1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
|
/** \file apop_mle.c */
/*Copyright (c) 2006--2010 by Ben Klemens. Licensed under the GPLv2; see COPYING. */
#include "apop_internal.h"
#include <setjmp.h>
#include <signal.h>
#include <gsl/gsl_deriv.h>
#include <gsl/gsl_siman.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_multimin.h>
#include <gsl/gsl_multiroots.h>
typedef long double (*apop_fn_with_params) (apop_data *, apop_model *);
typedef void (*apop_df_with_void)(const gsl_vector *beta, void *d, gsl_vector *gradient);
typedef void (*apop_fdf_with_void)(const gsl_vector *beta, void *d, double *f, gsl_vector *df);
/** \cond doxy_ignore */
typedef struct {
gsl_vector *beta;
int dimension;
} grad_params;
typedef struct {
apop_model *model;
apop_data *data;
apop_fn_with_params *f;
grad_params *gp; //Used only by apop_internal_numerical_gradient.
gsl_vector *beta, *starting_pt;
int use_constraint;
double best_ll;
char want_cov, want_predicted, want_tests, want_info;
jmp_buf bad_eval_jump;
apop_data** path;
} infostruct;
/** \endcond */ //End of Doxygen ignore.
static apop_model * find_roots (infostruct p); //see end of file.
//as a macro, we can put it in documentation
/* Generate support fns (esp. initializers) for apop_mle_settings and apop_parts_wanted structs. */
Apop_settings_copy(apop_parts_wanted, )
Apop_settings_free(apop_parts_wanted, )
Apop_settings_init(apop_parts_wanted,
Apop_varad_set(covariance, 'n');
Apop_varad_set(predicted, 'n');
Apop_varad_set(tests, 'n');
Apop_varad_set(info, 'n');
)
Apop_settings_copy(apop_mle, )
Apop_settings_free(apop_mle, )
Apop_settings_init(apop_mle,
Apop_varad_set(starting_pt, NULL);
Apop_varad_set(tolerance, 1e-5);
Apop_varad_set(max_iterations, 5000);
Apop_varad_set(method, "");//default picked in apop_maximum_likelihood
Apop_varad_set(verbose, 0);
Apop_varad_set(step_size, 0.05);
Apop_varad_set(delta, 1e-3);
Apop_varad_set(dim_cycle_tolerance, 0);
//siman:
//siman also uses step_size = 1.;
Apop_varad_set(n_tries, 5); //The number of points to try for each step.
Apop_varad_set(iters_fixed_T, 5); //The number of iterations at each temperature.
Apop_varad_set(k, 1.0); //The maximum step size in the random walk.
Apop_varad_set(t_initial, 50); //cooling schedule data
Apop_varad_set(mu_t, 1.002);
Apop_varad_set(t_min, 5.0e-1);
Apop_varad_set(rng, NULL);
)
// MLE support functions
//Including numerical differentiation and a couple of functions to
//negate the likelihood fns without bothering the user.
static void apop_annealing(infostruct*); //below.
static double one_d(double b, void *in){
infostruct *i = in;
long double penalty = 0;
gsl_vector_set(i->gp->beta, i->gp->dimension, b);
apop_data_unpack(i->gp->beta, i->model->parameters);
if (i->model->constraint)
penalty = i->model->constraint(i->data, i->model);
return (*(i->f))(i->data, i->model) + penalty;
}
//Numeric first and second derivatives.
/* For each element of the parameter set, jiggle it to find its
gradient. Return a vector as long as the parameter list. */
static void apop_internal_numerical_gradient(apop_fn_with_params ll,
infostruct* info, gsl_vector *out, double delta){
double result, err;
gsl_vector *beta = apop_data_pack(info->model->parameters);
infostruct i = *info;
i.f = ≪
i.gp = &(grad_params){ .beta = gsl_vector_alloc(beta->size)};
gsl_function F = { .function= one_d,
.params = &i };
for (size_t j=0; j< beta->size; j++){
i.gp->dimension = j;
gsl_vector_memcpy(i.gp->beta, beta);
gsl_deriv_central(&F, gsl_vector_get(beta,j), delta, &result, &err);
gsl_vector_set(out, j, result);
}
gsl_vector_free(beta);
}
/**
A wrapper around the GSL's one-dimensional \c gsl_deriv_central to find a numeric differential for each dimension of the input \ref apop_model's log likelihood (or \c p if \c log_likelihood is \c NULL).
\param data The \ref apop_data set to use for all evaluations.
\param model The \ref apop_model, expressing the function whose derivative is sought. The gradient is taken via small changes along the model parameters.
\param delta The size of the differential. (default: 1e-3, but see below)
\code
gsl_vector *gradient = apop_numerical_gradient(data, your_parametrized_model);
\endcode
\li If you do not set \ref delta as an input, I first look for an \ref apop_mle_settings
group attached to the input model, and check that for a \c delta element. If that is
also missing, use the default of 1e-3.
\li This function uses the \ref designated syntax for inputs.
