1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
|
#include "DeflateEncoder.h"
#include "Const.h"
#include "BinTree3ZMain.h"
namespace NDeflate {
namespace NEncoder {
static const int kValueBlockSize = 0x2000;
static const int kMaxCodeBitLength = 15;
static const int kMaxLevelBitLength = 7;
static const BYTE kFlagImm = 0;
static const BYTE kFlagLenPos = 4;
static const UINT32 kMaxUncompressedBlockSize = 0xFFFF; // test it !!!
static const UINT32 kBlockUncompressedSizeThreshold =
kMaxUncompressedBlockSize - kMatchMaxLen - kNumOpts;
static const int kNumGoodBacks = 0x10000;
static BYTE kNoLiteralDummy = 13;
static BYTE kNoLenDummy = 13;
static BYTE kNoPosDummy = 6;
static BYTE g_LenSlots[kNumLenCombinations];
static BYTE g_FastPos[1 << 8];
class CFastPosInit
{
public:
CFastPosInit()
{
unsigned i;
for(i = 0; i < kLenTableSize; i++)
{
int c = kLenStart[i];
int j = 1 << kLenDirectBits[i];
for(int k = 0; k < j; k++, c++)
g_LenSlots[c] = i;
}
const int kFastSlots = 16;
int c = 0;
for (BYTE aSlotFast = 0; aSlotFast < kFastSlots; aSlotFast++)
{
UINT32 k = (1 << kDistDirectBits[aSlotFast]);
for (UINT32 j = 0; j < k; j++, c++)
g_FastPos[c] = aSlotFast;
}
}
};
static CFastPosInit g_FastPosInit;
inline UINT32 GetPosSlot(UINT32 aPos)
{
// for (UINT32 i = 1; aPos >= kDistStart[i]; i++);
// return i - 1;
if (aPos < 0x100)
return g_FastPos[aPos];
return g_FastPos[aPos >> 7] + 14;
}
CCoder::CCoder():
m_MainCoder(kMainTableSize, kLenDirectBits, kMatchNumber, kMaxCodeBitLength),
m_DistCoder(kDistTableSize, kDistDirectBits, 0, kMaxCodeBitLength),
m_LevelCoder(kLevelTableSize, kLevelDirectBits, 0, kMaxLevelBitLength),
m_NumPasses(1),
m_NumFastBytes(32),
m_OnePosMatchesMemory(0),
m_OnePosMatchesArray(0),
m_MatchDistances(0),
m_Created(false),
m_Values(0)
{
m_Values = new CCodeValue[kValueBlockSize + kNumOpts];
}
HRESULT CCoder::Create()
{
m_MatchFinder.Create(kHistorySize, kNumOpts + kNumGoodBacks, m_NumFastBytes,
kMatchMaxLen - m_NumFastBytes);
m_MatchLengthEdge = m_NumFastBytes + 1;
if (m_NumPasses > 1)
{
m_OnePosMatchesMemory = new UINT16[kNumGoodBacks * (m_NumFastBytes + 1)];
try
{
m_OnePosMatchesArray = new COnePosMatches[kNumGoodBacks];
}
catch(...)
