1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
|
/** \file
adaptive rejection metropolis sampling */
/** (C) Wally Gilks; see documentation below for details.
Adaptations for Apophenia (c) 2009 by Ben Klemens. Licensed under the GPLv2; see COPYING. */
#include "apop_internal.h"
#define XEPS 0.00001 /* critical relative x-value difference */
#define YEPS 0.1 /* critical y-value difference */
#define EYEPS 0.001 /* critical relative exp(y) difference */
#define YCEIL 50. /* maximum y avoiding overflow in exp(y) */
/* declarations for functions defined in this file (minus those in arms.h). */
void invert(double prob, arms_state *env, POINT *p);
int test(arms_state *state, POINT *p, apop_arms_settings *params, gsl_rng *r);
int update(arms_state *state, POINT *p, apop_arms_settings *params);
static void cumulate(arms_state *env);
int meet (POINT *q, arms_state *state, apop_arms_settings *params);
double area(POINT *q);
double expshift(double y, double y0);
double logshift(double y, double y0);
double perfunc(apop_arms_settings*, double x);
void display(FILE *f, arms_state *env, apop_arms_settings *);
int initial (apop_arms_settings* params, arms_state *state);
Apop_settings_copy(apop_arms,
out->state = malloc(sizeof(arms_state));
*out->state = *in->state;
)
Apop_settings_free(apop_arms,
if (in->state){
free(in->state->p);
free(in->state);
}
)
Apop_settings_init(apop_arms,
if ((in.xl || in.xr) && !in.xinit){
char ADHOC[64];
out->xinit = (double []) {in.xl+GSL_DBL_EPSILON, (in.xl+in.xr)/2., in.xr-GSL_DBL_EPSILON};
snprintf(ADHOC,sizeof(ADHOC),"{%g,%g,%g}",out->xinit[0],out->xinit[1],out->xinit[2]);
} else{
char ADHOC[64];
//Apop_varad_set(xinit, ((double []) {0, 0.5, 1}));
Apop_varad_set(xinit, ((double []) {-1, 0, 1}));
snprintf(ADHOC,sizeof(ADHOC),"{%g,%g,%g}",out->xinit[0],out->xinit[1],out->xinit[2]);
}
Apop_varad_set(ninit, 3);
Apop_varad_set(xl, GSL_MIN(out->xinit[0]/10., out->xinit[0]*10)-.1);
Apop_varad_set(xr, GSL_MAX(out->xinit[out->ninit-1]/10., out->xinit[out->ninit-1]*10)+.1);
Apop_varad_set(convex, 0);
Apop_varad_set(npoint, 100);
Apop_varad_set(do_metro, 'y');
Apop_varad_set(xprev, (out->xinit[0]+out->xinit[out->ninit-1])/2.);
Apop_varad_set(neval, 1000);
Apop_assert(out->model, "the model input (e.g.: .model = parent_model) is mandatory.");
// allocate the state
out->state = malloc(sizeof(arms_state));
Apop_assert(out->state, "Malloc failed. Out of memory?");
*out->state = (arms_state) { };
int err = initial(out, out->state);
Apop_assert_c(!err, NULL, 0, "init failed, error %i. Returning NULL", err);
/* finish setting up metropolis struct (can only do this after setting up env) */
if(out->do_metro=='y'){
/* I don't understand why this is needed.
if((params->xprev < params->xl) || (params->xprev > params->xr))
apop_assert(0, 1007, 0, 's', "previous Markov chain iterate out of range")*/
out->state->metro_xprev = out->xprev;
out->state->metro_yprev = perfunc(out,out->xprev);
assert(isfinite(out->state->metro_xprev));
assert(isfinite(out->state->metro_yprev));
}
)
void distract_doxygen_arms(){/*Doxygen gets thrown by the settings macros. This decoy function is a workaround. */}
/** Adaptive rejection Metropolis sampling, to make random draws from a univariate distribution.
The author, Wally Gilks, explains on
http://www.amsta.leeds.ac.uk/~wally.gilks/adaptive.rejection/web_page/Welcome.html , that
``ARS works by constructing an envelope function of the log of the target density, which is then used in rejection sampling (see, for example, Ripley, 1987). Whenever a point is rejected by ARS, the envelope is updated to correspond more closely to the true log density, thereby reducing the chance of rejecting subsequent points. Fewer ARS rejection steps implies fewer point-evaluations of the log density.''