*/
#ifdef APOP_NO_VARIADIC
gsl_vector * apop_numerical_gradient(apop_data *data, apop_model *model, double delta){
#else
apop_varad_head(gsl_vector *, apop_numerical_gradient){
apop_data * apop_varad_var(data, NULL);
apop_model * apop_varad_var(model, NULL);
Nullcheck(model, NULL) Nullcheck_p(model, NULL)
double apop_varad_var(delta, 0);
if (!delta){
apop_mle_settings *mp = apop_settings_get_group(model, apop_mle);
delta = mp ? mp->delta : 1e-3;
}
return apop_numerical_gradient_base(data, model, delta);
}
gsl_vector * apop_numerical_gradient_base(apop_data *data, apop_model *model, double delta){
#endif
Get_vmsizes(model->parameters); //tsize
apop_fn_with_params ll = model->log_likelihood ? model->log_likelihood : model->p;
Apop_stopif(!ll, return NULL, 0, "Input model has neither p nor log_likelihood method. Returning NULL.");
gsl_vector *out = gsl_vector_calloc(tsize);
infostruct i = (infostruct) {.model = model, .data = data};
apop_internal_numerical_gradient(ll, &i, out, delta);
return out;
}
/** \cond doxy_ignore */
typedef struct {
apop_model *base_model;
int *current_index;
} apop_model_for_infomatrix_struct;
/** \endcond */
static long double apop_fn_for_infomatrix(apop_data *d, apop_model *m){
static threadlocal gsl_vector *v = NULL;
apop_model_for_infomatrix_struct *settings = m->more;
apop_model *mm = settings->base_model;
apop_score_type ms = apop_score_vtable_get(mm);
if (ms){
Get_vmsizes(mm->parameters); //tsize
if (!v || v->size != tsize){
if (v) gsl_vector_free(v);
v = gsl_vector_alloc(tsize);
}
ms(d, v, mm);
return gsl_vector_get(v, *settings->current_index);
} //else:
gsl_vector *vv = apop_numerical_gradient(d, mm);
double out = gsl_vector_get(vv, *settings->current_index);
gsl_vector_free(vv);
return out;
}
apop_model *apop_model_for_infomatrix = &(apop_model){"Ad hoc model for working out the information matrix.",
.log_likelihood = apop_fn_for_infomatrix};
/** Numerically estimate the matrix of second derivatives of the parameter values, via
a series of re-evaluations at small differential steps. [Therefore, it may be expensive
to do this for a very computationally-intensive model.]
\param data The \ref apop_data at which the model was estimated (default: \c NULL)
\param model The \ref apop_model, with parameters already estimated (no default, must not be \c NULL)
\param delta the step size for the differentials. (default: 1e-3, but see below)
\return The matrix of estimated second derivatives at the given data and parameter values.
\li If you do not set \ref delta as an input, I first look for an \ref apop_mle_settings group attached to the input model, and check that for a \c delta element. If that is also missing, use the default of 1e-3.
\li This function uses the \ref designated syntax for inputs.
*/
#ifdef APOP_NO_VARIADIC
apop_data * apop_model_hessian(apop_data * data, apop_model *model, double delta){
#else
apop_varad_head(apop_data *, apop_model_hessian){
apop_data * apop_varad_var(data, NULL);
apop_model * apop_varad_var(model, NULL);
Nullcheck(model, NULL)
double apop_varad_var(delta, 0);
if (!delta){
apop_mle_settings *mp = apop_settings_get_group(model, apop_mle);
delta = mp ? mp->delta : 1e-3;
}
return apop_model_hessian_base(data, model, delta);
}
apop_data * apop_model_hessian_base(apop_data * data, apop_model *model, double delta){
#endif
int k;
Get_vmsizes(model->parameters) //tsize
size_t betasize = tsize;
apop_data *out = apop_data_calloc(0, betasize, betasize);
gsl_vector *dscore = gsl_vector_alloc(betasize);
apop_model_for_infomatrix_struct ms = { .base_model = model, .current_index = &k, };
apop_model *m = apop_model_copy(apop_model_for_infomatrix);
m->parameters = model->parameters;
m->more = &ms;
if (apop_settings_get_group(model, apop_mle))
apop_settings_copy_group(m, model, "apop_mle");
for (k=0; k< betasize; k++){
dscore = apop_numerical_gradient(data, m, delta);
//We get two estimates of the (k,j)th element, which are often very close,
//and take the mean.
for (size_t j=0; j< betasize; j++){
*gsl_matrix_ptr(out->matrix, k, j) += gsl_vector_get(dscore, j)/2;
*gsl_matrix_ptr(out->matrix, j, k) += gsl_vector_get(dscore, j)/2;
}
gsl_vector_free(dscore);
}
if (model->parameters->names->row){
apop_name_stack(out->names, model->parameters->names, 'r');
apop_name_stack(out->names, model->parameters->names, 'c', 'r');
}
return out;
}
/** Produce the covariance matrix for the parameters of an estimated model via the derivative of the score function at the parameter. I.e., I find the second derivative via \ref apop_model_hessian , and take the negation of the inverse.
I follow Efron and Hinkley in using the estimated information matrix---the value of the information matrix at the estimated value of the score---not the expected information matrix that is the integral over all possible data. See Pawitan 2001 (who cribbed a little off of Efron and Hinkley) or Klemens 2008 (who directly cribbed off of both) for further details.
\param data The data by which your model was estimated
\param model A model whose parameters have been estimated.
\param delta The differential by which to step for sampling changes. (default: 1e-3, but see below)
\return A covariance matrix for the data. Also, if the data does not have a
<tt>"<Covariance>"</tt> page, I'll set it to the result as well [i.e., I won't overwrite an
existing covariance page].