{
delete []m_OnePosMatchesMemory;
m_OnePosMatchesMemory = 0;
throw;
}
UINT16 *aGoodBacksWordsCurrent = m_OnePosMatchesMemory;
for(int i = 0; i < kNumGoodBacks; i++, aGoodBacksWordsCurrent += (m_NumFastBytes + 1))
m_OnePosMatchesArray[i].Init(aGoodBacksWordsCurrent);
}
else
m_MatchDistances = new UINT16[m_NumFastBytes + 1];
return S_OK;
}
HRESULT CCoder::SetEncoderNumPasses(UINT32 A) {
m_NumPasses = A;
if (m_NumPasses == 0 || m_NumPasses > 255)
return E_INVALIDARG;
return S_OK;
}
HRESULT CCoder::SetEncoderNumFastBytes(UINT32 A) {
m_NumFastBytes = A;
if(m_NumFastBytes < 3 || m_NumFastBytes > kMatchMaxLen)
return E_INVALIDARG;
return S_OK;
}
void CCoder::Free()
{
if(m_NumPasses > 0)
{
if (m_NumPasses > 1)
{
delete []m_OnePosMatchesMemory;
delete []m_OnePosMatchesArray;
}
else
delete []m_MatchDistances;
}
}
CCoder::~CCoder()
{
Free();
delete []m_Values;
}
void CCoder::ReadGoodBacks()
{
UINT32 aGoodIndex;
if (m_NumPasses > 1)
{
aGoodIndex = m_FinderPos % kNumGoodBacks;
m_MatchDistances = m_OnePosMatchesArray[aGoodIndex].MatchDistances;
}
UINT32 aDistanceTmp[kMatchMaxLen + 1];
UINT32 aLen = m_MatchFinder.GetLongestMatch(aDistanceTmp);
for(UINT32 i = kMatchMinLen; i <= aLen; i++)
m_MatchDistances[i] = aDistanceTmp[i];
m_LongestMatchDistance = m_MatchDistances[aLen];
if (aLen == m_NumFastBytes && m_NumFastBytes != kMatchMaxLen)
m_LongestMatchLength = aLen + m_MatchFinder.GetMatchLen(aLen,
m_LongestMatchDistance, kMatchMaxLen - aLen);
else
m_LongestMatchLength = aLen;
if (m_NumPasses > 1)
{
m_OnePosMatchesArray[aGoodIndex].LongestMatchDistance = UINT16(m_LongestMatchDistance);
m_OnePosMatchesArray[aGoodIndex].LongestMatchLength = UINT16(m_LongestMatchLength);
}
HRESULT aResult = m_MatchFinder.MovePos();
if (aResult != S_OK)
throw aResult;
m_FinderPos++;
m_AdditionalOffset++;
}
void CCoder::GetBacks(UINT32 aPos)
{
if(aPos == m_FinderPos)
ReadGoodBacks();
else
{
if (m_NumPasses == 1)
{
if(aPos + 1 == m_FinderPos)
return;
throw E_INTERNAL_ERROR;
}
else
{
UINT32 aGoodIndex = aPos % kNumGoodBacks;
m_MatchDistances = m_OnePosMatchesArray[aGoodIndex].MatchDistances;
m_LongestMatchDistance = m_OnePosMatchesArray[aGoodIndex].LongestMatchDistance;
m_LongestMatchLength = m_OnePosMatchesArray[aGoodIndex].LongestMatchLength;
}
}
}
void CCoder::MovePos(UINT32 aNum)
{
if (m_NumPasses > 1)
{
for(UINT32 i = 0; i < aNum; i++)
GetBacks(UINT32(m_BlockStartPostion + m_CurrentBlockUncompressedSize + i + 1));
}
else
{
for (;aNum > 0; aNum--)
{
m_MatchFinder.DummyLongestMatch();
HRESULT aResult = m_MatchFinder.MovePos();
if (aResult != S_OK)
throw aResult;
m_FinderPos++;
m_AdditionalOffset++;
}
}
}
static const int kIfinityPrice = 0xFFFFFFF;
UINT32 CCoder::Backward(UINT32 &aBackRes, UINT32 aCur)
{
m_OptimumEndIndex = aCur;
UINT32 aPosMem = m_Optimum[aCur].PosPrev;
UINT16 aBackMem = m_Optimum[aCur].BackPrev;
do
{
UINT32 aPosPrev = aPosMem;
UINT16 aBackCur = aBackMem;
aBackMem = m_Optimum[aPosPrev].BackPrev;
aPosMem = m_Optimum[aPosPrev].PosPrev;
m_Optimum[aPosPrev].BackPrev = aBackCur;
m_Optimum[aPosPrev].PosPrev = aCur;
aCur = aPosPrev;
}
while(aCur > 0);
aBackRes = m_Optimum[0].BackPrev;
m_OptimumCurrentIndex = m_Optimum[0].PosPrev;
return m_OptimumCurrentIndex;
}
UINT32 CCoder::GetOptimal(UINT32 &aBackRes)
{