\li It accepts only functions with univariate inputs. I.e., it will put a single value into a 1x1 \ref apop_data set, and then evaluate the log likelihood at that point. For multivariate situations, see \ref apop_model_metropolis.
\li It is currently the default for the \ref apop_draw function given a univariate model, so you can just call that if you prefer.
\li There are a great number of parameters, in the \c apop_arms_settings structure. The structure also holds a history of the points tested to date. That means that the system will be more accurate as more draws are made. It also means that if the parameters change, or you use \ref apop_model_copy, you should call <tt>Apop_settings_rm_group(your_model, apop_arms)</tt> to clear the model of points that are not valid for a different situation.
*/
int apop_arms_draw (double *out, gsl_rng *r, apop_model *m){
apop_arms_settings *params = Apop_settings_get_group(m, apop_arms);
if (!params) params = Apop_model_add_group(m, apop_arms, .model=m);
POINT pwork; /* a working point, not yet incorporated in envelope */
int msamp=0; /* the number of x-values currently sampled */
arms_state *state = params->state;
/* now do adaptive rejection */
do {
// Sample a new point from piecewise exponential envelope
double prob = gsl_rng_uniform(r);
/* get x-value correponding to a cumulative probability prob */
assert(isfinite(state->p->x));
assert(isfinite(state->p->y));
invert(prob,state,&pwork);
/* perform rejection (and perhaps metropolis) tests */
int i = test(state,&pwork, params, r);
if (i == 1){ // point accepted
Apop_notify(3, " point accepted.");
*out = pwork.x;
assert(isfinite(pwork.x));
return 0;
} else
Apop_stopif(i!=0, return 1,-5, "envelope error - violation without metropolis");
msamp ++;
Apop_notify(3, " point rejected.");
} while (msamp < 1e3);
Apop_notify(1, "I just rejected 1,000 samples. Something is wrong.");
return 0;
}
int initial (apop_arms_settings* params, arms_state *env){
// to set up initial envelope
POINT *q;
int mpoint = 2*params->ninit + 1;
Apop_assert_c(params->ninit>=3, 1001, 0, "too few initial points");
Apop_assert_c(params->npoint >= mpoint, 1002, 0, "too many initial points");
Apop_assert_c((params->xinit[0] >= params->xl) && (params->xinit[params->ninit-1] <= params->xr),
1003, 0, "initial points do not satisfy bounds");
for(int i=1; i<params->ninit; i++)
Apop_assert_c(params->xinit[i] > params->xinit[i-1], 1004, 0, "data not ordered");
Apop_assert_c(params->convex >= 0.0, 1008, 0, "negative convexity parameter");
env->convex = ¶ms->convex; // copy convexity address to env
params->neval = 0; // initialise current number of function evaluations
/* set up space for envelope POINTs */
env->npoint = params->npoint;
env->p = malloc(params->npoint*sizeof(POINT));
Apop_assert(env->p, "malloc of env->p failed. Out of space?");
/* set up envelope POINTs */
q = env->p;
q->x = params->xl; // left bound
q->f = 0;
q->pl = NULL;
q->pr = q+1;
for(int j=1, k=0; j<mpoint-1; j++){
q++;
if(j%2){
/* point on log density */
q->x = params->xinit[k++];
q->y = perfunc(params,q->x);
Apop_assert(isfinite(q->x), "the initial param is %g", q->x);
Apop_assert(isfinite(q->y), "f(an initial parameter)= %g", q->y);
q->f = 1;
} else // intersection point
q->f = 0;
q->pl = q-1;
q->pr = q+1;
}
/* right bound */
q++;
q->x = params->xr;
q->f = 0;
q->pl = q-1;
q->pr = NULL;
assert(isfinite(q->x));
/* calculate intersection points */
q = env->p;
for (int j=0; j<mpoint; j=j+2, q=q+2)