\li If you do not set \ref delta as an input, I first look for an \ref apop_mle_settings group attached to the input model, and check that for a \c delta element. If that is also missing, use the default of 1e-3.
\li This function uses the \ref designated syntax for inputs.
*/
#ifdef APOP_NO_VARIADIC
apop_data * apop_model_numerical_covariance(apop_data * data, apop_model *model, double delta){
#else
apop_varad_head(apop_data *, apop_model_numerical_covariance){
apop_data * apop_varad_var(data, NULL);
apop_model * apop_varad_var(model, NULL);
Nullcheck(model, NULL)
double apop_varad_var(delta, 0);
if (!delta){
apop_mle_settings *mp = apop_settings_get_group(model, apop_mle);
delta = mp ? mp->delta : 1e-3;
}
return apop_model_numerical_covariance_base(data, model, delta);
}
apop_data * apop_model_numerical_covariance_base(apop_data * data, apop_model *model, double delta){
#endif
apop_data *hessian = apop_model_hessian(data, model, delta);
if (apop_opts.verbose > 1){
printf("The estimated Hessian:\n");
apop_data_show(hessian);
}
apop_data *out = apop_data_alloc();
out->matrix = apop_matrix_inverse(hessian->matrix);
gsl_matrix_scale(out->matrix, -1);
if (hessian->names->row){
apop_name_stack(out->names, hessian->names, 'r');
apop_name_stack(out->names, hessian->names, 'c');
}
apop_data_free(hessian);
if (!apop_data_get_page(model->parameters, "<Covariance>"))
apop_data_add_page(model->parameters, out, "<Covariance>");
return out;
}
///On to the interfaces between the models and the methods
static void tracepath(const gsl_vector *beta, double value, apop_data **path){
size_t msize1 = (*path && (*path)->matrix) ? (*path)->matrix->size1: 0;
if (!*path) {
*path = apop_data_alloc();
(*path)->names->title = strdup("Path of ML search");
apop_name_add((*path)->names, "f(x)", 'v');
apop_name_add((*path)->names, "x", 'm');
}
(*path)->matrix = apop_matrix_realloc((*path)->matrix, msize1+1, beta->size);
gsl_vector_memcpy(Apop_rv(*path, msize1), beta);
(*path)->vector = apop_vector_realloc((*path)->vector, msize1+1);
gsl_vector_set((*path)->vector, msize1, value);
}
/* Every actual evaluation of the function go through the negshell and dnegshell fns,
because there are several things that have to be done beyond just getting
model.log_likelihood:
--Negate, because statisticians and social scientists like to maximize; physicists like to minimize.
--Work out if the model provides log_likelihood or p.
--Call \ref trace_path if needed.
--Go from a single vector to a full apop_data set and back (via apop_data_pack/unpack)
--Check the derivative function if available.
--Check constraints.
*/
static double negshell (const gsl_vector *beta, void * in){
infostruct *i = in;
double penalty = 0,
out = 0;
long double (*f)(apop_data *, apop_model *);
f = i->model->log_likelihood? i->model->log_likelihood : i->model->p;
Apop_stopif(!f, longjmp(i->bad_eval_jump, -1),
0, "The model you sent to the MLE function has neither log_likelihood element nor p element.");
apop_data_unpack(beta, i->model->parameters);
if (i->use_constraint && i->model->constraint)
penalty = i->model->constraint(i->data, i->model);
if (penalty) apop_data_pack(i->model->parameters, (gsl_vector*) beta);
double f_val = f(i->data, i->model);
out = penalty - f_val; //negative llikelihood
Apop_stopif(gsl_isnan(out), longjmp(i->bad_eval_jump, -1),
0, "I got a NaN in evaluating the objective function.%s",
!i->model->constraint ? " Maybe add a constraint to your model?" : "");
if (i->path) tracepath(i->model->parameters->vector, -out, i->path);
if (i->want_info =='y'){
//I report the log likelihood under the assumption that the final param set
//matches the best ll evaluated.
long double this_ll = i->model->log_likelihood? -out : log(-out); //negative negative llikelihood.
if(gsl_isnan(this_ll)){
Apop_stopif(!i->model->log_likelihood && penalty > f_val, i->want_info='n',
1, "Model's p=%g, penalty=%g, for a negative adjusted p=%g. "
"Continuing, but can not report covariance or other "
"log likelihood-based statistics.", f_val, penalty, f_val-penalty);
Apop_stopif(1, apop_data_show(i->model->parameters); i->want_info='n',
1, "NaN resulted from the following value tried by the maximum likelihood system.");
}
i->best_ll = GSL_MAX(i->best_ll, this_ll);
}
return out;
}
static int dnegshell (const gsl_vector *beta, void * in, gsl_vector * g){
/* The derivative-calculating routine.
If the constraint binds
then: take the numerical derivative of negshell, which will be the
numerical derivative of the penalty.
else: just find dlog_likelihood. If the model doesn't have a
dlog likelihood or the user asked to ignore it, then the main
maximum likelihood fn replaced model.score with
apop_numerical_gradient anyway.
Finally, reverse the sign, since the GSL is trying to minimize instead of maximize.
