crc, mm_extract_epi32_1(m0));
crc = mm_crc32_u32(crc, mm_extract_epi32_2(m0));
crc = mm_crc32_u32(crc, mm_extract_epi32_3(m0));
crc = mm_crc32_u32(crc, mm_extract_epi32_0(m1));
crc = mm_crc32_u32(crc, mm_extract_epi32_1(m1));
crc = mm_crc32_u32(crc, mm_extract_epi32_2(m1));
crc = mm_crc32_u32(crc, mm_extract_epi32_3(m1));
crc = mm_crc32_u32(crc, mm_extract_epi32_0(m2));
crc = mm_crc32_u32(crc, mm_extract_epi32_1(m2));
crc = mm_crc32_u32(crc, mm_extract_epi32_2(m2));
crc = mm_crc32_u32(crc, mm_extract_epi32_3(m2));
crc = mm_crc32_u32(crc, mm_extract_epi32_0(m3));
crc = mm_crc32_u32(crc, mm_extract_epi32_1(m3));
crc = mm_crc32_u32(crc, mm_extract_epi32_2(m3));
crc = mm_crc32_u32(crc, mm_extract_epi32_3(m3));
}
crc = ~crc;
#else /* !HAVE_SSE2 */
crc = crc32c_8bytes(p, BLOCK_SIZE);
#endif
return crc;
}
// We must reset the data on discard, otherwise the old data could match just
// by chance.
//
// XXX: if the appplication writes 0xCDCDCDCD at the start or the end of the
// buffer range, we'll fail to detect. The only way to be 100% sure things
// won't fall through would be to setup memory traps.
void MemoryShadow::zero(void *_ptr, size_t _size)
{
memset(_ptr, 0xCD, _size);
}
void MemoryShadow::cover(void *_ptr, size_t _size, bool _discard)
{
assert(_ptr);
if (_size != size || _ptr != realPtr) {
nBlocks = ((uintptr_t)_ptr + _size + BLOCK_SIZE - 1)/BLOCK_SIZE - (uintptr_t)_ptr/BLOCK_SIZE;
hashPtr = (uint32_t *)realloc(hashPtr, nBlocks * sizeof *hashPtr);
size = _size;
}
realPtr = (const uint8_t *)_ptr;
if (_discard) {
zero(_ptr, size);
}
const uint8_t *p = lAlignPtr((const uint8_t *)_ptr, BLOCK_SIZE);
if (_discard) {
hashPtr[0] = hashBlock(p);
for (size_t i = 1; i < nBlocks; ++i) {
hashPtr[i] = hashPtr[0];
}
} else {
for (size_t i = 0; i < nBlocks; ++i) {
hashPtr[i] = hashBlock(p);
p += BLOCK_SIZE;
}
}
}
void MemoryShadow::update(Callback callback) const
{
const uint8_t *realStart = realPtr + size;
const uint8_t *realStop = realPtr;
const uint8_t *p = lAlignPtr(realPtr, BLOCK_SIZE);
for (size_t i = 0; i < nBlocks; ++i) {
uint32_t crc = hashBlock(p);
if (crc != hashPtr[i]) {
realStart = std::min(realStart, p);
realStop = std::max(realStop, p + BLOCK_SIZE);
}
p += BLOCK_SIZE;
}
realStart = std::max(realStart, realPtr);
realStop = std::min(realStop, realPtr + size);
// Update the rest
if (realStart < realStop) {
callback(realStart, realStop - realStart);
}
}
|