Apop_assert_c(!meet(q,env, params), 2000, 0, "envelope violation without metropolis");
cumulate(env); // exponentiate and integrate envelope
env->cpoint = mpoint; // note number of POINTs currently in envelope
return 0;
}
void invert(double prob, arms_state *env, POINT *p){
/* to obtain a point corresponding to a given cumulative probability
prob : cumulative probability under envelope
*env : envelope attributes
*p : a working POINT to hold the sampled value */
double u,xl=0,xr=0,yl,yr,eyl,eyr,prop;
/* find rightmost point in envelope */
POINT *q = env->p;
while(q->pr != NULL)q = q->pr;
/* find exponential piece containing point implied by prob */
u = prob * q->cum;
while(q->pl->cum > u)q = q->pl;
/* piece found: set left and right POINTs of p, etc. */
p->pl = q->pl;
p->pr = q;
p->f = 0;
p->cum = u;
/* calculate proportion of way through integral within this piece */
prop = (u - q->pl->cum) / (q->cum - q->pl->cum);
/* get the required x-value */
if (q->pl->x == q->x){
/* interval is of zero length */
p->x = q->x;
p->y = q->y;
p->ey = q->ey;
} else {
xl = q->pl->x;
xr = q->x;
yl = q->pl->y;
yr = q->y;
eyl = q->pl->ey;
eyr = q->ey;
if(fabs(yr - yl) < YEPS){
/* linear approximation was used in integration in function cumulate */
if(fabs(eyr - eyl) > EYEPS*fabs(eyr + eyl))
p->x = xl + ((xr - xl)/(eyr - eyl)) * (-eyl + sqrt((1. - prop)*eyl*eyl + prop*eyr*eyr));
else
p->x = xl + (xr - xl)*prop;
p->ey = ((p->x - xl)/(xr - xl)) * (eyr - eyl) + eyl;
p->y = logshift(p->ey, env->ymax);
} else {
/* piece was integrated exactly in function cumulate */
p->x = xl + ((xr - xl)/(yr - yl))
* (-yl + logshift(((1.-prop)*eyl + prop*eyr), env->ymax));
p->y = ((p->x - xl)/(xr - xl)) * (yr - yl) + yl;
p->ey = expshift(p->y, env->ymax);
}
}
assert(isfinite(p->x));
assert(isfinite(p->y));
assert(isfinite(q->x));
assert(isfinite(q->y));
/* guard against imprecision yielding point outside interval */
Apop_stopif( ((p->x < xl) || (p->x > xr)), return,-5, "imprecision yields point outside interval");
}
int test(arms_state *env, POINT *p, apop_arms_settings *params, gsl_rng *r){
/* to perform rejection, squeezing, and metropolis tests
*env : state data
*p : point to be tested */
assert(p->pl && p->pr);
double u,y,ysqueez,ynew,yold,znew,zold,w;
POINT *ql,*qr;
/* for rejection test */
u = gsl_rng_uniform(r) * p->ey;
y = logshift(u,env->ymax);
if(params->do_metro !='y' && (p->pl->pl != NULL) && (p->pr->pr != NULL)){
/* perform squeezing test */
ql = p->pl->f ? p->pl : p->pl->pl;
qr = p->pr->f ? p->pr : p->pr->pr;
ysqueez = (qr->y * (p->x - ql->x) + ql->y * (qr->x - p->x))
/(qr->x - ql->x);
if(y <= ysqueez) // accept point at squeezing step
return 1;
}
/* evaluate log density at point to be tested */
ynew = perfunc(params,p->x);
assert(isfinite(p->x));
assert(p->pl && p->pr);
Apop_notify(3, "tested (%g, %g); ", p->x, ynew);
/* perform rejection test */
if(params->do_metro != 'y' || (params->do_metro == 'y' && (y >= ynew))){
/* update envelope */
p->y = ynew;
p->ey = expshift(p->y,env->ymax);
p->f = 1;
if(update(env,p, params))
Apop_assert_c(0, -1, 0, "envelope violation without metropolis");
/* perform rejection test: accept iff y < ynew */
return (y < ynew);
}
/* continue with metropolis step */
yold = env->metro_yprev;
/* find envelope piece containing metrop->xprev */
ql = env->p;
while(ql->pl != NULL) ql = ql->pl;
while(ql->pr->x < env->metro_xprev) ql = ql->pr;
qr = ql->pr;
/* calculate height of envelope at metrop->xprev */
w = (env->metro_xprev - ql->x)/(qr->x - ql->x);
zold = ql->y + w*(qr->y - ql->y);