if(m_OptimumEndIndex != m_OptimumCurrentIndex)
{
UINT32 aLen = m_Optimum[m_OptimumCurrentIndex].PosPrev - m_OptimumCurrentIndex;
aBackRes = m_Optimum[m_OptimumCurrentIndex].BackPrev;
m_OptimumCurrentIndex = m_Optimum[m_OptimumCurrentIndex].PosPrev;
return aLen;
}
m_OptimumCurrentIndex = 0;
m_OptimumEndIndex = 0;
GetBacks(UINT32(m_BlockStartPostion + m_CurrentBlockUncompressedSize));
UINT32 aLenMain = m_LongestMatchLength;
UINT32 aBackMain = m_LongestMatchDistance;
if(aLenMain < kMatchMinLen)
return 1;
if(aLenMain >= m_MatchLengthEdge)
{
aBackRes = aBackMain;
MovePos(aLenMain - 1);
return aLenMain;
}
m_Optimum[1].Price = m_LiteralPrices[m_MatchFinder.GetIndexByte(0 - m_AdditionalOffset)];
m_Optimum[1].PosPrev = 0;
m_Optimum[2].Price = kIfinityPrice;
m_Optimum[2].PosPrev = 1;
for(UINT32 i = kMatchMinLen; i <= aLenMain; i++)
{
m_Optimum[i].PosPrev = 0;
m_Optimum[i].BackPrev = m_MatchDistances[i];
m_Optimum[i].Price = m_LenPrices[i - kMatchMinLen] + m_PosPrices[GetPosSlot(m_MatchDistances[i])];
}
UINT32 aCur = 0;
UINT32 aLenEnd = aLenMain;
while(true)
{
aCur++;
if(aCur == aLenEnd)
return Backward(aBackRes, aCur);
GetBacks(UINT32(m_BlockStartPostion + m_CurrentBlockUncompressedSize + aCur));
UINT32 aNewLen = m_LongestMatchLength;
if(aNewLen >= m_MatchLengthEdge)
return Backward(aBackRes, aCur);
UINT32 aCurPrice = m_Optimum[aCur].Price;
UINT32 aCurAnd1Price = aCurPrice +
m_LiteralPrices[m_MatchFinder.GetIndexByte(aCur - m_AdditionalOffset)];
COptimal &anOptimum = m_Optimum[aCur + 1];
if (aCurAnd1Price < anOptimum.Price)
{
anOptimum.Price = aCurAnd1Price;
anOptimum.PosPrev = aCur;
}
if (aNewLen < kMatchMinLen)
continue;
if(aCur + aNewLen > aLenEnd)
{
if (aCur + aNewLen > kNumOpts - 1)
aNewLen = kNumOpts - 1 - aCur;
UINT32 aLenEndNew = aCur + aNewLen;
if (aLenEnd < aLenEndNew)
{
for(UINT32 i = aLenEnd + 1; i <= aLenEndNew; i++)
m_Optimum[i].Price = kIfinityPrice;
aLenEnd = aLenEndNew;
}
}
for(UINT32 aLenTest = kMatchMinLen; aLenTest <= aNewLen; aLenTest++)
{
UINT16 aCurBack = m_MatchDistances[aLenTest];
UINT32 aCurAndLenPrice = aCurPrice +
m_LenPrices[aLenTest - kMatchMinLen] + m_PosPrices[GetPosSlot(aCurBack)];
COptimal &anOptimum = m_Optimum[aCur + aLenTest];
if (aCurAndLenPrice < anOptimum.Price)
{
anOptimum.Price = aCurAndLenPrice;
anOptimum.PosPrev = aCur;
anOptimum.BackPrev = aCurBack;
}
}
}
}
void CCoder::InitStructures()
{
memset(m_LastLevels, 0, kMaxTableSize);
m_ValueIndex = 0;
m_OptimumEndIndex = 0;
m_OptimumCurrentIndex = 0;
m_AdditionalOffset = 0;
m_BlockStartPostion = 0;
m_CurrentBlockUncompressedSize = 0;
m_MainCoder.StartNewBlock();
m_DistCoder.StartNewBlock();
unsigned i;
for(i = 0; i < 256; i++)
m_LiteralPrices[i] = 8;
for(i = 0; i < kNumLenCombinations; i++)
m_LenPrices[i] = 5 + kLenDirectBits[g_LenSlots[i]]; // test it
for(i = 0; i < kDistTableSize; i++)
m_PosPrices[i] = 5 + kDistDirectBits[i];
}
void CCoder::WriteBlockData(bool aWriteMode, bool anFinalBlock)
{
m_MainCoder.AddSymbol(kReadTableNumber);
int aMethod = WriteTables(aWriteMode, anFinalBlock);
if (aWriteMode)
{
if(aMethod == NBlockType::kStored)
{
for(UINT32 i = 0; i < m_CurrentBlockUncompressedSize; i++)
{
BYTE aByte = m_MatchFinder.GetIndexByte(i - m_AdditionalOffset -
m_CurrentBlockUncompressedSize);
m_OutStream.WriteBits(aByte, 8);