*/
infostruct *i = in;
apop_mle_settings *mp = apop_settings_get_group(i->model, apop_mle);
apop_data_unpack(beta, i->model->parameters);
/* In all cases, negshell gets called first, so the constraint is already
checked and beta nudged accordingly.
if(i->model->constraint && i->model->constraint(i->data, i->model))
apop_data_pack(i->model->parameters, (gsl_vector *) beta); */
apop_score_type ms = apop_score_vtable_get(i->model);
if (ms) ms(i->data, g, i->model);
else {
apop_fn_with_params ll = i->model->log_likelihood ? i->model->log_likelihood : i->model->p;
apop_internal_numerical_gradient(ll, i, g, mp->delta);
}
if (mp->path) negshell (beta, in);
gsl_vector_scale(g, -1);
return GSL_SUCCESS;
}
//This is just to satisfy the GSL's format.
static void fdf_shell(const gsl_vector *beta, void *i, double *f, gsl_vector *df){
*f = negshell(beta, i);
dnegshell(beta, i, df);
}
static int ctrl_c;
static void mle_sigint(){ ctrl_c ++; }
static int setup_starting_point(apop_mle_settings *mp, gsl_vector *x){
Apop_stopif(!x, return -1, 0, "The vector I'm trying to optimize over is NULL.");
if (!mp->starting_pt) gsl_vector_set_all (x, 1);
else for (int i=0; i< x->size; i++)
x->data[i] = mp->starting_pt[i];
return 0;
}
void add_info_criteria(apop_data *d, apop_model *m, apop_model *est, double ll, int param_ct){
//Did the sending function save last value of f()?
if (!ll) ll = apop_log_likelihood(d, m);
if (!est->info) est->info = apop_data_alloc();
apop_data_add_named_elmt(est->info, "log likelihood", ll);
double AIC = 2*param_ct - 2 *ll;
apop_data_add_named_elmt(est->info, "AIC", AIC);
if (d){//some models have NULL data.
int n;
{Get_vmsizes(d); n = maxsize;}
apop_data_add_named_elmt(est->info, "AIC_c", AIC + 2*param_ct *(param_ct + 1.0)/(n - param_ct - 1.0));
Get_vmsizes(d); //vsize, msize1, tsize
apop_data_add_named_elmt(est->info, "BIC", param_ct * log(n) - 2 *ll);
}
}
static void auxinfo(apop_data *params, infostruct *i, int status, double ll){
apop_model *est = i->model; //just an alias.
/* This catches too many near-misses
if(est->constraint)
apop_assert(!est->constraint(i->data, est), "the maximum likelihood search ended "
"at a point that doesn't satisfy the model's constraints.");*/
if (i->want_cov=='y' && est->parameters){
apop_model_numerical_covariance(i->data, est, Apop_settings_get(est,apop_mle,delta));
if (i->want_tests=='y')
apop_estimate_parameter_tests (est);
}
if (!est->info) est->info = apop_data_alloc();
apop_data_add_named_elmt(est->info, "status", status);
if (i->want_info=='y') add_info_criteria(i->data, i->model, est, ll, i->beta->size);
}
static void apop_maximum_likelihood_w_d(apop_data * data, infostruct *i){
/* The maximum likelihood calculations, given a derivative of the log likelihood.
If no derivative exists, will calculate a numerical gradient.
Inside the infostruct, you'll find these elements:
\param data the data matrix
\param dist the \ref apop_model object: probit, zipf, &c.
\param starting_pt an array of doubles suggesting a starting point. If NULL, use a vector whose elements are all 0.1 (zero has too many pathological cases).
\param step_size the initial step size.
\param tolerance the precision the minimizer uses. Only vaguely related to the precision of the actual var.
\return an \ref apop_model with the parameter estimates, &c. If returned_estimate->status == 0, then optimum parameters were found; if status != 0, then there were problems.
*/
gsl_multimin_fdfminimizer *s;
apop_model *est = i->model; //just an alias.
apop_mle_settings *mp = apop_settings_get_group(est, apop_mle);
int iter = 0,
status = 0,
apopstatus = 0,
betasize= i->beta->size;
if (!strcasecmp(mp->method, "BFGS cg"))
s = gsl_multimin_fdfminimizer_alloc(gsl_multimin_fdfminimizer_vector_bfgs2, betasize);
else if (!strcasecmp(mp->method, "PR cg"))
s = gsl_multimin_fdfminimizer_alloc(gsl_multimin_fdfminimizer_conjugate_pr, betasize);
else //Default: "FR CG" conjugate gradient (Fletcher-Reeves)
s = gsl_multimin_fdfminimizer_alloc(gsl_multimin_fdfminimizer_conjugate_fr, betasize);
gsl_multimin_function_fdf minme = {
.f = negshell,
.df = (apop_df_with_void) dnegshell,
.fdf = (apop_fdf_with_void) fdf_shell,
.n = betasize,
.params = i};
ctrl_c = 0;
if (setjmp(i->bad_eval_jump))
Apop_stopif(1, return, 0, "Failure evaluating likelihood at the starting point. Add a starting point?");
gsl_multimin_fdfminimizer_set (s, &minme, i->beta, mp->step_size, mp->tolerance);
signal(SIGINT, mle_sigint);
do {
iter++;
if (setjmp(i->bad_eval_jump)) {
apopstatus = -1;
break;
}
status = gsl_multimin_fdfminimizer_iterate(s);
if(status && status!=GSL_CONTINUE) break; //commented out error msg because too many GSL_ENOPROG false positives.
//Apop_stopif(status && status!=GSL_CONTINUE, break, 0, "GSL error: %s", gsl_strerror(status));
status = gsl_multimin_test_gradient(s->gradient, mp->tolerance);
if(status && status!=GSL_CONTINUE) break; //commented out error msg because too many GSL_ENOPROG false positives.