znew = p->y;
if(yold < zold)zold = yold;
if(ynew < znew)znew = ynew;
w = ynew-znew-yold+zold;
w = GSL_MIN(w, 0.0);
w = (w > -YCEIL) ? exp(w) : 0.0;
u = gsl_rng_uniform(r);
if(u > w){
/* metropolis says don't move, so replace current point with previous */
/* markov chain iterate */
p->x = env->metro_xprev;
p->y = env->metro_yprev;
Apop_notify(3, "metro step (%g) rejected with w=%g, "
"ynew=%g, yold=%g, znew = %g, zold=%g; ", p->x, w, ynew, yold, znew, zold);
p->ey = expshift(p->y,env->ymax);
assert(isfinite(p->x));
assert(isfinite(p->y));
assert(isfinite(p->ey));
p->f = 1;
p->pl = ql;
p->pr = qr;
} else {
/* trial point accepted by metropolis, so update previous markov */
/* chain iterate */
env->metro_xprev = p->x;
env->metro_yprev = ynew;
}
return 1;
}
int update(arms_state *env, POINT *p, apop_arms_settings *params){
/* to update envelope to incorporate new point on log density
*env : state information
*p : point to be incorporated
*/
POINT *m,*ql,*qr,*q;
if(!(p->f) || (env->cpoint > env->npoint - 2))
/* y-value has not been evaluated or no room for further points */
return 0; // ignore this point
/* copy working POINT p to a new POINT q */
q = env->p + env->cpoint++;
q->x = p->x;
q->y = p->y;
q->f = 1;
/* allocate an unused POINT for a new intersection */
m = env->p + env->cpoint++;
m->f = 0;
if((p->pl->f) && !(p->pr->f)){
/* left end of piece is on log density; right end is not */
/* set up new intersection in interval between p->pl and p */
m->pl = p->pl;
m->pr = q;
q->pl = m;
q->pr = p->pr;
m->pl->pr = m;
q->pr->pl = q;
} else if (!(p->pl->f) && (p->pr->f)){
/* left end of interval is not on log density; right end is */
/* set up new intersection in interval between p and p->pr */
m->pr = p->pr;
m->pl = q;
q->pr = m;
q->pl = p->pl;
m->pr->pl = m;
q->pl->pr = q;
} else
Apop_stopif(1, return 1,-5, "unexpected event"); // this should be impossible
/* now adjust position of q within interval if too close to an endpoint */
ql = q->pl->pl ? q->pl->pl : q->pl;
qr = q->pr->pr ? q->pr->pr : q->pr;
if (q->x < (1. - XEPS) * ql->x + XEPS * qr->x){
/* q too close to left end of interval */
q->x = (1. - XEPS) * ql->x + XEPS * qr->x;
q->y = perfunc(params,q->x);
} else if (q->x > XEPS * ql->x + (1. - XEPS) * qr->x){
/* q too close to right end of interval */
q->x = XEPS * ql->x + (1. - XEPS) * qr->x;
q->y = perfunc(params,q->x);
}
/* revise intersection points */
if(meet(q->pl,env, params) /* envelope violations without metropolis */
|| meet(q->pr,env, params)
|| (q->pl->pl != NULL && meet(q->pl->pl->pl,env, params))
|| (q->pr->pr != NULL && meet(q->pr->pr->pr,env, params)))
return 1;
/* exponentiate and integrate new envelope */
cumulate(env);
return 0;
}
static void cumulate(arms_state *env){
/* to exponentiate and integrate envelope */
/* *env : envelope attributes */
POINT *q,*qlmost;
qlmost = env->p;
/* find left end of envelope */
while(qlmost->pl) qlmost = qlmost->pl;
/* find maximum y-value: search envelope */
env->ymax = qlmost->y;
for(q = qlmost->pr; q != NULL; q = q->pr)
if(q->y > env->ymax)
env->ymax = q->y;
/* exponentiate envelope */
for(q = qlmost; q != NULL; q = q->pr)
q->ey = expshift(q->y,env->ymax);
/* integrate exponentiated envelope */
qlmost->cum = 0.;
for(q = qlmost->pr; q != NULL; q = q->pr)
q->cum = q->pl->cum + area(q);
}
int meet (POINT *q, arms_state *env, apop_arms_settings *params){
/* To find where two chords intersect
q : to store point of intersection
*env : state attributes
*/
double gl=0,gr=0,grl=0,dl=0,dr=0;