}
}
else
{
for (UINT32 i = 0; i < m_ValueIndex; i++)
{
if (m_Values[i].Flag == kFlagImm)
m_MainCoder.CodeOneValue(&m_ReverseOutStream, m_Values[i].Imm);
else if (m_Values[i].Flag == kFlagLenPos)
{
UINT32 aLen = m_Values[i].Len;
UINT32 aLenSlot = g_LenSlots[aLen];
m_MainCoder.CodeOneValue(&m_ReverseOutStream, kMatchNumber + aLenSlot);
m_OutStream.WriteBits(aLen - kLenStart[aLenSlot], kLenDirectBits[aLenSlot]);
UINT32 aDist = m_Values[i].Pos;
UINT32 aPosSlot = GetPosSlot(aDist);
m_DistCoder.CodeOneValue(&m_ReverseOutStream, aPosSlot);
m_OutStream.WriteBits(aDist - kDistStart[aPosSlot], kDistDirectBits[aPosSlot]);
}
}
m_MainCoder.CodeOneValue(&m_ReverseOutStream, kReadTableNumber);
}
}
m_MainCoder.StartNewBlock();
m_DistCoder.StartNewBlock();
m_ValueIndex = 0;
UINT32 i;
for(i = 0; i < 256; i++)
if(m_LastLevels[i] != 0)
m_LiteralPrices[i] = m_LastLevels[i];
else
m_LiteralPrices[i] = kNoLiteralDummy;
// -------------- Normal match -----------------------------
for(i = 0; i < kNumLenCombinations; i++)
{
UINT32 aSlot = g_LenSlots[i];
BYTE aDummy = m_LastLevels[kMatchNumber + aSlot];
if (aDummy != 0)
m_LenPrices[i] = aDummy;
else
m_LenPrices[i] = kNoLenDummy;
m_LenPrices[i] += kLenDirectBits[aSlot];
}
for(i = 0; i < kDistTableSize; i++)
{
BYTE aDummy = m_LastLevels[kDistTableStart + i];
if (aDummy != 0)
m_PosPrices[i] = aDummy;
else
m_PosPrices[i] = kNoPosDummy;
m_PosPrices[i] += kDistDirectBits[i];
}
}
void CCoder::CodeLevelTable(BYTE *aNewLevels, int aNumLevels, bool aCodeMode)
{
int aPrevLen = 0xFF; // last emitted length
int aNextLen = aNewLevels[0]; // length of next code
int aCount = 0; // repeat aCount of the current code
int aMaxCount = 7; // max repeat aCount
int aMinCount = 4; // min repeat aCount
if (aNextLen == 0)
{
aMaxCount = 138;
aMinCount = 3;
}
BYTE anOldValueInGuardElement = aNewLevels[aNumLevels]; // push guard value
try
{
aNewLevels[aNumLevels] = 0xFF; // guard already set
for (int n = 0; n < aNumLevels; n++)
{
int aCurLen = aNextLen;
aNextLen = aNewLevels[n + 1];
aCount++;
if (aCount < aMaxCount && aCurLen == aNextLen)
continue;
else if (aCount < aMinCount)
for(int i = 0; i < aCount; i++)
{
int aCodeLen = aCurLen;
if (aCodeMode)
m_LevelCoder.CodeOneValue(&m_ReverseOutStream, aCodeLen);
else
m_LevelCoder.AddSymbol(aCodeLen);
}
else if (aCurLen != 0)
{
if (aCurLen != aPrevLen)
{
int aCodeLen = aCurLen;
if (aCodeMode)
m_LevelCoder.CodeOneValue(&m_ReverseOutStream, aCodeLen);
else
m_LevelCoder.AddSymbol(aCodeLen);
aCount--;
}
if (aCodeMode)
{
m_LevelCoder.CodeOneValue(&m_ReverseOutStream, kTableLevelRepNumber);
m_OutStream.WriteBits(aCount - 3, 2);
}
else
m_LevelCoder.AddSymbol(kTableLevelRepNumber);
}
else if (aCount <= 10)
{
if (aCodeMode)
{
m_LevelCoder.CodeOneValue(&m_ReverseOutStream, kTableLevel0Number);
m_OutStream.WriteBits(aCount - 3, 3);
}
else
m_LevelCoder.AddSymbol(kTableLevel0Number);
}
else
{
if (aCodeMode)
{
m_LevelCoder.CodeOneValue(&m_ReverseOutStream, kTableLevel0Number2);
m_OutStream.WriteBits(aCount - 11, 7);
}
else
m_LevelCoder.AddSymbol(kTableLevel0Number2);
}
aCount = 0;
aPrevLen = aCurLen;
if (aNextLen == 0)
{
aMaxCount = 138;
aMinCount = 3;
}
else if (aCurLen == aNextLen)
{
aMaxCount = 6;
aMinCount = 3;
}
else
{
aMaxCount = 7;
aMinCount = 4;
}
}
}
catch(...)