//Apop_stopif(status && status!=GSL_CONTINUE, break, 0, "GSL error: %s", gsl_strerror(status));
if (mp->verbose)
printf ("%5i %.5f f()=%10.5f gradient=%.3f\n", iter, gsl_vector_get (s->x, 0), s->f, gsl_vector_get(s->gradient,0));
Apop_stopif(status == GSL_SUCCESS, apopstatus=0, 2, "Optimum found.");
} while (status == GSL_CONTINUE && iter < mp->max_iterations && !ctrl_c);
signal(SIGINT, NULL);
Apop_stopif(iter==mp->max_iterations, apopstatus = -1, 1, "Max iterations reached, implying that I did not find an optimum.");
//Clean up, copy results to output estimate.
apop_data_unpack(s->x, est->parameters);
gsl_multimin_fdfminimizer_free(s);
gsl_vector_free(i->beta);
auxinfo(est->parameters, i, apopstatus, i->best_ll);
}
/* See apop_maximum_likelihood_w_d for notes. */
static void apop_maximum_likelihood_no_d(apop_data * data, infostruct * i){
apop_model *est = i->model;
apop_mle_settings *mp = apop_settings_get_group(est, apop_mle);
int status=0,
apopstatus = 0,
iter = 0,
betasize= i->beta->size;
gsl_multimin_fminimizer *s;
gsl_vector *ss;
double size;
s = gsl_multimin_fminimizer_alloc(gsl_multimin_fminimizer_nmsimplex, betasize);
ss = gsl_vector_alloc(betasize);
ctrl_c =
apopstatus = 0; //assume failure until we score a success.
gsl_vector_set_all (ss, mp->step_size);
gsl_multimin_function minme = {.f = negshell, .n= betasize, .params = i};
if (setjmp(i->bad_eval_jump))
Apop_stopif(1, return, 0, "Failure evaluating likelihood at the starting point. Add a starting point?");
gsl_multimin_fminimizer_set (s, &minme, i->beta, ss);
//i->beta = s->x;
signal(SIGINT, mle_sigint);
do {
iter++;
if (setjmp(i->bad_eval_jump)) {
apopstatus = -1;
break;
}
status = gsl_multimin_fminimizer_iterate(s);
if (status) break;
size = gsl_multimin_fminimizer_size(s);
status = gsl_multimin_test_size (size, mp->tolerance);
if(mp->verbose){
printf ("%5d ", iter);
for (size_t j = 0; j < betasize; j++)
printf ("%8.3e ", gsl_vector_get (s->x, j));
printf ("f()=%7.3f size=%.3f\n", s->fval, size);
if (status == GSL_SUCCESS) {
printf ("Optimum found at:\n");
printf ("%5d ", iter);
for (size_t j = 0; j < betasize; j++)
printf ("%8.3e ", gsl_vector_get (s->x, j));
printf ("f()=%7.3f size=%.3f\n", s->fval, size);
}
}
} while (status == GSL_CONTINUE && iter < mp->max_iterations && !ctrl_c);
signal(SIGINT, NULL);
Apop_stopif(iter == mp->max_iterations && mp->verbose, /*continue*/,
1, "Optimization reached maximum number of iterations.");
if (status == GSL_SUCCESS) apopstatus = 0;
apop_data_unpack(s->x, est->parameters);
gsl_multimin_fminimizer_free(s);
auxinfo(est->parameters, i, apopstatus, i->best_ll);
}
/*There is a basically standard location for the log likelihood. Search there, and if you don't
find it, then recalculate it.*/
static double get_ll(apop_data *d, apop_model *est){
int index = est->info ? apop_name_find(est->info->names, "log likelihood", 'r') : -2;
if (index>-2) return apop_data_get(est->info, index);
//last resort: recalculate
return apop_log_likelihood(d, est);
}
static void dim_cycle(apop_data *d, apop_model *est, infostruct info){
double last_ll, this_ll = GSL_NEGINF;
int iteration = 0;
apop_mle_settings *mp = Apop_settings_get_group(est, apop_mle);
double tol = mp->dim_cycle_tolerance;
int betasize = info.beta->size;
Apop_settings_set(est, apop_mle, dim_cycle_tolerance, 0);//so sub-estimations won't use this function.
gsl_vector *paramv = apop_data_pack(est->parameters);
apop_model *full_est = NULL; //an alias
do {
if (mp->verbose){
if (!(iteration++))
printf("Cycling toward an optimum. Listing (dim):log likelihood.\n");
printf("Iteration %i:\n", iteration);
}
last_ll = this_ll;
for (int i=0; i< betasize; i++){
gsl_vector_set(info.beta, i, GSL_NAN);
apop_data_unpack(info.beta, est->parameters);
apop_model *m_onedim = apop_model_fix_params(est);
apop_prep(d, m_onedim);
apop_maximum_likelihood(d, m_onedim);
gsl_vector_set(info.beta, i, m_onedim->parameters->vector->data[0]);
full_est = apop_model_fix_params_get_base(m_onedim);//points to est, but filled.
this_ll = get_ll(d, full_est);//only used on the last iteration.