int il=0,ir=0,irl=0;
Apop_assert(!(q->f), "error 30: this is not an intersection point.");
/* calculate coordinates of point of intersection */
if ((q->pl != NULL) && (q->pl->pl->pl != NULL)){
/* chord gradient can be calculated at left end of interval */
gl = (q->pl->y - q->pl->pl->pl->y)/(q->pl->x - q->pl->pl->pl->x);
il = 1;
} else // no chord gradient on left
il = 0;
if ((q->pr != NULL) && (q->pr->pr->pr != NULL)){
/* chord gradient can be calculated at right end of interval */
gr = (q->pr->y - q->pr->pr->pr->y)/(q->pr->x - q->pr->pr->pr->x);
ir = 1;
} else // no chord gradient on right
ir = 0;
if ((q->pl != NULL) && (q->pr != NULL)){
/* chord gradient can be calculated across interval */
grl = (q->pr->y - q->pl->y)/(q->pr->x - q->pl->x);
irl = 1;
} else
irl = 0;
if(irl && il && (gl<grl)){
/* convexity on left exceeds current threshold */
if(params->do_metro !='y') // envelope violation without metropolis
return 1;
gl = gl + (1.0 + *(env->convex)) * (grl - gl); // adjust left gradient
}
if(irl && ir && (gr>grl)){
/* convexity on right exceeds current threshold */
if(params->do_metro !='y') // envelope violation without metropolis
return 1;
gr = gr + (1.0 + *(env->convex)) * (grl - gr); // adjust right gradient
}
if(il && irl){
dr = (gl - grl) * (q->pr->x - q->pl->x);
if(dr < YEPS) // adjust dr to avoid numerical problems
dr = YEPS;
}
if(ir && irl){
dl = (grl - gr) * (q->pr->x - q->pl->x);
if(dl < YEPS) // adjust dl to avoid numerical problems
dl = YEPS;
}
if(il && ir && irl){
/* gradients on both sides */
q->x = (dl * q->pr->x + dr * q->pl->x)/(dl + dr);
q->y = (dl * q->pr->y + dr * q->pl->y + dl * dr)/(dl + dr);
} else if (il && irl){
/* gradient only on left side, but not right hand bound */
q->x = q->pr->x;
q->y = q->pr->y + dr;
} else if (ir && irl){
/* gradient only on right side, but not left hand bound */
q->x = q->pl->x;
q->y = q->pl->y + dl;
} else if (il)
q->y = q->pl->y + gl * (q->x - q->pl->x); // right hand bound
else if (ir)
q->y = q->pr->y - gr * (q->pr->x - q->x); // left hand bound
else
Apop_assert(0, "error 31: gradient on neither side - should be impossible.");
if(((q->pl != NULL) && (q->x < q->pl->x)) ||
((q->pr != NULL) && (q->x > q->pr->x))){
Apop_assert(0, "error 32: intersection point outside interval (through imprecision)");
}
return 0; // successful exit : intersection has been calculated
}
double area(POINT *q){
/* To integrate piece of exponentiated envelope to left of POINT q */
if(q->pl == NULL) // this is leftmost point in envelope
Apop_stopif(1, return GSL_NAN,-5, "leftmost point in envelope");
if(q->pl->x == q->x) // interval is zero length
return 0.;
if (fabs(q->y - q->pl->y) < YEPS) // integrate straight line piece
return 0.5*(q->ey + q->pl->ey)*(q->x - q->pl->x);
// integrate exponential piece
return ((q->ey - q->pl->ey)/(q->y - q->pl->y))*(q->x - q->pl->x);
}
double expshift(double y, double y0) {
/* to exponentiate shifted y without underflow */
if (y - y0 > -2.0 * YCEIL)
return exp(y - y0 + YCEIL);
else
return 0.0;
}
double logshift(double y, double y0){
/* inverse of function expshift */
return (log(y) + y0 - YCEIL);
}
double perfunc(apop_arms_settings *params, double x){
// to evaluate log density and increment count of evaluations
Staticdef( apop_data *, d , apop_data_alloc(1,1));
d->matrix->data[0] = x;
double y = apop_log_likelihood(d, params->model);
Apop_assert(isfinite(y), "Evaluating the log likelihood at %g returned %g.", x, y);
(params->neval)++; // increment count of function evaluations
return y;
}
|