{
aNewLevels[aNumLevels] = anOldValueInGuardElement; // old guard
throw;
}
aNewLevels[aNumLevels] = anOldValueInGuardElement; // old guard
}
int CCoder::WriteTables(bool aWriteMode, bool anFinalBlock)
{
BYTE aNewLevels[kMaxTableSize + 1]; // (+ 1) for guard
m_MainCoder.BuildTree(&aNewLevels[0]);
m_DistCoder.BuildTree(&aNewLevels[kDistTableStart]);
memset(m_LastLevels, 0, kMaxTableSize);
if (aWriteMode)
{
if(anFinalBlock)
m_OutStream.WriteBits(NFinalBlockField::kFinalBlock, kFinalBlockFieldSize);
else
m_OutStream.WriteBits(NFinalBlockField::kNotFinalBlock, kFinalBlockFieldSize);
m_LevelCoder.StartNewBlock();
int aNumLitLenLevels = kMainTableSize;
while(aNumLitLenLevels > kDeflateNumberOfLitLenCodesMin && aNewLevels[aNumLitLenLevels - 1] == 0)
aNumLitLenLevels--;
int aNumDistLevels = kDistTableSize;
while(aNumDistLevels > kDeflateNumberOfDistanceCodesMin &&
aNewLevels[kDistTableStart + aNumDistLevels - 1] == 0)
aNumDistLevels--;
/////////////////////////
// First Pass
CodeLevelTable(aNewLevels, aNumLitLenLevels, false);
CodeLevelTable(&aNewLevels[kDistTableStart], aNumDistLevels, false);
memcpy(m_LastLevels, aNewLevels, kMaxTableSize);
BYTE aLevelLevels[kLevelTableSize];
m_LevelCoder.BuildTree(aLevelLevels);
BYTE aLevelLevelsStream[kLevelTableSize];
int aNumLevelCodes = kDeflateNumberOfLevelCodesMin;
int i;
for (i = 0; i < kLevelTableSize; i++)
{
int aStreamPos = kCodeLengthAlphabetOrder[i];
int aLevel = aLevelLevels[aStreamPos];
if (aLevel > 0 && i >= aNumLevelCodes)
aNumLevelCodes = i + 1;
aLevelLevelsStream[i] = aLevel;
}
UINT32 aNumLZHuffmanBits = m_MainCoder.GetBlockBitLength();
aNumLZHuffmanBits += m_DistCoder.GetBlockBitLength();
aNumLZHuffmanBits += m_LevelCoder.GetBlockBitLength();
aNumLZHuffmanBits += kDeflateNumberOfLengthCodesFieldSize +
kDeflateNumberOfDistanceCodesFieldSize +
kDeflateNumberOfLevelCodesFieldSize;
aNumLZHuffmanBits += aNumLevelCodes * kDeflateLevelCodeFieldSize;
UINT32 aNextBitPosition =
(m_OutStream.GetBitPosition() + kBlockTypeFieldSize) % 8;
UINT32 aNumBitsForAlign = aNextBitPosition > 0 ? (8 - aNextBitPosition): 0;
UINT32 aNumStoreBits = aNumBitsForAlign + (2 * sizeof(UINT16)) * 8;
aNumStoreBits += m_CurrentBlockUncompressedSize * 8;
if(aNumStoreBits < aNumLZHuffmanBits)
{
m_OutStream.WriteBits(NBlockType::kStored, kBlockTypeFieldSize); // test it
m_OutStream.WriteBits(0, aNumBitsForAlign); // test it
UINT16 aCurrentBlockUncompressedSize = UINT16(m_CurrentBlockUncompressedSize);
UINT16 aCurrentBlockUncompressedSizeNot = ~aCurrentBlockUncompressedSize;
m_OutStream.WriteBits(aCurrentBlockUncompressedSize, kDeflateStoredBlockLengthFieldSizeSize);
m_OutStream.WriteBits(aCurrentBlockUncompressedSizeNot, kDeflateStoredBlockLengthFieldSizeSize);
return NBlockType::kStored;
}
else
{
m_OutStream.WriteBits(NBlockType::kDynamicHuffman, kBlockTypeFieldSize);