if (mp->verbose) printf("(%i):%g\t", i, this_ll), fflush(NULL);
apop_model_free(m_onedim);
}
if (mp->verbose) printf("\n");
apop_data_pack(full_est->parameters, paramv);
Apop_settings_add(est, apop_mle, starting_pt, paramv->data);
} while (fabs(this_ll - last_ll) > tol);
Apop_settings_set(est, apop_mle, dim_cycle_tolerance, tol);
gsl_vector_free(paramv);
}
void get_desires(apop_model *m, infostruct *info){
apop_parts_wanted_settings *want = apop_settings_get_group(m, apop_parts_wanted);
info->want_tests = (want && want->tests =='y') ? 'y' : 'n';
info->want_cov = (info->want_tests=='y' || (want && want->covariance =='y'))
? 'y' : 'n';
info->want_info = want ? (want->info =='y' ? 'y' : 'n') : 'y';
//doesn't do anything at the moment.
info->want_predicted = (want && want->predicted =='y') ? 'y' : 'n';
}
int check_method (char *m){
#define Onecheck(str) if (!strcasecmp(m, #str)) return 0;
if(!m || strlen(m)==0) return 0;
Onecheck(NM simplex)
Onecheck(FR cg)
Onecheck(BFGS cg)
Onecheck(PR cg)
Onecheck(Annealing)
Onecheck(Newton)
Onecheck(Newton hybrid)
Onecheck(Newton hybrid no scale)
return 1;
}
/** Find the likelihood-maximizing parameters of a model given data.
\li I assume that \ref apop_prep has been called on your model. The easiest way to guarantee this is to use \ref apop_estimate, which calls this function if the input model has no \c estimate method.
\li All of the settings are specified by adding a
\ref apop_mle_settings struct to your model, so see the many notes there. Notably,
the default method is the Fletcher-Reeves conjugate gradient method, and if your model
does not have a dlog likelihood function, then a numeric gradient will be calculated
via \ref apop_numerical_gradient. Add an \ref apop_mle_settings group to your model
to set tuning parameters or select other methods, including the Nelder-Mead simplex,
simulated annealing, and root-finding.
\param data An \ref apop_data set.
\param dist The \ref apop_model object: \ref apop_gamma, \ref apop_probit, \ref apop_zipf, &c. You can add
an \c apop_mle_settings struct to it (<tt>Apop_model_add_group(your_model, apop_mle,
.verbose=1, .method="PR cg", and_so_on)</tt>).
\return None, but the input model is modified to include the parameter estimates, &c.
\li There is auxiliary info in the <tt>->info</tt> element of the post-estimation struct. Get elements via, e.g.:
\code
apop_model *est = apop_estimate(your_data, apop_probit);
int status = apop_data_get(est->info, .rowname="status");
if (status)
//trouble
else
//optimum found
apop_data_print(est->parameters); //Here are the estimated parameters
\endcode
\li During the search for an optimum, ctrl-C (SIGINT) will halt the search, and the function will return whatever parameters the search was on at the time.
*/
void apop_maximum_likelihood(apop_data * data, apop_model *dist){
apop_mle_settings *mp = apop_settings_get_group(dist, apop_mle);
if (!mp) mp = Apop_model_add_group(dist, apop_mle);
apop_score_type ms = apop_score_vtable_get(dist);
Apop_stopif(check_method(mp->method), return, 0, "You set the method='%s', "
"which is not on my list of allowable methods. See the apop_mle_settings "
"documentation for the list of options", mp->method);
if (!mp->method || !strlen(mp->method)) mp->method = ms ? "FR cg" : "NM simplex";
Apop_stopif(!dist->parameters, dist->error='p'; return, 0, "Not enough information to allocate parameters over which to optimize. If this was not called from apop_estimate, did you call apop_prep first?");
infostruct info = {.data = data,
.use_constraint = 1,
.path = mp->path,
.model = dist};
get_desires(dist, &info);
info.beta = apop_data_pack(dist->parameters);
if (setup_starting_point(mp, info.beta)) return;
info.model->data = data;
if (mp->dim_cycle_tolerance) dim_cycle(data, dist, info);
else if (!strcasecmp(mp->method, "annealing")) apop_annealing(&info); //below.
else if (!strcasecmp(mp->method, "NM simplex")) apop_maximum_likelihood_no_d(data, &info);
else if (!strcasecmp(mp->method, "Newton") ||
!strcasecmp(mp->method, "Newton hybrid")||
!strcasecmp(mp->method, "Newton hybrid no scale")) find_roots (info);
else /* Conjugate Gradient*/ apop_maximum_likelihood_w_d(data, &info);
}
/** Maximum likelihod searches are not guaranteed to find a global optimum, and it can be
difficult to tune a search such that it covers a wide space, but also accurately hones in
on the optimum. In both cases, one could restart the search using a different starting
point or different parameters.
The simplest use of this function is to restart a model at the latest parameter estimates.
\code
apop_model *m = apop_estimate(data, model_using_an_MLE_search);
for (int i=0; i< 10; i++)
m = apop_estimate_restart(m);
apop_data_show(m);
\endcode
By adding a line to reduce the tolerance each round [e.g., <tt>Apop_settings_set(m, apop_mle, tolerance, pow(10,-i))</tt>], you can start broad and hone in on a precise optimum.