m_OutStream.WriteBits(aNumLitLenLevels - kDeflateNumberOfLitLenCodesMin, kDeflateNumberOfLengthCodesFieldSize);
m_OutStream.WriteBits(aNumDistLevels - kDeflateNumberOfDistanceCodesMin,
kDeflateNumberOfDistanceCodesFieldSize);
m_OutStream.WriteBits(aNumLevelCodes - kDeflateNumberOfLevelCodesMin,
kDeflateNumberOfLevelCodesFieldSize);
for (i = 0; i < aNumLevelCodes; i++)
m_OutStream.WriteBits(aLevelLevelsStream[i], kDeflateLevelCodeFieldSize);
/////////////////////////
// Second Pass
CodeLevelTable(aNewLevels, aNumLitLenLevels, true);
CodeLevelTable(&aNewLevels[kDistTableStart], aNumDistLevels, true);
return NBlockType::kDynamicHuffman;
}
}
else
memcpy(m_LastLevels, aNewLevels, kMaxTableSize);
return -1;
}
HRESULT CCoder::CodeReal(ISequentialInStream *anInStream, ISequentialOutStream *anOutStream, const UINT64 *anInSize)
{
if (!m_Created)
{
RETURN_IF_NOT_S_OK(Create());
m_Created = true;
}
UINT64 aNowPos = 0;
m_FinderPos = 0;
RETURN_IF_NOT_S_OK(m_MatchFinder.Init(anInStream));
m_OutStream.Init(anOutStream);
m_ReverseOutStream.Init(&m_OutStream);
InitStructures();
while(true)
{
int aCurrentPassIndex = 0;
bool aNoMoreBytes;
while (true)
{
while(true)
{
aNoMoreBytes = (m_AdditionalOffset == 0 && m_MatchFinder.GetNumAvailableBytes() == 0);
if (((m_CurrentBlockUncompressedSize >= kBlockUncompressedSizeThreshold ||
m_ValueIndex >= kValueBlockSize) &&
(m_OptimumEndIndex == m_OptimumCurrentIndex))
|| aNoMoreBytes)
break;
UINT32 aPos;
UINT32 aLen = GetOptimal(aPos);
if (aLen >= kMatchMinLen)
{
UINT32 aNewLen = aLen - kMatchMinLen;
m_Values[m_ValueIndex].Flag = kFlagLenPos;
m_Values[m_ValueIndex].Len = BYTE(aNewLen);
UINT32 aLenSlot = g_LenSlots[aNewLen];
m_MainCoder.AddSymbol(kMatchNumber + aLenSlot);
m_Values[m_ValueIndex].Pos = UINT16(aPos);
UINT32 aPosSlot = GetPosSlot(aPos);
m_DistCoder.AddSymbol(aPosSlot);
}
else if (aLen == 1)
{
BYTE aByte = m_MatchFinder.GetIndexByte(0 - m_AdditionalOffset);
aLen = 1;
m_MainCoder.AddSymbol(aByte);
m_Values[m_ValueIndex].Flag = kFlagImm;
m_Values[m_ValueIndex].Imm = aByte;
}
else
throw E_INTERNAL_ERROR;
m_ValueIndex++;
m_AdditionalOffset -= aLen;
aNowPos += aLen;
m_CurrentBlockUncompressedSize += aLen;
}
aCurrentPassIndex++;
bool aWriteMode = (aCurrentPassIndex == m_NumPasses);
WriteBlockData(aWriteMode, aNoMoreBytes);
if (aWriteMode)
break;
aNowPos = m_BlockStartPostion;
m_AdditionalOffset = UINT32(m_FinderPos - m_BlockStartPostion);
m_CurrentBlockUncompressedSize = 0;
}
m_BlockStartPostion += m_CurrentBlockUncompressedSize;
m_CurrentBlockUncompressedSize = 0;
if (aNoMoreBytes)
break;
}
return m_OutStream.Flush();
}
HRESULT CCoder::Code(ISequentialInStream *anInStream,ISequentialOutStream *anOutStream, const UINT64 *anInSize)
{
try {
return CodeReal(anInStream, anOutStream, anInSize);
} catch (HRESULT& e) {
return e;
} catch (...) {
return E_FAIL;
}
}
}}
|