You may have a new estimation method, such as first doing a coarse simulated annealing search, then a fine conjugate gradient search. When reading this example, recall that the form for adding a new settings group differs from the form for modifying existing settings:
\code
Apop_model_add_settings(your_base_model, apop_mle, .method=APOP_SIMAN);
apop_model *m = apop_estimate(data, your_base_model);
Apop_settings_set(m, apop_mle, method, APOP_CG_PR);
m = apop_estimate_restart(m);
apop_data_show(m);
\endcode
Only one estimate is returned, either the one you sent in or a new
one. The loser (which may be the one you sent in) is freed, to prevent memory leaks.
\param e An \ref apop_model that is the output from a prior MLE estimation. (No default, must not be \c NULL.)
\param copy Another not-yet-parametrized model that will be re-estimated with (1) the same data and (2) a <tt>starting_pt</tt> as per the next setting (probably
to the parameters of <tt>e</tt>). If this is <tt>NULL</tt>, then copy <tt>e</tt>. (Default = \c NULL)
\param starting_pt "ep"=last estimate of the first model (i.e., its current parameter estimates)<br>
"es"= starting point originally used by the first model<br>
"np"=current parameters of the new (second) model<br>
"ns"=starting point specified by the new model's MLE settings. (default = "ep")
\param boundary I test whether the starting point you give me has magintude greater
than this bound, so I can warn you if there's divergence in your sequence of
re-estimations. (default: 1e8)
\return If the new estimated parameters include any NaNs/Infs, then
the old estimate is returned (even if the old estimate included
NaNs/Infs). Otherwise, the estimate with the largest log likelihood
is returned.
\li This function uses the \ref designated syntax for inputs.
*/
#ifdef APOP_NO_VARIADIC
apop_model * apop_estimate_restart(apop_model *e, apop_model *copy, char * starting_pt, double boundary){
#else
apop_varad_head(apop_model *, apop_estimate_restart){
apop_model * apop_varad_var(e, NULL);
Nullcheck_m(e, NULL);
apop_model * apop_varad_var(copy, NULL);
char * apop_varad_var(starting_pt, "ep");
double apop_varad_var(boundary, 1e8);
return apop_estimate_restart_base(e, copy, starting_pt, boundary);
}
apop_model * apop_estimate_restart_base(apop_model *e, apop_model *copy, char * starting_pt, double boundary){
#endif
gsl_vector *v = NULL;
if (!copy) copy = apop_model_copy(e);
apop_mle_settings* prm0 = apop_settings_get_group(e, apop_mle);
apop_mle_settings* prm = apop_settings_get_group(copy, apop_mle);
//copy off the old params; modify the starting pt, method, and scale
if (!strcmp(starting_pt, "es"))
v = apop_array_to_vector(prm0->starting_pt);
else if (!strcmp(starting_pt, "ns")){
int size =sizeof(prm->starting_pt)/sizeof(double);
v = apop_array_to_vector(prm->starting_pt, size);
prm0->starting_pt = malloc(sizeof(double)*size);
memcpy(prm0->starting_pt, prm->starting_pt, sizeof(double)*size);
}
else if (!strcmp(starting_pt, "np")){
v = apop_data_pack(copy->parameters);
prm->starting_pt = malloc(sizeof(double)*v->size);
memcpy(prm->starting_pt, v->data, sizeof(double)*v->size);
}
else if (e->parameters){//"ep" or default.
v = apop_data_pack(e->parameters);
prm->starting_pt = malloc(sizeof(double)*v->size);
memcpy(prm->starting_pt, v->data, sizeof(double)*v->size);
}
Apop_stopif(!apop_vector_bounded(v, boundary), return e,
0, "Your model has diverged (element(s) > %g);"
" returning your original model without restarting.", boundary);
gsl_vector_free(v);
apop_model *newcopy = apop_estimate(e->data, copy);
apop_model_free(copy);
//Now check whether the new output is better than the old
if (apop_vector_bounded(newcopy->parameters->vector, boundary)
&& get_ll(e->data, newcopy) > get_ll(e->data, e)){
apop_model_free(e);
return newcopy;
} //else:
apop_model_free(newcopy);
return e;
}
// Simulated Annealing.
static double annealing_energy(void *in) {
infostruct *i = in;
return negshell(i->beta, i);
}
static double annealing_distance(void *xin, void *yin) {
/** We use the Manhattan metric to correspond to the annealing_step fn below. */
gsl_vector *from = apop_vector_copy(((infostruct*)xin)->beta);
gsl_vector *to = apop_vector_copy(((infostruct*)yin)->beta);
gsl_vector_div(from, ((infostruct*)xin)->starting_pt);
gsl_vector_div(to, ((infostruct*)xin)->starting_pt);//starting pts are the same.
return apop_vector_distance(from, to, .metric='m');
}
static void annealing_check_constraint(infostruct *i){
apop_data_unpack(i->beta, i->model->parameters);
if (i->model->constraint && i->model->constraint(i->data, i->model))
apop_data_pack(i->model->parameters, i->beta);
}
static void annealing_step(const gsl_rng * r, void *in, double step_size){
/** The algorithm:
--randomly pick dimension
--shift by some amount of remaining step size
--repeat for all dims
This will give a move \f$\leq\f$ step_size on the Manhattan metric.
*/
infostruct *i = in;
int sign;
double amt, scale;
double cutpoints[i->beta->size+1];
cutpoints[0] = 0;
cutpoints[i->beta->size] = 1;
for (size_t j=1; j< i->beta->size; j++)
cutpoints[j] = gsl_rng_uniform(r);
for (size_t j=0; j< i->beta->size; j++){
sign = (gsl_rng_uniform(r) > 0.5) ? 1 : -1;
scale = gsl_vector_get(i->starting_pt, j);
amt = cutpoints[j+1]- cutpoints[j];
*gsl_vector_ptr(i->beta, j) += amt * sign * scale * step_size;
}
annealing_check_constraint(i);
}
static void annealing_print(void *xp) {
apop_vector_show(((infostruct*)xp)->beta);
}
static void annealing_print2(void *xp) { return; }
static void annealing_memcpy(void *xp, void *yp){
infostruct *yi = yp;
infostruct *xi = xp;
*yi = *xi;
yi->beta = apop_vector_copy(xi->beta);
}
static void *annealing_copy(void *xp){
infostruct *out = malloc(sizeof(infostruct));
annealing_memcpy(xp, out);
return out;
}
static void annealing_free(void *xp){
gsl_vector_free(((infostruct*)xp)->beta);
free(xp);
}
//I abuse the starting point element to hold the list of scaling factors. They can't be zero.
static double set_start(double in){ return in ? in : 1; }
jmp_buf anneal_jump;
static void anneal_sigint(){ longjmp(anneal_jump,1); }
static void apop_annealing(infostruct *i){
apop_model *ep = i->model;
apop_mle_settings *mp = apop_settings_get_group(ep, apop_mle);
Apop_stopif(!mp, ep->error='l'; return, 0, "The model you sent to the MLE function has neither log_likelihood element nor p element.");
gsl_siman_params_t simparams = (gsl_siman_params_t) {
.n_tries = mp->n_tries,
.iters_fixed_T = mp->iters_fixed_T,
.step_size = mp->step_size,
.k = mp->k,
.t_initial = mp->t_initial,
.mu_t = mp->mu_t,
.t_min = mp->t_min};
gsl_rng *r = mp->rng ? mp->rng : apop_rng_get_thread();
//these two are done at apop_maximum_likelihood:
//i->beta = apop_data_pack(ep->parameters);
//setup_starting_point(mp, i->beta);
int betasize = i->beta->size;
int apopstatus = -1;
i->starting_pt = apop_vector_map(i->beta, set_start);
i->use_constraint = 0; //negshell doesn't check it; annealing_step does.
gsl_siman_print_t printing_fn = NULL;
if (mp && mp->verbose>1) printing_fn = annealing_print;
else if (mp && mp->verbose) printing_fn = annealing_print2;
annealing_check_constraint(i); //shift starting point if needed.
if (setjmp(i->bad_eval_jump)) {
apopstatus = -1;
goto done;
}
if (!setjmp(anneal_jump)){
signal(SIGINT, anneal_sigint);
gsl_siman_solve(r, // const gsl_rng * r
i, // void * x0_p
annealing_energy, // gsl_siman_Efunc_t Ef
annealing_step, // gsl_siman_step_t take_step
annealing_distance, // gsl_siman_metric_t distance
printing_fn, // gsl_siman_print_t print_position
annealing_memcpy, // gsl_siman_copy_t copyfunc
annealing_copy, // gsl_siman_copy_construct_t copy_constructor
annealing_free, // gsl_siman_destroy_t destructor
betasize, // size_t element_size
simparams); // gsl_siman_params_t params
}
signal(SIGINT, NULL);
apop_data_unpack(i->beta, i->model->parameters);
apop_estimate_parameter_tests(i->model);
apopstatus = 0;
done:
if (mp->rng) r = NULL;
auxinfo(i->model->parameters, i, apopstatus, i->best_ll);
}
/* This function calls the various GSL root-finding algorithms to find the zero of the score.
Cut/pasted/modified from the GSL documentation. */
static apop_model * find_roots (infostruct p) {
const gsl_multiroot_fsolver_type *T;
gsl_multiroot_fsolver *s;
apop_model *dist = p.model;
apop_mle_settings *mlep = apop_settings_get_group(dist, apop_mle);
int status=0, betasize = p.beta->size,
apopstatus = -1; //assume failure until we score a success.
size_t iter = 0;
gsl_multiroot_function f = {dnegshell, betasize, &p};
T = !strcasecmp(mlep->method, "Newton") ? gsl_multiroot_fsolver_dnewton
: !strcasecmp(mlep->method, "Newton hybrid no scale") ? gsl_multiroot_fsolver_hybrids
: gsl_multiroot_fsolver_hybrid;
s = gsl_multiroot_fsolver_alloc (T, betasize);
gsl_multiroot_fsolver_set (s, &f, p.beta);
do {
iter++;
if (setjmp(p.bad_eval_jump)) break;
status = gsl_multiroot_fsolver_iterate (s);
if (!mlep || mlep->verbose)
printf ("iter = %3zu x = % .3f f(x) = % .3e\n", iter, gsl_vector_get (s->x, 0), gsl_vector_get (s->f, 0));
if (status) /* check if solver is stuck */
break;
status = gsl_multiroot_test_residual (s->f, mlep->tolerance);
} while (status == GSL_CONTINUE && iter < mlep->max_iterations);
if (GSL_SUCCESS) apopstatus = 0;
Apop_notify(2, "status = %s\n", gsl_strerror(status));
apop_data_unpack(s->x, dist->parameters);
gsl_multiroot_fsolver_free (s);
gsl_vector_free (p.beta);
auxinfo(dist->parameters, &p, apopstatus, 0); //root-finders don't store best val.
return dist;
}
|